用户名: 密码: 验证码:
复杂混凝土坝坝基对坝体结构行为影响的分析理论和方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大坝是一个包括坝体和坝基的复杂系统,不仅坝基与坝体结构与荷载之间有复杂的相互作用,由于自身材料的特点,坝基蠕变与坝体徐变之间也有复杂的相互影响;而坝基应力场与渗流场、坝体应力场与渗流场的相互作用也是一个十分难解决的问题。以往坝工界对坝体研究较多,而对坝基研究相对较少。本文针对以上筑坝中的热点和难点,结合国家自然科学基金重大项目:重大水工混凝土结构隐患病害检测与健康诊断研究(编号50139030),并以新安江和龙羊峡大坝等为实例,对上述复杂问题进行理论研究,并将其应用到实际工程中,主要研究内容归纳如下:
     (1)针对混凝土重力坝和拱坝的不同特点,推导了坝基、坝体模量比值与大坝应力、位移的关系,并结合实例分析了新安江大坝及龙羊峡重力拱坝坝基和坝体模量比变化对大坝应力状况的影响,并由此确定了新安江重力坝和龙羊峡重力拱坝的最佳坝基与坝体的模量比值分别为1.0和0.8左右,即最佳坝基模量接近坝体模量值,而非越新鲜越坚硬越好,这对其他混凝土坝基础开挖的设计和施工有参考价值。
     (2)将拱坝虚拟为由座落在坝基块体有限元上的一系列悬臂梁与水平拱组成,将悬臂梁视作由水平拱所支承的弹性地基梁,考虑径向和切向调整,比以往的弹性地基梁只考虑径向调整有所发展;而且用块体元模拟坝基,也能较精确地模拟坝基多种断裂构造等对坝体结构行为的影响。应用上述方法,结合Morrow Point双曲拱坝,计算了该坝的分载与径向位移,其成果合理,验证了本文建立的坝体虚拟弹性地基梁与坝基块体有限元组合的拱坝分载法的合理性,且满足工程精度的要求,有一定的实用价值。
     (3)通过研究坝体混凝土徐变模型和坝基岩体的蠕变模型,并将两者有机结合,分别针对混凝土重力坝和拱坝,提出了考虑坝体徐变和坝基蠕变相互作用的组合模型。应用上述理论,解析了龙羊峡大坝向左岸位移的物理成因,尤其是4~#坝段在1991年以前切向位移显著向左岸位移的疑点,这对长期困扰该坝安全运行的疑点作出了科学解析,具有重要的实用价值。
     (4)研究了渗流与应力耦合作用的机理、本构模型以及进行坝基和坝体的粘弹性与粘弹塑性分析的组合模型及相应的有限元数值分析方法。并应用以上理论和方法,解析了龙羊峡大坝由于17~#和18~#坝段间的32~#和34~#孔持续高水位的渗流场作用,以及坝体徐变与坝基蠕变,使13~#坝段向左岸持续位移的物理成
    
     中文摘要
    因,这对龙羊峡大坝的渗流及变形控制有重要的科学和实用价值。
Dam is a complex system including dam body and base. There exists complex interact between dam body, base, and load. Also, the reciprocity of creep between dam base and body, and stress-seepage field couple between dam and its base are something intricateo Anciently, study on dam body is rather abundant, but quite few on dam base. Aiming these hot and difficult spots in dam building, combining one of the great projects sponsored by national natural science fund (No. 50139030), and real projects analysis of Xin'anjiang dam and Longyangxia dam, this dissertation studied these complex problems mentioned hereinbefore. The main contents are as follows:
    (1) Concrete dam, especially high dam, endures great loads such as water and temperature that passes to its base. So stabilization of dam base is very important. Aiming at the different characteristics of concrete gravity dams and arch dams, the dissertation derived the relation between stress of the dam and their module parameters. Combined with Xin'anjiang dam and Longyangxia dam, the optimum module ratios are determined as 1.0 and 0.8. The results are important for dam base excavation and engineering disposal.
    (2) Arch dam can be regarded as an elastic ground cantilever system composed of vertical cantilever, horizontal arch, and torsion structures. The dissertation takes the arch dam as load diversion system of arch-cantilevers system located on the ground composed of elastic cantilever. The base is divided into finite block element. So, the stress and load that this system divided can be calculated. Combining analyzing Morrow Point dam on Colorado River with this method, the rationality of it is validated.
    (3) Generally, dam and base are operated in material viscidity status. By studying on the creep model of dam concrete and base rock, and combined them together, the coupling model of these factors is bringing forward. Using these theories, the physical cause of continual left displacement of Longyangxia dam; especially 4th dam section is analyzed.
    (4) Accidents of some arch dam show that dam failure mainly caused by crack or failure of their base rock, which is directly related with seepage in the rock. Rock seepage have an important influence on rock's mechanical character, and stress field in it. The stress field and seepage field should be studied as a coupled system. The
    
