用户名: 密码: 验证码:
高速永磁电机转子损耗及通风散热研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速永磁电机具有体积小、功率密度大和效率高等优点,目前已成为国际电工领域的研究热点之一。高速永磁电机的旋转速度每分钟高达数万转甚至数十万转,转子的空气摩擦损耗及高频涡流损耗要比普通电机大得多。同时由于高速永磁电机体积小散热困难,受电枢反应去磁和转子过热影响,容易产生不可逆失磁。因此,高速永磁电机转子抗去磁研究、转子损耗的准确计算和通风散热设计是高速永磁电机设计的关键技术。
     本文研究内容是国家自然科学基金重点资助项目“微型燃气轮机—高速发电机分布式发电与能量转换系统研究”(编号50437010)的部分研究内容,重点针对高速永磁电机的防失磁技术、高速转子的空气摩擦损耗、涡流损耗计算以及电机的冷却方法进行了深入的理论分析与实验研究。主要包括以下内容:
     (1)基于磁场、应力场和温度场分析,研究了可能导致永磁体失磁的电枢反应去磁和高温失磁的可能性,提出了从永磁体及其护套的材料和结构选用、气隙与定子铁心结构以及通风散热方式等方面,如何减小永磁转子损耗和提高散热能力的防止永磁转子失磁的设计方法。
     (2)建立不同定子结构的高速永磁电机有限元模型,分析定子槽数对电机性能及转子涡流损耗的影响。基于流体场和实验相结合方法,对6槽无内风道和24槽有内风道两台高速永磁电机的温升进行了对比分析与实验,研究轴向通风结构与参数对高速电机温升的影响。
     (3)研究电机转速、气隙长度、定转子表面粗糙度和轴向风速等对于转子表面空气摩擦损耗的影响,基于流体场分析建立转子空气摩擦损耗的计算模型;通过对高速电机磁场分析建立了转子涡流损耗与转速的关系式,利用实验损耗分离方法验证了转子表面空气摩擦损耗和转子涡流损耗的计算模型。
     (4)基于流固耦合分析,建立高速永磁电机通风散热的空冷和油冷温升计算模型,计算永磁电机温升。通过对24槽空冷和12槽油冷高速永磁电机的温升测量与计算结果的对比,验证温升计算方法的有效性。
     (5)利用高速电机转子的高速旋转特性,研究一种在高速电机转子上直接设置轴流风扇的新结构,通过内风道设计,建立一种高速永磁电机的自扇冷通风系统,简化高速电机的通风散热结构。
The high speed permanent magnet (PM) machine has been widely investigated in the field of electrical engineering since it has small volume, high power density and high efficiency. Compared with the convertional low-speed machine, the rotor speed can reach up to or even above 100000r/min, so that the air friction loss and high frequency eddy current loss of its rotor are much greater than that of the convertional one. Due to the small size and difficulty of heat dissipation, the PM rotor is easier to be overheated and irreversible demagnetized. Therefore, Anti-demagnetization of PM rotor, accurate calculation of rotor loss and effective design of ventilation cooling system are key techniques for the design of the high-speed PM machine.
     The research work of this thesis is a part of the project-"The distributed high speed generator system driven by micro-turbines and its energy conversion system", which is supported by the National Natural Science Foundation of China (No.50437010). The study of the thesis is concentrated to the anti-demagnetization technology of PM rotor, calculation of air friction loss and high frequency eddy current loss on the rotor surface, and ventilation cooling of high speed PM machine. The main contents are as follows:
     (1) Based on the analysis of magnetic field, stress field and temperature field,-the demagnetization possibility of PM rotor caused by armature reaction and overheating is investigated. The design methods to reduce rotor losses, enhance heat dissipation and prevent the PM rotor from demagnetization are proposed through the choice of the material and structure of the PM and its enclosure, air gap and stator core structure, ventilation and heat dissipation structure, etc.
     (2) The influence of the number of stator slots on machine performance and eddy current loss of the rotor is analyzed using FEM. Based on the fluid field analysis combined with experiment, the temperature rises of the 6-slot high speed machine without inner vents and 24-slot machine with inner vents are comparatively studied, and the influences of axial ventilation structure and parameter on the temperature rise are investigated.
