用户名: 密码: 验证码:
Mg-Zn-Mn系变形镁合金强化机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了Zn、Mn含量对Mg-Zn-Mn系变形镁合金室温力学性能和显微组织的影响、单级和双级时效过程中时效析出相的演变和α-Mn析出相的晶体学特征;采用原位电阻法和硬度法研究了Mg-6wt.%Zn-1wt.%Mn (ZM61)合金在不同温度进行单、双级时效时的相变动力学,得到了Johnson-Mehl-Avrami(JMA)动力学方程和“温度-时间-转变量”(TTT)图;还构建了析出强化模型并对ZM61合金单级时效早期的力学性能演变进行了模拟。
     研究Zn含量的影响时发现:①挤压态合金的力学性能对Zn含量的变化不敏感,随Zn含量的增加,屈服强度σ0.2和抗拉强度σb的变动幅度均不大,延伸率δ保持在13%左右。T6(单级和双级)处理后,Zn含量从4%增到6%时,σ0.2和σb均大幅增加且δ没有显著降低,当Zn含量从6%增到9%时,σ0.2和σb的增幅不大但δ会显著降低。双级时效的强化效果优于单级时效但δ更低。挤压态ZM61经过“固溶+双级时效”(420℃/2h+90℃/24h+180℃/16h)处理后具有最佳的综合力学性能,即:σ0.2=340MPa,σb=366MPa,δ=5%。②Mg-Zn-Mn合金在时效过程中析出两种类型的析出相:一种是沿基体[001]Mg方向的杆状相β_1~′,一种是平躺在基体(001)Mg晶面上的盘状相β2′。ZM61在180℃进行单级时效时,硬度在3.5h接近峰值,峰时效之前主要发生杆状相数量密度的增加和杆的伸长,峰时效时杆状相的数量密度达到最大值,过时效阶段主要发生杆状相的粗化和盘状相的增多,严重粗化的杆状相常以α-Mn颗粒为异质核心。③ZM61在180℃进行双级时效时,硬度在1h(86HV)就接近峰值,预时效(90℃/24h)态组织中弥散分布着直径约5nm的Guinier-Preston (G.P.)区,前20min的组织中只能观察到杆状相而看不到盘状相,说明G.P.区只作为杆状相的异质形核核心,过时效阶段盘状相才逐渐增多。④ZM61在230℃进行单、双级时效时,达到峰时效的时间明显缩短(单级:2h,双级:0.5h)。双级时效7h时,合金虽已发生过时效,但组织中绝大部分的析出相仍为短杆状,盘状相的数量极少,说明高温时效和G.P.区形核的共同作用抑制了盘状相的析出。⑤单、双级时效态组织中,位错形核导致大量的析出相沿位错线整齐排列。
     研究Mn含量的影响时发现:①均匀化、挤压和固溶处理时会析出α-Mn相,α-Mn相的截面形状包括:球状、平行多边形和棒状。②对一个正六边形α-Mn析出相的晶体学特征进行研究后发现:六边形相的六个刻面均属于{110}α-Mn晶面族。当所有界面均为{110}α-Mn时,α-Mn相的立体形貌为二十面体;α-Mn相与基体之间存在如下位向关系: (1 00)_(Mg)~// ( 321)_(Mn); [ 041]_(Mg) //[111]_(Mn)。③对一个棒状α-Mn析出相的晶体学特征进行分析后发现:棒状相躺在基面上,其长轴沿着基体晶格的最密排方向<100>α-Mg。④时效态组织中,α-Mn相会作为β_1~′相的异质形核核心,对异质形核的晶体学特征进行研究后发现:β_1~′相与α-Mn相之间存在能够共格匹配的低指数晶面,β_1~′相在α-Mn相上异质形核可以形成共格界面,取代之前α-Mn相与基体之间的非共格界面,从而大幅降低体系的界面能。
     对ZM61单、双级时效的等温相变动力学进行研究后发现:①原位电阻法表明:对于单级时效,长大阶段的n约为1,粗化阶段的n约为0.5,说明长大阶段的相变机理为β1'杆状相的伸长,而粗化阶段的相变机理为β_2~'盘状相的粗化。单级时效的TTT图表明:在90~250℃范围内没有出现“鼻子”,说明250℃以下的相变动力学由Zn在Mg中的扩散速度决定。双级时效的相变机制与单级时效一致,双级时效的TTT图表明:在130~250℃范围内也没有出现“鼻子”,相变动力学仍由Zn原子在Mg中的扩散速度控制。②硬度法的研究表明:不同温度下,单级和双级时效的n大部分都接近1,说明峰时效之前的相变机制为β1'杆状相的伸长。单级和双级时效早期的相变激活能都接近80KJ/mol。TTT图表明:“鼻子”仍未出现,双级时效大幅度地加快了相变速率。
     采用模型法研究ZM61合金单级时效早期的力学性能演变时发现:①“强化公式2”(假设析出相在滑移面上随机分布时推导出的Orowan强化公式)的预测结果表明:用JMA方程表达fv时,屈服强度曲线上存在极大值,用均匀形核理论表达fv时,屈服强度在时效早期缓慢增加,接近峰时效时增速加快,不存在极大值点。对屈服强度出现极大值的分析表明:屈服强度由杆状相的体积分数和直径共同决定,体积分数增加不一定带来屈服强度的提升,因为杆状相直径的增加会迅速地降低屈服强度。②对比“强化公式1”(假设析出相在滑移面上呈正三角形阵列规则排列时推导出的Orowan强化公式)和“强化公式2”的预测结果发现:“强化公式1”和“强化公式2”所得出的曲线形态是一致的,但“强化公式1”对屈服强度的预测值整体上远远大于“强化公式2”的预测值,这说明:两种强化公式反映相同的屈服强度演变特征,但杆状相以三角形阵列规则排列时带来的强化效果显著地优于随机排列的杆状相带来的强化效果。然而,“强化公式2”得出屈服强度演变与实测结果吻合较好,说明:Mg-Zn-Mn合金经“挤压+固溶+时效”处理后,杆状相以随机排列为主。