    
    
    dissertation studied the mechanism, elastic and elasto-plastic analysis model, and finite element method of these coupling problems. As an example, the continual left displacement of Longyangxia dam is analyzed by this method.
引文
[1] Bellier J., Londe P., The Malpasset dam, Engineering Foundation Conf. Pro., The evaluation of dam safety, 1976.
    [2] Malpasset拱坝失事研究,国外水利水电,1980.11
    [3] Wittke W., Leonards G. A., Modified hypothesis for failure of Malpasset dam, Int. Workshop on dam failures, Purdue University, West-Lafayette, 1985
    [4] Rocha, M., "Statement of the Physical Problem of the Arch Dam", LNEC, Lisbon, Portugal, 1965
    [5] Habib P., The Malpassat dam failure, Engineering Geology, Vol. 24, 1987:p331-338
    [6] Comite Franqais des Grands Barrages, Serious Damages on French Dams(in French), ⅩⅢ International Congress on Large Dams, New Delhi, 1979
    [7] Lauffer H., Findings old and new relating to the dam foundation problems encountered at Malpasset, Sta. Maria and Kolnbrein as predicted by D.C. Henny in 1929, Dam Engineering, Vol. Ⅹ, No. 1, 1999:3-22
    [8] Poisel R., Steger W., Unterberger W., The Malpasset dam failure comparison between continuum and discontinuum mechanics: 1893-1896
    [9] Lond P., The Malpasset Dam Failure, Engineering Geology, 1987, 24:295-329
    [10] United States Committee on Large Dams. Managing the Risks of Dam Project Development, Safety and Operation. Eighteenth Annual USCOLD Lecture Series. Buffalo, New York, August 10-14, 1998
    [11] J.Laginha Serafim, 朱祖成译,大坝失事的回顾,大坝与安全,1991(4)
    [12] Humberto Marengo, Considerations on dam safety and the history of overtopping events, Dam Engineering, Vol. ⅩⅠ, No. 1, 2000:29-59
    [13] Warren J. E. and Rott P. J., The behavior of naturally fractured reservoirs, Soc. Pet. Eng. J., No.3, 1963
    [14] 邢林生,我国水电站大坝事故分析与安全对策(一),大坝与安全,2000(1):1-6
    [15] 邢林生,我国水电站大坝事故分析与安全对策(二),大坝与安全,2000(2):1-5
    [16] 刘相斌、赵国藩,用不同模量有限元分析坝体应力和变形,力学与实践,2001,23(4):39-42
    [17] 张兴武,坝基分区弹模的敏度反分析方法,计算技术与计算机应用,1991(1):32-37
    [18] 左东启、王世夏、林益才主编,水工建筑物,河海大学出版社,1995年7月
    [19] 吴中如,典型拱坝的严重事故及解析,工程力学(增刊),2001.10
    [20] 苗琴生等,有限元计算重力坝应力时的控制标准,混凝土坝网刊,1996(1)
    [21] 汪景琦,拱坝的设计和计算,中国工业出版社,1965年
    [22] 吴中如,拱坝应力分析的一种方法—弹性地基梁法,华东水利学院学报,1981(2):1-14
    
    
    [23] 朱伯芳,关于混凝土徐变理论的几个问题,水利学报,1982(3)
    [24] 朱伯芳,有限单元法原理与应用,中国水利水电出版社,1998年10月
    [25] 王德厚,如何从基础岩体变形来判断水工建筑物及其基础在施工期和蓄水初期的安全程度,大坝安全监测科研成果汇编第一期(上册),长江科学院,1991,6,160-172
    [26] 孙钧、张玉生,大断面地下结构粘弹塑性有限元解析,同济大学学报,1983(2),10-24
    [27] 孙钧,岩土材料流变及其工程应用,北京:中国建筑工业出版社,1999年
    [28] 徐志英、周健,考虑岩石非线性粘弹性的洞室围岩稳定和变形分析,岩石力学与工程学报,1987(3),185-196
    [29] 李永盛、孙钧,多组节理岩体洞室的蠕变特性及其粘弹塑性效应,同济大学学报,1986(3),281-290
    [30] J.Yamatomi,岩石粘塑性性态流变模型,计算机方法在岩石力学中的应用(第一卷),武汉测绘科技大学出版社,1993.5,85-95
    [31] G. Gioda, A finite element solution of non-linear creep problems in rock, Int. J.Rock Mech. Min. Sci.& Geomech.Abstr., Vol. 18, 1981, 35-46
    [32] Gioda G., Indirect identification of the average elastic characteristics of rock masses, Proc. Int. Conf. on Struc. Foundations on Rock, Sydney, 1980
    [33] Gioda G., Maier G., Direct search solution of an inverse problem in elasto-plasticity identification of cohesion, friction angle and in-site stress by pressure tunnel tests, Int. Numerical Methods Eng. 15, 1980:1823-1848
    [34] S.S. Vyalov, Rheological fundamentals of soiechanics, Elsevier Science Publishing Company, Inc., 1986
    [35] 宋德彰,岩质材料非线性流变属性及对隧洞围岩—支护系统的力学效应,上海:同济大学博士学位论文,1989年6月
    [36] 宋德彰,在法向压应力影响下隧洞围岩非线性粘塑性变形的研究,土木工程学报,1993(5),43-49
    [37] 宋德彰、孙钧,岩质材料非线性流变属性及其力学模型,工程力学,1991(2)
    [38] M.J.Keedwell, Rheology and soiechanics, Elsevier Science Publishing Company, Inc., 1984
    [39] W.N.Findley, J.S.Lai & K.Onaran, Creep and relaxation of nonlinear visco-elastic materials, North Holland Publishing Company, 1976
    [40] 李成江,膨胀性围岩力学机制及其隧洞支护效应的数值模拟分析,上海:同济大学博士学位论文,1988年月
    [41] M.Langer, Rheological behaviour of rock masses, Proc.4th Cong. Of the Inter. Society for Rock Mech., Vol.1, Montreux(Suisse), Sept.2-8, 1979, 29-62
    [42] 段亚辉、陆述远,岩石和混凝土类脆性材料强度理论探讨,岩土工程学报,1992(1),44-50
    [43] S.S.Hsieh, E.C.Ting & W.F. Chen, Aplastic fracture model for concrete, Int. J.Solids Struc., Vol. 18, No.3, 1982, 181-197
    