     (3) The influences of rotor speed, length of air gap, surface roughness of rotor and stator and axial wind speed on the air friction loss of the rotor are studied. Based on fluid field analysis, the calculation model of the air friction loss of rotor is proposed. Through finite element analysis, the relationship between eddy-current loss and rotor speed is established. The validity of the proposed calculation methods of air friction and eddy-current losses of the rotor is verified by the experiment of losses segregation.
     (4) On the basis of fluid-solid coupled analysis, the calculation model of temperature rise of high speed PM machine with air cooling and oil cooling systems is established. Through the comparison of the calculated temperature rises with tested results of the 24-slot machine with air cooling and 12-slot machine with oil cooling, the effctivity of the temperature calculation method is validated.
     (5) Based on the high-speed characteristics of the high-speed machine, a new structure of axial fan which is directly mounted on the rotor of high-speed machine is investigated. Through the design of internal ventilation, a self-cooling system is established to simplify the ventilation and cooling structure of high-speed PM machines.
引文
[1]Hennagir T. Distributed generation hits markets. Power Engineering,1997,101(10):18-23.
    [2]Zahawi B A T Al, James B P, Starr F. High speed turbo alternator for domestic combined heat and power unit. IEEE Trans, on EDM,1997,Ⅰ:215-218.
    [3]黄云凯,余莉.胡虔生.高速永磁电动机设计的关键问题.微电机,2006,39(8):6-9.
    [4]Zwyssig C, Kolar J W,Thaler W,et al. Design of a 100W,500000rpm permanent-magnet generator for mesoscale gas turbines.40th IAS Annual Meeting,2005,1:253-260.
    [5]Ahrens M, Bikle U, Gottkehaskamp R, et al. Electrical design of high-speed induction motors of up to 15MW and 20000rpm. International Conference on Power Electronics, Machines and Drives, Stevenage,2002,487:381-386.
    [6]Jacek F G. Comparison of high-power high-speed machines:cage inductions versus switched reluctance motors. IEEE Africon 5th Conference in Africa, Cape Town,1999,2:675-678.
    [7]Bianchi N, Bolognani S, Luise F. Potentials and limits of high-speed PM motors. IEEE Trans.on Industry Applications,2004,40(6):1570-1578.
    [8]王凤翔.高速电机的设计特点及相关技术研究.沈阳工业大学学报,2006,28(3):258-264.
    [9]Wang Fengxiang, Zheng Wenpeng, Zong Ming, et al. Design considerations of high-speed PM generators for microturbines. PowerCon, Kunming,2002,1:158-162.
    [10]Wang Fengxiang, Zong Ming, Zheng Wenpeng, et al. Design features of high speed PM machines. ICEMS, Beijing,2003,1:66-70.
    [11]Yu Tao, Wang Fengxiang, Wang Jiqiang, et al. Investigation on structure of stator core and winding for high speed PM machines. ICEMS, Nanjing,2005:903-906.
    [12]Wang Tianyu, Wang Fengxiang, Bai Haoran, et al. Stiffness and critical speed calculation of magnetic bearing-rotor system based on FEA. ICEMS, Wuhan,2008:575-578.
    [13]Aglen O. Loss calculation and thermal analysis of a high-speed generator. IEEE Electric Machines and Drives Conference, Madison Wisconsin,2003,2:1117-1123.
    [14]王继强.高速永磁电机的机械和电磁特性研究:(博士学位论文).沈阳:沈阳工业大学,2007.
    [15]Springer H, Schiager G, Platter T. A nonlinear simulation model for active magnetic bearing actuators. Proceedings of the sixth international symposium on magnetic bearing, Virginia,1998: 189-203.
    [16]赵雷,张德魁,杨作兴等.电磁轴承最优刚度与系统结构参数关系的研究.机械工程学报,2000,36(12):62-64.
    [17]谢振宇,徐龙祥,李迎等.控制参数对磁悬浮轴承转子系统动态性能的影响.航空动力学报,2004,19(2):174-178.