Effects of Zn and Mn content on the tensile properties and microstructure of Mg-Zn-Mn wrought magnesium alloys, precipitate evolution during one- and two-step aging and crystallographic characteristics ofα-Mn phases have been systematically ivestigated by means of optical microscopy (OM), scanning electron microscopy (SEM) equipped with energy dispersive spectronmetry (EDS), X-ray diffraction (XRD) and Transmission electron microscopy (TEM). In order to getting a far better understanding of precipitation feature, in-situ resistivity measurement and hardness test were used to quantitatively determine the phase transformation kinetics in Mg-6wt.% Zn-1wt.%Mn(ZM61) alloy during one- and two-step aging , in which Johnson-Mehl-Avrami (JMA) equations and‘Time-Temperature-Transformation’(TTT) curves are deduced. Moreover, yield strength evolution of ZM61 alloy during the early stage of one-step aging was simulated by modelling.
     Research on the effect of Zn content shows that:①the tensile properties of as-extruded alloys are not sensitive to Zn content, both yield strengthσ0.2 and tensile strengthσb show slight variation and elongation is maintained at 13% with the increase in Zn content. After T6 treatment,σ0.2 andσb increase largely andδfalls slightly as Zn content rises from 4wt.% to 6wt.%,however, as Zn content rises from 6wt.% to 9wt.%, only a small increase inσ0.2 andσb occurs butδfalls largely. In contrast to one-step aging, two-step aging has better strengthening effect but lowerδ. Consequently, 6 wt. % is the best Zn content for the Mg-xZn-1Mn alloys to possess the optimum combination property.②While ZM61 is treated by one-step aging at 180℃, hardness reaches to peak value at 3.5h, the main phase transformation before peak aging is the increase in number density and length of rod-like particles,the number density rises to maximum at peak aging, the main phase transformation during over-aging is the coarsening of rod-like particles and increase in the number of disc-like particles, it is worth noting that severely coarsened rod-like particles always heterogeneously nucleated onα-Mn particles.③While ZM61 is treated by two-step aging at 180, only 1 hour is needed for hardness to approach peak value, a vast number of G.P. zones with 5nm in diameter are present in as-pre-aged microstructure, no disc-like particle can be seen in microstructure as aging time is less than 20min, indicating that G.P. zones can only act as the heterogeneous nuclei towards rod-like particles, disc-like particles gradually increase during over aging.④As ZM61 is treated by one- and two-step aging at 230℃, time needed to rearch peak aging is shortened obviously (one-step aging: 2h, two-step aging 0.5h). As two-step aging runs for 7h, although the alloy has been under over aging, almost all precipitates are short rods, meanwhile, disc-like particles are rare, indicating that both high temperature and G.P.-zone-nucleation-mechanism retard the precipitation of disc-like particles.⑤In the as-one- and two-step-aged microstructure, dislocation-nucleation-mechanism results in regular alignment of precipitates along dislocations.