    
    [44] S.S.Hsieh, E.C.Ting & W.F. Chen, Applications of a plastic fracture model to concrete structures, Computer & structures, Vol.28, No.3, 1988, 373-393
    [45] 张志良、徐志英,高地应力区地下洞室围岩稳定和变形分析,河海大学学报,1991(6),9-15
    [46] 沈珠江,关于破坏准则和屈服函数的总结,岩土工程学报,1995(1),1-8
    [47] M.A.Biot, General theory of three dimensional consolidation, J.Appl.Physics, Vol.12, 1941, 155
    [48] R.L.Schiffman, Finite and infinites imalstrain consolidation, J.Geot. Engg. Div., Proc. ASCE, Vol.107, No.2, 1981,203-207
    [49] Dershowitz W. S., et al., A new three-dimensional model for flow in fractured rock, Mem. Int. Assoc. Hydrogeol., Vol. 17, 1985
    [50] Elsworth D. and Maobai, Flow-Deformation Response of Dual-Porosity Media, J. Geo. Eng., 1992, (118): 107-124
    [51] Lomize G. M., Flow in Fractured Rock, Gosemergoizdat, Moscow, 1951
    [52] D.C.Drucker & W. Prager, Soiechanics and plastic analysis or limit design, Quart. Appl. Mathematics, Vol. 10, No.2, 1952, 157-165
    [53] Huyakorn P. S., Lester B. H., Faust C. R., Finite element techniques for modeling groundwater flow in fractured aquifers, Water Resour. Reseat., Vol. 19, No.4, 1983
    [54] Casagrande A., Control of seepage through foundations and abutments of dams, Geotechnique, Vol. 11, No. 3, 1961, 161-181
    [55] Borja R, I., Free boundary fluid flow and seepage force in excavation, J.geotechnical engineering, No. 118, Vol. 1, 1992, 125-146
    [56] J.E.Gale, The effects of fracture type (induced versus natural) on the stress fracture closure fracture permeability relationships, Proc. Of the 23th U.S.Symposium on Rock Mech., Berkeley, California, Aug., 1982, 290-298
    [57] Gale J. E., The effects of fracture type (induced versus natural) on the stress-fracture closure-fracture permeability relationships, Proc. of the 23rd U. S. Symposium on Rock Mech., Berkeley, California, Aug., 1982
    [58] Raven K. G., Gale J. E., Water Flowing natural rock fracture as a function of stress and sample size, Int. J. Rock. Mech. Sci. & Geomech. Abstr. Vol. 4, No. 22,1985:151-161
    [59] Witherspoon P. A., Wang J. C. Y., Iwai K. Gale J. E., Validity of cubic law for fluid flow in a deformable rock fracture, Water Resources Research, Vol. 16, No. 6, 1980:1016-1024
    [60] O. C. Zienkiewicz & I. C. Cormeau, Visco-plasticity, plasticity and creep in elastic solids, Int. J. Numer Methods, Eng., Vol. 8,1974,821-845
    [61] W. Wittke, Rock mechanics-Theory and applications with case histories, Berlin: Springer-Verlag, 1990
    
    
    [62] Ohnishi Y., Shibata H., Kabayashi A., Development of finite element code for analysis of coupled thermo-hydro-mechanical behaviors of saturated-unsaturated medium, Int. Symp. On Coupled Process Affecting the Performance of a Nuclear Waste Repository, 1985
    [63] Ohnishi Y., Kabayashi A., Thermal-hydraulic-mechanical coupling analysis of rock mass. See: Comprehensive Rock Engineering (Ed. By Hudson J. A.), Pergamon Press, Vol. 2, 1993: 191-208
    [64] Brown S. R., Fluid flow through rock joints: the effect of surface roughness, J. of Geophys. Resear., Vol. 92, No. B2, 1987:1337-1347
    [65] Snow D. T., Anisotropic permeability of fractured media, Water Resource Research, Vol. 5, No. 6, 1969:1273-1289
    [66] Oda M., An equivalent continuum model for coupled stress and fluid flow analysis in jointed rock massed, Water Resource Research, Vol. 22, No. 13, 1986:1845-1856
    [67] Barenblatt G. I. etal., Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks, J. Appl. Math. Mech., Vol. 24, No. 5, 1960
    [68] Duiguid J. O. and Lee P. C. Y., Flow in fractured porous media, Water Resource Research. Vol. 13, No. 3,1977
    [69] Romm E. S., Flow characteristics of fractured rocks, Nedra, Moscow, 1966
    [70] Louis C., A study of groundwater flow in jointed rock and its influence on the stability of rock masses, Rock Mech. Res. Rep. 10, Imp. Coll., London, 1969
    [71] Capasso G, et al. The influence of normal load on the hydraulic behavior of rock fractures. In: Vonille G & Berest P, The 9th international congress on rock mechanics. Rotterdam: Balkama. 1991
    [72] Oron A P & Berkowitz B. Flow in rock fractures: The local cubic law assumption reexamined. Water Resource Res., Vol. 34, No. 12, 1988:3215-3234
    [73] Tsang Y. W., Witherspoon P. A., Hydromechanical behavior of a deformable rock fracture subject to normal stress, J. of Geophys. Research, Vol. 86, No. B10, 1981:9187-9298
    [74] Tsang Y. W., Witherspoon P. A., The dependence of fracture mechanical and fluid flow properties on fracture roughness and sample size, J. of Geophys. Research, Vol. 88, No. B3, 1983:2359-2366
    [75] Neuzil,C. E. and Tracy J. V., Flow through fractures, Water Resour. Resear., Vol. 17, No.1, 1981:191-194
    [76] Dershowitz W. S., et al., A new three dimensional model for flow in fractured rock, Mem. Int. Assoc. Hydrogeol., Vol. 17, 1985
    [77] Elsworth D. and Maobai, Flow-Deformation Response of Dual-Porosity Media, J. Geo. Eng., 1992, (118): 107-124
    [78] Lomize G. M., Flow in Fractured Rock, Gosemergoizdat, Moscow, 1951
    [79] Huyakorn P. S., Lester B. H., Faust C. R., Finite element techniques for modeling
    