    [18]Lahteenmaki J. Design and voltage supply of high-speed induction machines:(Dissertation for the degree of doctor). Espoo:Helsinki Univesity of Technology,2002.
    [19]Aglen O. Back-to-back tests of a high-speed generator. IEEE Electric Machines and Drives Conference, Madison Wisconsin,2003,2:1084-1090.
    [20]Kolondzovski Z. Determination of critical thermal operations for high-speed permanent magnet electrical machines. International Journal for Computation and Mathematics in Electrical and Electronic Engineering,2008,27(4):720-727.
    [21]Huynh C, Zheng Liping, Acharya D. Losses in high speed permanent magnet machines used in mircroturbine applications. Proceeding of ASME Turbo Exbo 2008:Power for Land, Sea and Air, Berlin,2008,131(2):1-6.
    [22]Li Jianjun, Yu Yongxiang, Zou Jibin, et al. Rotor eddy-current loss of permanent magnet machine in brushless AC and DC modes,used for deep-sea HUV's propeller. ICEMS, Tokyo,2009:1-4.
    [23]Jang S M, Cho H W, Lee S H, et al. Rotor loss analysis in permanent magnet high-speed machine using coupled FEM and analytical method. KIEE Trans.on Electrical Machinery and Energy Conversion Systems,2005,5-B(3):272-276.
    [24]Zhu Z Q, Ng K, Schofield N, et al.Analytical prediction of rotor eddy-current losses in brushless machines equipped with surface-mounted permanent magnets, Part I:Magnetostatic field odel. Proceeding of the Fifth International Conference on Electrical Machines and Systems, Shenyang, 2001,2:806-809.
    [25]Yamazaki K, Watari S. Loss analysis of permanent-magnet motor considering carrier harmonics of PWM inverter using combinations of 2D and 3D finite element method. IEEE Trans.on Magnetics, 2005,41(5):1980-1983.
    [26]Daniel M, Thomas A. Hybrid approach for determining eddy-current losses in high-speed PM rotors. Electric Machines and Drives Conference, Antalya,2007:658-661.
    [27]周凤争,沈建新,林瑞光.从电机设计的角度减少高速永磁电机转子损耗.浙江大学学报,2007,41(9):1587-1591.
    [28]周凤争,沈建新,王凯.转子结构对高速无刷电机转子涡流损耗的影响.浙江大学学报,2008,42(9):1587-1590.
    [29]Zhang Guowei, Wang Fengxiang, Shen Yongshan. Reduction of rotor loss and cogging torque of high speed PM machine by stator teeth notching. ICEMS, Seoul,2007:856-859.
    [30]王桂香,徐龙祥,董继勇.高速磁悬浮电机的发热与冷却研究.中国机械工程,2010,21(8):912-916.
    [31]徐永向,胡建辉,胡任之等.永磁同步电机转子涡流损耗计算的实验验证方法.电工技术学报,2007,27(7):150-154.
    [32]凌文星.电机温升分析研究.机电技术,2010,3:66-67.
    [33]魏永田,孟大伟,温嘉斌.电机内热交换.北京:机械工业出版社,1998:308-321.
    [34]Jang C, Kim J Y, Kim Y J, et al. Heat transfer analysis and simplified thermal resistance modeling of linear motor driven stages for SMT applications. IEEE Trans.on Components and Packaging Technologies,2003,26(3):532-540.
    [35]Bellenda G, Ferraris L, Tenconi A. A new simplified thermal model for induction motors for EVs applications. IEEE International Conference on Electrical Machines and Drives, Durham, 1995:11-15.
    [36]李文宇.同步电机热计算与通风计算.船电技术,2007,2:72-75.
    [37]陈云华.船用凸极同步电机通风与发热数值计算:(硕士学位论文).武汉:华中科技大学,2005.
    [38]Lee Y, Hahn S Y, Kauh S K. Thermal analysis of induction motor with forced cooling channels. IEEE Trans, on Magnetics,2000,36(4-1):1398-1402.
    [39]Chowdhury S, Chowdhury S, Chowdhury S P, et al. Performance prediction of single phase induction motors using field and thermal models. The Fifth International Conference on Power Electronics and Drive Systems, Singapore,2003:456-461.