     Research on the effect of Mn content shows that:①α-Mn particles can be precipitated out during homogenization, hot-extrusion and solutionization; the cross-section morphologies ofα-Mn precipitates include spheric shape, polygon and rod.②It has been found by investigating the crystallographic characteristics of anα-Mn particle with regular hexagon morphology that: the six facets of thisα-Mn particle all belong to{110}α-Mn crystal plane family, if all exterior surfaces belong to{110}α-Mn, the three-dimensional morphology of thisα-Mn particle will be a icosahedron. The orientation relationship between thisα-Mn particle and matrix is (1 00)_(Mg)~// ( 321)_(Mn); [ 041]_(Mg) //[111]_(Mn).③It has been found by investigating the crystallographic characteristics of a rod-likeα-Mn particle that: the rod lies on the base plane of matrix, the long axis is along the close packed direction of matrix.④In as-aged microstructure, it is common thatα-Mn can act as the heterogeneous nuclei ofβ_1~′rods, it has been found by investigating the crystallographic characteristics of heterogeneous nucleation that: there exist low-index crystal planes betweenβ_1~′andα-Mn that can form coherent interface, consequently, if heterogeneous nucleation occurs, initial incoherent interface betweenα-Mn and matrix will be replaced by coherent interface, which can largely reduce surface energy.
     The investigation in isothermal phase transformation kinetics of ZM61 alloy during one- and two-step aging shows that:①by means of in-situ resistivity measurement, the Avrami indexes of nucleation, growth and coarsening stages during one-step aging are about 0.3, 1 and 0.5, respectively, indicating that the phase transformation mechanism during growth stage is the elongation ofβ1' rods and that during coarsening stage is the coarsening ofβ_2~' discs.“Temperature-Time-Transformation”(TTT)curve of one-step aging indicates that:‘Nose’does not appear in the temperature range 90~250℃, the precipitation kinetics under 250℃is controlled by diffusibility of Zn in Mg and nucleation stage is largely shortened while aging temperature is higher than 150℃. The Avrami indexes of growth and coarsen stage of two-step aging are 1 and 0.5, indicating that two-step aging does not change the phase transformation mechanism. TTT curve of two-step aging shows that‘nose’still does not appear in the temperature range 130~250℃and precipitation kinetics is still controlled by the diffusibility of Zn.②By means of hardness test, most Avrami indexes of one- and two-step aging at different temperature are near to 1, indicating that the phase transformation mechanism before peak aging is the elongation ofβ1' rods. The phase transformation activation energy of early stage of one- and two-step aging are all near 80KJ/mol. TTT curve shows that‘nose’is not present; two-step aging largely accelerates the phase transformation rate.
     Mechanical properties evolution of ZM61 during the early stage of one-step aging is investigated by modeling, the results show that:①the predicted results of model using‘strengthening equation 2’(Orowan strengthening equation presuming a random distribution of precipitates on gliding planes) indicate that:the increasing velocity of the rod length is much faster than that of rod diameter; the‘fv-t’curve deduced by‘homogeneous nucleation theory’(HNT) rises by exponential form, while‘fv-t’curve deduced by JMA equation rises by‘S’form. As fv is deduced by JMA equation, yield strength curve has a maximal point, as fv is deduced by HNT, yield strength rises much slowly in the early stage of aging but much faster while peak aging is approached and no maximal point appear. Analysis of the formation of maximal point shows that: both volume fraction and diameter ofβ1' rods determine the yield strength, increase in volume fraction ofβ1' rods is not certain to raise yield strength, since increase in rod diameter will reduce yield strength.②By contrasting the predicted results of model using‘strengthening equation 2’and model using‘strengthening equation 1’(Orowan strengthening equation presuming that precipitates are arranged to form regular-triangle arrays), it can be found that: the yield strength values predicted by‘strengthening equation 1’are entirely larger than those predicted by‘strengthening equation 2’, indicating that precipitates arranged as regular-triangle arrays bring about extremely large strengthening effect.
引文
[1]余琨,黎文献,王日初.变形镁合金的研究、开发及应用[J].中国有色金属学报, 2003, 13(2).
    [2]潘义川,刘相法.镁合金中α-Mg、Mg_2Si相的异质形核机制与相关中间合金研究[J]. 2006.
    [3]刘静安,徐河.镁合金材料的应用及其加工技术的发展(1)[J].轻合金加工技术, 2007, 35(8).
    [4] Yun Bai, Can-feng Fang, Hai Hao. Effects of yttrium on microstructure and mechanical properties of Mg-Zn-Cu-Zr alloys[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(Supplement 2): s357-s360.
    [5] J. Cai, G. C. Ma, Z. Liu. Influence of rapid solidification on the mechanical properties of Mg-Zn-Ce-Ag magnesium alloy[J]. Materials Science and Engineering: A, 2007, 456(1-2): 364-367.
    [6] Xiya Fang, Danqing Yi, Wenhai Luo. Effects of yttrium on recrystallization and grain growth of Mg-4.9Zn-0.7Zr alloy[J]. Journal of Rare Earths, 2008, 26(3): 392-397.
    [7] G. Garcés, A. Müller, E. O?orbe. Effect of hot forging on the microstructure and mechanical properties of Mg-Zn-Y alloy[J]. Journal of Materials Processing Technology, 2008, 206(1-3): 99-105.