    groundwater flow in fractured aquifers, Water Resour. Resear., Vol. 19, No.4, 1983
    [80] Casagrande A., Control of seepage through foundations and abutments of dams, Geotechnique, Vol. 11, No. 3, 1961:161-181
    [81] Borja R, I., Free boundary fluid flow and seepage force in excavation, J. geotechnical engineering, No. 118, Vol. 1, 1992:125-146
    [82] Ohnishi Y., Shibata H., Kabayashi A., Development of finite element code for analysis of coupled thermo-hydro-mechanical behaviors of saturated-unsaturated medium, Int. Symp. On Coupled Process Affecting the Performance of a Nuclear Waste Repository, 1985
    [83] Ohnishi Y., Kabayashi A., Thermal-hydraulic-mechanical coupling analysis of rock mass. See: Comprehensive Rock Engineering (Ed. By Hudson J. A.), Pergamon Press, Vol. 2, 1993: 191-208
    [84] Raven K. G., Gale J. E., Water Flowing natural rock fracture as a function of stress and sample size, Int. J. Rock. Mech. Sci. & Geomech. Abstr. Vol. 4, No. 22,1985:151-161
    [85] Witherspoon P. A., Wang J. C. Y., Iwai K. Gale J. E., Validity of cubic law for fluid flow in a deformable rock fracture, Water Resources Research, Vol. 16, No. 6, 1980:1016-1024
    [86] Brown S. R., Fluid flow through rock joints: the effect of surface roughness, J. of Geophys. Resear., Vol. 92, No. B2, 1987:1337-1347
    [87] Snow D. T., Anisotropic permeability of fractured media, Water Resource Research, Vol. 5, No. 6, 1969:1273-1289
    [88] Oda M., An equivalent continuum model for coupled stress and fluid flow analysis in jointed rock massed, Water Resource Research, Vol. 22, No. 13, 1986:p1845-1856
    [89] Barenblatt G. I. etal., Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks, J. Appl. Math. Mech., Vol. 24, No. 5, 1960
    [90] Duiguid J. O. and Lee P. C. Y., Flow in fractured porous media, Water Resource Research. Vol. 13, No. 3,1977
    [91] Romm E. S., Flow characteristics of fractured rocks, Nedra, Moscow, 1966
    [92] Louis C., A study of groundwater flow in jointed rock and its influence on the stability of rock masses, Rock Mech. Res. Rep. 10, Imp. Coll., London, 1969
    [93] Capasso G, et al. The influence of normal load on the hydraulic behavior of rock fractures. In: Vonille G & Berest P, The 9th international congress on rock mechanics. Rotterdam: Balkama. 1991
    [94] Oron A P & Berkowitz B. Flow in rock fractures: The local cubic law assumption reexamined. Water Resource Res., Vol. 34, No. 12, 1988:3215-3234
    [95] Tsang Y. W., Witherspoon P. A., Hydromechanical behavior of a deformable rock fracture subject to normal stress, J. of Geophys. Research, Vol. 86, No. B10, 1981:9187-9298
    [96] Tsang Y. W., Witherspoon P. A., The dependence of fracture mechanical and fluid flow properties on fracture roughness and sample size, J. of Geophys. Research, Vol. 88, No. B3,
    