    [40]Guo Y, Zhu J G, Wu W. Thermal analysis of soft magnetic composite motors using a hybrid model with distributed heat sources. IEEE Trans. on Magnetics,2005,41(6):2124-2128.
    [41]Kim D J, Jung J W, Kwon S O, et al. Thermal analysis using equivalent thermal network in IPMSM. ICEMS, Wuhan,2008:3162-3165.
    [42]陈世坤.电机设计.北京:机械工业出版社,2000:127-134.
    [43]王北社,窦满峰.基于热网络法的高功率密度异步电动机定子温升计算.微特电机,2006,11:24-26.
    [44]Aglen O, Anersson A. Thermal analysis of a high-speed generator.38th IAS Annual Meeting, Tokyo,2003,1:547-554.
    [45]于涛.高速永磁发电机的损耗和温升的分析和计算:(硕士学位论文).沈阳:沈阳工业大学,2006.
    [46]刘吉仿.变频感应电动机电磁场及温度场的计算与分析:(硕士学位论文).哈尔滨:哈尔滨工业大学,2007.
    [47]Tindall C E, Brankin S. Loss-at-source thermal modeling in salient-pole ternators using 3-Dimentional finite difference techniques. IEEE Trans, on Magnetics,1988,24(1):278-281.
    [48]曹国宣.水内冷汽轮发电机转子温度场计算.电工技术学报,1993,(1):18-19.
    [49]徐松,顾国彪.50MW蒸发冷却汽轮发电机瞬态负序能力的计算机仿真研究.大电机技术,1994,(2):13-16.
    [50]张新波,许承千.电机三维温度场的综合分析.电工技术杂志,2000,(3):4-6.
    [51]李德寿,潘良明.用不等距有限元差分法及有限元法计算电机的温度场.中小型电机,2001, 28(5):17-20.
    [52]王述成.开关磁阻电动机温升研究:(硕士学位论文).武汉:华中科技大学,2004.
    [53]Cannistra G, Labini M S. Thermal analysis in an induction machine using thermalnetwork and finite element methods. Fifth International Conference on Electrical Machines and Drives, 1991:300-304.
    [54]陈志刚.等效热网络法和有限元法在电机三维温度场计算中的应用与比较.中小型电机,1995,22(1):3-6.
    [55]Gurevich E, Oshurkov P. Determination of rotor winding temperature of the turbogenerator with the brushless excitation system.ICEM, Espoo,2000:156-160.
    [56]Krok R, Miksiewicz R, Mizia W. Modeling of temperature fields in turbogenerator rotors at asymmertrical load. ICEM, Espoo,2000:1005-1009.
    [57]Gerlando A D, Perini R. Analytical evaluation of the stator winding temperature field of water-cooled induction motors for pumping drives. ICEM, Espoo,2000:130-134.
    [58]Krok R, Miksiewicz R. Monitoring of temperature fields in rotors during turbogenerator operation. ICEM, Espoo,2000:888-892.
    [59]Preis K, Biro O, Dyczij-Edlinger R, et al. Application of FEM to coupled electric, thermal and mechanical problems. IEEE Trans.on Magnetics,1994,30(5):3316-3319.
    [60]Preis K, Bardi I, Biro O, et al. Numerical analysis of 3D magnetostatic fields. IEEE Trans, on Magnetics,1991,27(5):3798-3803.
    [61]Hameyer K, Driesen J, De Gersem H,et al. The classification of coupled field problems. IEEE Trans, on magnetics,1999,35(3):1618-1621.
    [62]Chauveau E, Zaim E H, Trichet D, et al. A statistical approach of temperature calculation in electrical machines. IEEE Trans.on Magnetics,2000,36(4):1826-1829.
    [63]Wei Yongtian, Fu Min. Finite element calculation of rotor centre segment 3-dimensional temperature field of large hydrogenerator. ICEMA, Harbin,1996,1:299-303.
    [64]孔祥春,付敏.水轮发电机转子中部最热段三维温度场的有限元计算.哈尔滨理工大学学报,1996,1(1):53-59.