    1983:2359-2366
    [97] Neuzil C. E. and Tracy J. V., Flow through fractures, Water Resour. Reseat., Vol. 17, No.1, 1981:191-194
    [98] Y. Ohnishi, H.Shibata & A.Kobayashi, Development of finite element code for the analysis of coupled thermohydro mechanical behaviors of saturated unsaturated medium; Int. Symp. on Coupled Process Affecting the Performance of a Nuclear Waste Repository, 1985
    [99] 周维垣主编,高等岩石力学,北京:水利电力出版社,1990.6
    [100] 陶振宇、沈小莹,库区应力场的耦合分析,武汉水利电力学院学报,No.1,1988,8~13
    [101] 杜延龄、许国安、黄一和,复杂岩基的三维渗流分析研究,水利学报,1984,3(3):1-9
    [102] 孙钧、李成江,复合膨胀渗水围岩—隧洞支护系统的流变机理及其粘弹塑性效应(研究报告),1985.3
    [103] 沈振中,三峡大坝和基岩施工期变形分析及其反分析模型,河海大学博士学位论文,1995年10月
    [104] 任旭华,碾压混凝土坝的渗流和渗控、应力和稳定,河海大学博士学位论文,1997年10月
    [105] 段小宁、李鉴初、刘继山,应力场与渗流场相互作用下裂隙岩体水流运动的数值模拟,大连理工大学学报,1992,6(3):712-717
    [106] 张有天,裂隙岩体渗流数学模型研究现状,人民长江,1992(22):1-10
    [107] 张金才,张玉卓,刘天泉,岩体渗流与煤层底板突水,北京:地质出版社,1997年3月
    [108] 杜延龄、许国安、黄一和,复杂岩基的三维渗流分析研究,水利学报,1984,3(3):1-9
    [109] 段小宁、李鉴初、刘继山,应力场与渗流场相互作用下裂隙岩体水流运动的数值模拟,大连理工大学学报,1992,6(3):712-717
    [110] 郭雪莽,岩体的变形、稳定和渗流及其相互作用研究,大连理工大学博士学位论文,1990
    [111] 郭雪莽、林皋,岩体变形与渗流的相互作用,第四届全国岩土力学数值分析与解析方法讨论会论文集,武汉:武汉测绘科技大学出版社,1991,448-453
    [112] 耿克勤,复杂岩基的渗流、力学及其耦合分析研究以及工程应用,清华大学博士学位论文,1994年
    [113] 耿克勤、吴永平、包煜君,复杂岩基上拱坝和坝肩岩体变形过程及转异特征研究,水利学报,1995(4)
    [114] 王媛,裂隙岩体渗流及其应力的全耦合分析,河海大学博士学位论文,1994年3月
    [115] 王媛,单裂隙面渗流与应力的耦合特性,岩石力学与工程学报,2002(1):83-87
    [116] 王洪涛、王恩志、金宜英,裂隙岩体渗流耦合数值分析方法及其工程应用,水利水运科学研究,1998(4):320-328
    
    
    [117] 王恩志,王洪涛,孙俊,双重裂隙系统渗流模型研究,岩石力学与工程学报,1998(4):400-406
    [118] 顾冲时、吴中如,渗流影响下坝体和岩基应力场的分析模型研究,水电能源科学,1999(3)
    [119] 吴中如、沈长松、阮焕祥,水工建筑物安全监控理论及其应用,南京:河海大学出版社,1990年10月
    [120] 吴中如、顾冲时、吴相豪,碾压混凝土坝安全监控理论及其应用,科学出版社,2001年4月
    [121] 吴中如、顾冲时,大坝原型反分析及其应用,江苏科学技术出版社,2000年1月
    [122] 吴中如、朱伯芳主编,三峡水工建筑物安全监测与反馈设计,北京:水利水电出版社,1999年4月
    [123] N. Hajdin, An integral equations method for arch dam analysis, theory of arch dams, 1964.4
    [124] H.G. Ganev, A new method of calculating arch dam as plates lying on an elastic foundation, theory of arch dams, 1964.4
    [125] Static-Geomechanical model of the RICDRACOLI Arch-Gravity dam by guide oberti Fu MAGALL.
    [126] 上海勘测设计院,拱坝试载法的简化和改进,上海科学技术出版社,1959年7月s
    [127] 河海大学、西北勘测设计院、第四工程局,水电工程筑坝技术科技攻关成果总报告,“七五”国家科技攻关项目,1989年6月
    [128] 高拱坝关键技术研究——坝体、库水和坝基相互作用动、静力分析研究,“八五”国家重点科技攻关项目,电力工业部西北勘测设计研究院,1995年9月
    [129] 河海大学,坝体、库水和坝基相互作用动、静力分析研究,“八·五”国家科技攻关项目,1995年1月
    [130] 河海大学、西北勘测设计院、第四工程局,龙羊峡重力拱坝原型结构性态和高水位运行的可行性研究,1989年6月
    [131] 河海大学、青海省电力工业局、龙羊峡水电厂,龙羊峡大坝及基础工作性态分析报告,1996年4月
    [132] 河海大学,拱坝开裂条件下的体型优化研究,“八·五”国家科技攻关项目,1995年3月
    [133] 胡维俊、陈明关、忻建,龙羊峡重力拱坝的反分析,1993(1):86-90
    [134] Copen, M. D., Rouse, G.C. and Wallace, G.B. "European Practice in Design and Construction of Concrete Dams", US Bureau or Reclamation, February, 1962
    [135] Coyne, A., "Arch Dams: Their Philosophy", Journal of the Power Division, ASCE, Paper No. 959, April 1956
    [136] Edited by L. Berg. Dam Safety. Proceeding of the International Symposium on new trends and guidelines on dam safety. Barcelona, Spain. June 17-19, 1998. A. A. Balkema,
    
    Rotterdam, Brookfield
    [137] J. Noorzaei & M. R. Zarrini, Modelling of Arch Dam using finite-infinite and interface element, Dam Safety, Berga (ed.) Balkema, Rotterdam, 1998
    [138] Jansen, R. B., "Advanced Dam Engineering", pp. 582, 587 and 603; Van Nostrand Reinhold, New York, 1988
    [139] Model studies in mechanics of jointed rock by H. H. Einstein R. C. Hirechield. proc. ASCE journal of soil Mech. mechanics and foundations Divi. ASCE. Jan. 1973
    [140] Priest S. D. and Hudson J., Discontinuity spacings in rock, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol. 13, 1976:135-148
    [141] Bacher G. B. etal, Statistical descriptions of rock properties and sampling, Proc. U. S. Symp. Rock Mech., 18th, 1977
    [142] Barton N. and Choubey V., The shear strength of rock joints in the theory and practice, Vol. 10, No. 1-2, 1997:1-54
    [143] Louis C. Rock hydraulics, in Rock Mech., Ed. By L. Muller, 1974
    [144] Snow D. T., Rock fracture spacings, openings and porosities, J. Soil Mech. Found. Div., Proc. ASCE, Vol. 94, No. SM1, 1968:73-91
    [145] 仵彦卿,裂隙岩体应力与渗流关系研究,水文地质与工程地质,1995(6):30-35
    [146] Barton N., Bandis S., Bakhtar K., Strength, deformation and conductivity coupling of rock joints, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol. 22, No.3, 1985:121-140
    [147] Elsworth D., Goodman R. E., Characterization of rock fissure hydraulic conductivity using idealized wall roughness profiles, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol. 23, No. 3, 1986:233-243
    [148] Witherspoon P. A., Amick C. H., Gale J. E., Iwai K., Observation of a potential size effect in emmperimental determination of the hydraulic properties of fractures, Water Resour. Resear., Vol. 15, No. 5, 1979:1142-1146
    [149] Khaleel R., Scale dependence of continuum models for fractured basalts, Water Resource Research, Vol. 25, No. 8, 1989:1847-1855
    [150] Wittke W., Rock mechanics-theory and applications with case histories, Berlin, 1990
    [151] Xerez A., Lamas J.F., Methods of analysis of arch dam behavior, Ⅵ Congress on Large Dams,.R.39, Q.21, New York, 1958
    [152] Maria. Experimental study of concrete arch dams 40 years of LNEC experience, Lisboa, July 1986
    [153] Serafim J.L., Safety aspects in the design and inspection of dams, International Water Power & Dam Construction, 1982.5
    [154] Theory of Arch Dams, Papers presented at The International Symposium held at Southampton University, Editor: J. R. Rydzewski, Symposium publication division PERGAMON PRESS, April, 1964
    
    
    [155] Veltrop, J.A. "Concrete Arch Dams", Sec. 3, Development of Dam Engineering in the United States, US Committee on Large Dams, 1988.
    [156] 陈胜宏,高坝复杂岩石地基及岩石高边坡稳定分析,中国水利水电出版社,2001年11月
    [157] 周维垣、杨若琼,坝基稳定的块体模型有限元计算与试验研究,高拱坝学术讨论会论文集,中国水力发电工程学会编,电力工业出版社,1982年4月
    [158] 吴相豪,高碾压混凝土拱坝原型正反分析模型研究,河海大学博士学位论文,2000年4月
    [159] B.BUEN,流变引起残余应力的变化,田良灿、连志升等译,第四届国际岩石力学会议论文选集,1985年5月
    [160] R.A.SHIRYAEV等,节理岩石强度的模型研究,田良灿、连志升等译,第四届国际岩石力学会议论文选集,1985年5月
    [161] Y.A.FISHMAN,混凝土坝岩基破坏机理的研究及其稳定性分析,田良灿、连志升等译,第四届国际岩石力学会议论文选集,1985年5月
    [162] 孙申登译,混凝土坝岩基的安全性,水利水电快报,1984(6)
    [163] 阿鲁久涅扬,蠕变理论中的若干问题,科学出版社,1961年
    [164] 吴中如、张鸣岐,用组合流变模型研究地下洞室周壁变形的时间效应,华东水利学院学报,1985(2):1-9
    [165] 安鸿志、陈敏,非线性时间序列分析,上海:上海科学技术出版社,1998.4-16
    [166] 陈久宇,用非线性参数估计分析混凝土坝原体的时效变形,大坝观测与土工测试,1980(2)
    [167] 蔡德所,复杂坝基与滑坡研究中的新方法,中国电力出版社,1998年1月
    [168] 常晓林、陆述远、赖国伟,碾压混凝土坝稳定临界准则公式及设计安全系数研究,水利学报,1998(5)
    [169] 长江流域规划办公室,岩石坝基工程地质,水利电力出版社,1982年12月
    [170] 朱伯芳,异质弹性徐变体应力分析的广义子结构法,水利学报,1984(2)
    [171] 朱伯芳,混凝土的弹性模量、徐变度与应力松弛系数,水利学报,1985(9)
    [172] 朱伯芳,混凝土高坝仿真计算的并层坝块接缝单元,水力发电学报,1995(3):14-21
    [173] 朱伯芳,在混合边界条件下非均质粘弹性体的应力与位移,力学学报,1964(2)
    [174] 朱伯芳,弹性徐变体有限元时间域分区异步长解法,水利学报,1995(8):46-52
    [175] 朱伯芳,渗透水对非均质重力坝应力状态的影响,水利学报,1965(2)
    [176] 朱伯芳,混凝土结构徐变应力分析的隐式解法,水利学报,1983(5)
    [177] 长江水利委员会编,三峡工程地质研究,长江三峡工程技术丛书,湖北科学技术出版社,1997年10月
    [178] 陈荷立、汤锡元译,孔隙压力的基本原理通常引起的后果及其构造地质含意,石油工业出版社,1982年
    [179] 陈凤翔、吴铭江、黄仁福,坝基岩体中石膏夹层的工程特性的研究,水利水电科
    