    [65]付敏,李伟力,张东.水轮发电机气隙内磁场和转子温度场计算.哈尔滨工业大学学报,2003,35(6):1131-1134.
    [66]栾茹,傅德平,唐龙尧.新型浸润式蒸发冷却电机定子三维温度场的研究.中国电机工程学报,2004,24(8):205-209.
    [67]李伟力,李守法,谢颖等.感应电动机定转子全域温度场数值计算机相关因素敏感性分析.中国电机工程学报,2007,27(24):85-91.
    [68]Yuan Chun,Wei Keyin,Wang Xiaonian. Coupled-field thermal analysis of high-speed permanent magnetic generator applied in micro-turbine generator. ICEMS, Nanjing,2005,3:2458-2461.
    [69]陈琳,刘长红,姚若萍.流场分析轴向通风冷却电机的转子温度.大电机技术,2005,4:12-15.
    [70]魏佩敏,杨平西.采用径、轴向混合通风发电机定转子绕组温度分布.中小型电机,2002,29(1):8-10.
    [71]孟大伟,刘瑜,徐永明.潜油电机转子三维温度场分析与计算.电机与控制学报,2009,13(3):367-370.
    [72]孟大伟,刘宇蕾,张庆军等.潜油电机整体三维温度场耦合计算与分析.电机与控制学报,2010,14(1):52-55.
    [73]王继强,王凤翔,孔晓光.高速永磁发电机的设计与电磁性能分析.中国电机工程学报,2008,28(20):105-110.
    [74]Shanel M, Pickering S J, Lampard D. Application of computational fluid dynamics to the cooling of salient.electrical machines. ICEM, Espoo,2000:338-342.
    [75]Rajagopal M S, Seetharamu K N, PA A N. Finite element analysis of radial cooled rotating electrical machines. International Journal of Numerical Methods for Heat and Fluid Flow,1999, 9(1):18-38.
    [76]Mayle R E, Hess S, Hirsch C, et al. Rotor-stator gap flow analysis and experiments. IEEE Trans. on Energy Conversion,1998,13(2):101-110.
    [77]Pickering S J, Lampard D, Shanel M. Ventilation and heat transfer in a symmetrically ventilated salient pole synchronous machine.International Conference on Power Electronics, Machines and Drives, Stevenage,2002:462-467.
    [78]Shanel M, Pickering S J, Lampard D. Conjugate heat transfer analysis of a salient pole rotor in an air cooled synchronous generator. IEEE International Electric Machines and Drives Conference, Madision Wisconsin,2003:737-741.
    [79]迟速,刘彤彦,刘双等.大型水轮发电机通风系统二维流场数值计算.黑龙江电力,2000,22(1):16-21.
    [80]李广德,张伟红.空冷汽轮发电机的通风系统设计.大电机技术,1998,(4):12-15.
    [81]路义萍,李伟力,韩家德等.大型汽轮发电机转子风道结构对空气流量分配影响.电工技术学报,2008,23(4):20-24.
    [82]Miao Lijie, Liu Tongyan. The application of FEM in the physical field computation. ICEMS, Shenyang,2001:1081-1084.
    [83]李伟力,付敏,周封等.基于流体相似理论和三维有限元法计算大中型异步电动机的定子三维温度场.中国电机工程学报,2000,20(5):14-17.
    [84]李伟力,周峰,侯云鹏等.大型水轮发电机转子温度场的有限元计算及相关因素的分析.中国电机工程学报,2002,22(10):85-90.
    [85]周峰,熊斌,李伟力等.大型电机定子三维流体场计算及其对温度场分布的影响.中国电机工程学报,2005,25(24):128-132.
    [86]李伟力,靳慧勇,丁树业等.大型同步发电机定子多元流场与表面散热系数数值计算与分析.中国电机工程学报,2005,25(23):138-143.
    [87]靳慧勇,李伟力,马贤好等.大型空冷汽轮发电机定子内流体速度与流体温度数值计算与分析.中国电机工程学报,2006,26(16):168-173.