    学研究院科学研究论文集第8集(岩土工程),水利电力出版社,1982年8月
    [180] 第十五届国际大坝会议译文选集,水利电力部水利水电建设总局、中国水利学会、中国水力发电工程学会,1985年6月
    [181] 电力工业部西北勘测设计研究院,坝体、库水和坝基相互作用动、静力分析研究,国家“八五”重点科技攻关专题报告,1995年10月
    [182] 许文年、蔡德所著,地质缺陷对坝基及滑坡稳定性影响的研究,中国水利水电出版社,2000年1月
    [183] 阳武,拟定混凝土坝变形监控指标的正反分析理论、方法及其应用,河海大学硕士学位论文,1996年10月
    [184] 杨清平、李俊杰,重力坝坝踵主拉应力区分布规律的探讨,水利学报,2000(4),64-68
    [185] 杨林德、朱合华,地层三维粘弹性反演分析,岩土工程学报,1991(6):18-26
    [186] 杨挺青,粘弹性力学,华中理工大学出版社,1990年6月
    [187] 冯夏庭,智能岩石力学及其在岩土工程中的应用,东北大学资源与土木工程学院、中国科学院武汉岩土力学研究所
    [188] 傅作新,水工结构力学问题的分析与计算(傅作新论文选集),河海大学出版社,1993年6月
    [189] 弓正华等,迈向21世纪的中国水电站大坝安全监察,99大坝安全及监测国际研讨会论文集,中国书籍出版社,1999.10,1-9
    [190] 龚晓南主编,土工计算机分析,中国建筑工业出版社,2000年10月
    [191] 吴中如、吉肇泰,用洞壁变形验算与预测地下工程的稳定性,河海大学学报,1986(3):1-10
    [192] 吴中如,隧洞围岩的塑性区和松动区范围的推算,华东水利学院学报,1985(1):1-13
    [193] 陈国綮、吴中如、曹明、沈洪俊,拱坝坝肩稳定的地质力学整体模型试验研究,华东水利学院学报,1981(2):15-24
    [194] 耿克勤,吴永平,基于原型观测资料的拱坝及其基础的有限元综合分析,水利学报,2001(4):62-67
    [195] 吴中如、沈长松、阮焕祥,论混凝土坝变形统计模型的因子选择,河海大学学报,1988(6):1-9
    [196] 吴中如、阮焕祥,混凝土观测资料的反分析,河海大学学报,1989(2):10-19
    [197] 吴中如、顾冲时、赵炳祯、费建东,大坝原型观测资料的综合分析法,河海大学学报,1993(1):70-76
    [198] 吴中如,混凝土坝观测物理量的数学模型及其应用,华东水利学院学报,1984(3):20-25
    [199] 顾冲时,大坝与岩基的反馈分析及其应用,河海大学博士学位论文,1997年12月
    [200] 郭海庆,大型地下钢筋混凝土岔管的三维弹塑性有限元计算分析,河海大学硕士
    
    学位论文,1999年3月
    [201] 哈秋舲、陈洪凯,长江三峡工程岩石边坡地下水渗流及排水研究,中国建筑工业出版社,1997年9月
    [202] 王镭,大头坝头部应力研究及劈头裂缝成因分析,水利水电科学研究院科学研究论文集第9集(结构、材料),水利电力出版社,1982年11月
    [203] Sarkaria, G.S., "Discussion of Paper Arch Dams: Their Philosophy" , J., Power Div., ASCE, Paper No. 1094, October 1956.
    [204] Terzaghi, K., "Effect of Minor Geological Details on Safety of Dams", AIMME Tech. Pub. 215 1929.
    [205] 河海大学、梅山水电站,梅山水电站大坝观测资料及结构正反分析报告,1999年4月
    [206] 何金平、李珍照、施玉群,大坝结构实测性态综合评价方法研究,水力发电学报,2001(2):36-43
    [207] 贺可强、潘岳,岩土介质的本构失稳与折迭突变模型,岩土工程学报,2001,23(4):506-509
    [208] 黄春娥、龚晓南,条分法与有限元法相结合分析渗流作用下的基坑边坡稳定性,水利学报,2001(3)
    [209] 黄俊,裂隙岩基渗流各向异性的主渗透方向对坝底扬压力的影响,水利水电科学研究院科学研究论文集第8集(岩土工程),水利电力出版社,1982年8月
    [210] 姜振权、季梁军,岩石全应力—应变过程渗透性试验研究,岩土工程学报,2001(2):153-156
    [211] 林鲁生、蒋刚,考虑降雨入渗影响的边坡稳定分析方法探讨,武汉大学学报(工学版),2001(1)
    [212] 铃光木著,杨其中等译,岩体力学与测定,北京:煤炭工业出版社,1980年
    [213] 杨天鸿、唐春安、朱万成,等,岩石破裂过程渗流与应力耦合分析,岩土工程学报,2001,23(4):489-493
    [214] 杨天鸿,岩石破裂过程渗透性质及其与应力耦合作用的研究,东北大学博士学位论文,2001
    [215] 盛金昌、速宝玉、赵坚、詹美礼,溪洛渡拱坝坝基渗流—应力耦合分析研究,岩土工程学报,2001,23(1):104-108
    [216] 盛金昌、速宝玉,裂隙岩体渗流应力耦合研究综述,岩土力学,1998,19(2):92-98
    [217] 盛金昌、速宝玉、王媛,等,裂隙岩体渗流-弹塑性应力耦合分析,岩石力学与工程学报,2000,19(3):304-309
    [218] 盛金昌、速宝玉、詹美礼,等,基于Taylor展开随机有限元法的裂隙岩体随机渗流分析,岩石力学与工程学报,2001,23(4):485-488
    [219] 刘建军、刘先贵,有效压力对低渗透多孔介质孔隙度、渗透率的影响,地质力学学报,2001(1):41-44
    
    
    [220] 刘嘉炘、关锦荷,混凝土坝坝基三维渗流研究,水利水运科学研究,1987(3):27-33
    [221] 毛昶熙、陈平、李祖贻等,裂隙岩体渗流计算方法研究,岩土工程学报,1991,11(6):1-10
    [222] 毛昶熙、陈平等,岩石裂隙渗流的计算与试验,水利水运科学研究,1984(3)
    [223] 毛昶熙,渗流计算分析与控制,北京:水利电力出版社,1990
    [224] 毛昶熙,段祥宝,李祖贻,渗流数值计算与程序应用,南京:河海大学出版社,1999年9月
    [225] 能源部、水利部:混凝土大坝安全监测技术规范(SDJ336-89),1989年
    [226] 潘家铮,水工结构分析文集,电力工业出版社,1981年4月
    [227] 潘家铮主编、汝乃华编著,重力坝,水利电力出版社,1983年
    [228] 斐爱国,高拱坝开裂机理探讨与开裂过程模拟—奥地利Kolnbrein拱坝开裂成因分析,河海大学硕士学位论文,1996年3月
    [229] 斐捷、陆建飞、王建华,考虑地基固结和流变的上部结构和地基基础的共同作用问题,力学季刊,2001,6(2):167-173
    [230] 钱家欢、殷宗泽,土工原理与计算,北京:中国水利水电出版社,1996年
    [231] 王世夏编著,水工设计的理论和方法,中国水利水电出版社,2000年7月
    [232] 王志远,重力坝的实测坝踵应力及原因分析,大坝监测技术,2001(1):6-20
    [233] 王思敬,坝基岩体工程地质力学分析,科学出版社,1990年5月
    [234] 王小润、梁宗南,龙羊峡重力拱坝三维有限元分析,高拱坝学术讨论会论文集,中国水力发电工程学会编,电力工业出版社,1982年4月
    [235] 王铁生译,大坝的安全,水利水电快报,1984(5)
    [236] 王仁钟,中国水利大坝的安全与管理,99’大坝安全及监测国际研讨会论文集,中国书籍出版社,1999:10-14
    [237] 吴林高、缪俊发、张瑞、姚迎,渗流力学,上海科技文献出版社,1996年1月
    [238] 夏颂佑、沈洪俊、张奇等,应力作用下裂隙岩体渗流特性的研究,国家“八五”科技攻关专题报告,1996年9月
    [239] 谢嘉琼、易顺民,滑坡活动空间分布的多重分形特征及其预测意义,四川大学学报,2000(6)
    [240] 邢林生、徐建清,混凝土坝运行性态若干问题的分析评判,大坝与安全,2001(2):38-44.
    [241] 杨林德等著,岩土工程问题的反演理论与工程实践,科学出版社,1996年4月
    [242] 佘成学、熊文林、陈胜宏,层状岩体的弹粘塑性Cosserat介质理论及其工程应用,水利学报,1996(4):10-17
    [243] 章根德、何鲜、朱维耀,岩石介质流变学,科学出版社,1999年6月
    [244] 张有天、张武功,水荷载的历史过程对隧洞应力的影响,水利水电科学研究院科学研究论文集第9集(结构、材料),水利电力出版社,1982年11月
    [245] 赵代深,重力坝有限元计算网格剖分与应力控制标准问题,水利学报,1996(5)
    
    
    [246] 郑东健,老坝安全的评价方法研究,河海大学博士学位论文,2000年4月
    [247] 郑雨天,岩石力学的弹塑粘性理论基础,北京:煤炭工业出版社,1988年8月
    [248] 周光泉、刘孝敏,粘弹性理论,中国科学技术大学出版社,1996年12月
    [249] 周维垣,肖洪天,剡公瑞,三峡船闸高边坡岩体渗流及稳定分析,岩石力学与工程学报,1998(增):818-822
    [250] 周志芳,滕建仁,三峡工程大坝坝基渗控分析,岩石力学与工程学报,2001(5):700-704
    [251] 朱岳明,裂隙岩体渗流研究综述,河海科技进展,1991(2):16-25
    [252] 朱岳明、黄文雄,碾压混凝土及碾压混凝土坝的渗流特性研究,水利水电技术,1995(12):19-57
    [253] 朱岳明等,高碾压混凝土重力坝渗流特性和计算理论及应用研究,国家“九五”重点科技攻关研究报告,河海大学,2000年4月

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700