    [88]邓桂民,王耀,周慧.空冷发电机技术的新进展.发电设备,2004,(3):163-166.
    [89]金煦,袁益超,刘幸拯等.大型空冷汽轮发电机冷却技术的现状与分析.大电机技术,2004,(4):33-37.
    [90]GoTT B E B.Advance in turbo-generator technology. IEEE Electrical Insulation Magazine,1996, 12(4):28-38.
    [91]Jarczynski E, Wetzel T, Fealey J. Evolution of air-cooled turbin erator design. IEEE Trans, on Energy Conversion,2003,20:117-123.
    [92]温嘉斌,孟大伟,周美兰等.大型水轮发电机通风发热场模型研究及通风结构优化计算.电工技术学报,2000,15(6):1-4.
    [93]Saari J.Thermal analysis of high-speed induction machines:(Dissertation for the degree of doctor).Espoo:Helsinki University of Technology,1998.
    [94]Oshima M, Miyazawa S, Deido T. Characteristics of a permanent magnet type bearingless motor. IEEE Trans, on Magnetics,1996,32 (2):104-106.
    [95]余声明.永磁材料在小电机中的应用.微特电机,2000,(5):31-36.
    [96]梁天亮.印制绕组直流电动机用永磁材料的选择.电机技术,2000,(3):33-34.
    [97]于旭光,秦茶,赵田臣等.烧结钕铁硼微观组织对磁性能的影响.特殊钢,2003,24(5):16-18.
    [98]杨眉,刘颖,涂铭旌.烧结钕铁硼永磁高性能化的关键及途径.磁性材料及器件,2001,33(1):32-34.
    [99]顾兴宝,章跃进,谢国栋.高功率密度永磁无刷直流电动机.微特电机,2005,(5):12-14.
    [100]唐任远等.现代永磁电机理论与设计.北京:机械工业出版社,2006:63.
    [101]颜威利,杨庆新,汪又花等.电气工程电磁场数值分析.北京:机械工业出版社,2006:46-50.
    [102]林岩.钕铁硼永磁电机防高温失磁技术的研究:(博士学位论文).沈阳:沈阳工业大学,2006.
    [103]Zhang Dianhai, Wang Fengxiang, Kong Xiaoguang. Air friction loss calculation of high speed permanent magnet machines. ICEMS, Wuhan,2008:320-323.
    [104]李伟力,丁树业,靳慧勇.基于耦合场的大型同步发电机定子温度场的数值计算.中国电机工程学报,2005,25(13):129-134.
    [105]张小伟,王延荣,张潇等.涡轮机械叶片的流固耦合数值计算方法.航空动力学报,2009,24(7):1622-1626.
    [106]Poliner H, Hoeimakers M J. Eddy-current losses in the permanent magnets of a PM machine. Eighth International Conference on Electrical Machines and Drives, Cambridge,1997:138-142.
    [107]Wang Fengxiang, Zhang Dianhai, Kong Xiaoguang, et al. Study on air friction loss of high speed PM machines. ICIT, Churchill, VIC,2009:1-4.
    [108]朱克勤,许春晓.粘性流体力学.北京:高等教育出版社,2010:122-123.
    [109]陶文铨.数值传热学.西安:西安交通大学出版社,2009:348-374.
    [110]南日山,张东,李伟力.凸极同步发电机空载下的气隙磁场波形特征系数及转子温度场的数值计算.大电机技术,2003,4:23-26.
    [111]Xu Yunlong, Wang Fengxiang. Experiment study on magnetizing and loss characteristics of electrical strip for different frequencies. ICEMS, Wuhan,2008:156-159.
    [112]何波.小型高速轴流风机的设计与实验验证:(硕士学位论文).西安:西北工业大学,2002.
    [113]张锦,刘晓平.叶轮机振动模态分析理论计数值方法.北京:国防工业出版社,2001:142-149.
    [114]袁有志,王立平,关立文.基于有限元法微型涡喷发动机转子系统分析.机械设计与制造,2006,12:1-3.
    [115]彭鑫,蔡兆麟.大型离心通风机叶轮的三维应力计算.风机技术,2001,2:25-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700