    [8] A. Müller, G. Garcés, P. Pérez. Grain refinement of Mg-Zn-Y alloy reinforced by an icosahedral quasicrystalline phase by severe hot rolling[J]. Journal of Alloys and Compounds, 2007, 443(1-2): L1-L5.
    [9] K. Oh-ishi, C. L. Mendis, T. Homma. Bimodally grained microstructure development during hot extrusion of Mg-2.4 Zn-0.1 Ag-0.1 Ca-0.16 Zr (at.%) alloys[J]. Acta Materialia, 2009, 57(18): 5593-5604.
    [10] Alok Singh, Yoshiaki Osawa, H. Somekawa. Ultra-fine grain size and isotropic very high strength by direct extrusion of chill-cast Mg-Zn-Y alloys containing quasicrystal phase[J]. Scripta Materialia, 2011, 64(7): 661-664.
    [11] Hidetoshi Somekawa, Alok Singh, Toshiji Mukai. High fracture toughness of extruded Mg-Zn-Y alloy by the synergistic effect of grain refinement and dispersion of quasicrystalline phase[J]. Scripta Materialia, 2007, 56(12): 1091-1094.
    [12] D. K. Xu, W. N. Tang, L. Liu. Effect of W-phase on the mechanical properties of as-cast Mg-Zn-Y-Zr alloys[J]. Journal of Alloys and Compounds, 2008, 461(1-2): 248-252.
    [13] Jing Zhang, Xufeng Zhang, Weiguo Li. Partition of Er among the constituent phases and the yield phenomenon in a semi-continuously cast Mg-Zn-Zr alloy[J]. Scripta Materialia, 2010, 63(4): 367-370.
    [14] Tao Zhou, Ding Chen, Zhen-hua Chen. Microstructures and properties of rapidly solidified Mg-Zn-Ca alloys[J]. Transactions of Nonferrous Metals Society of China, 2008, 18(Supplement 1): s101-s106.
    [15] T. Zhou, D. Chen, Z. H. Chen. Investigation on microstructures and properties of rapidly solidified Mg-6 wt.% Zn-5 wt.% Ca-3 wt.% Ce alloy[J]. Journal of Alloys and Compounds, 2009, 475(1-2): L1-L4.
    [16]孙明,吴国华,戴吉春. Zr在镁合金中晶粒细化行为研究进展[J].铸造, 2010, 59(3): 255-259.
    [17]陈敬区,刘江文. Mg-Zn系合金G.P.区和时效强化的研究进展[J].材料导报, 2008, 22(342-345.
    [18]陈增,张密林,吕艳卓.锆在镁及镁合金中的作用[J].铸造技术, 2007, 28(6): 820-822+846.
    [19]李萧,刘江文,罗承萍.铸造ZC62镁合金的时效行为[J].金属学报, 2006, 42(7): 733-738.
    [20]李爱文,刘江文,伍翠兰. Cu含量对铸造Mg-3Zn-xCu-0.6Zr镁合金时效析出行为的影响[J].中国有色金属学报, 2010, 20(8): 1487-1494.
    [21] Z. P. Luo, D. Y. Song, S. Q. Zhang. Strengthening effects of rare earths on wrought Mg---Zn---Zr---RE alloys[J]. Journal of Alloys and Compounds, 1995, 230(2): 109-114.
    [22]李亚国,段劲华,刘海林.钇稀土在Mg-Zn-Zr镁合金中的强化作用[J].现代机械, 2003, 5): 86-88.
    [23]吴安如,夏长清.铈含量对zk60镁合金组织和性能的影响[J].材料热处理学报, 2006, 27(1).
    [24]张丁非,齐福刚,赵霞兵. Mg-Zn系高强度镁合金的研究进展[J].重庆大学学报, 2010, 33(11): 53-61.
    [25] Qi-chi Le, Zhi-qiang Zhang, Zhi-wen Shao. Microstructures and mechanical properties of Mg-2%Zn-0.4%RE alloys[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(Supplement 2): s352-s356.
    [26] Michiaki Yamasaki, Tsutomu Anan, Shintaro Yoshimoto. Mechanical properties of warm-extruded Mg-Zn-Gd alloy with coherent 14H long periodic stacking ordered structure precipitate[J]. Scripta Materialia, 2005, 53(7): 799-803.
    [27] K. Oh-ishi, K. Hono, K. S. Shin. Effect of pre-aging and Al addition on age-hardening andmicrostructure in Mg-6 wt% Zn alloys[J]. Materials Science and Engineering: A, 2008, 496(1-2): 425-433.
    [28] X. Gao, J. F. Nie. Structure and thermal stability of primary intermetallic particles in an Mg-Zn casting alloy[J]. Scripta Materialia, 2007, 57(7): 655-658.
    [29] J. Buha. Reduced temperature (22-100°C) ageing of an Mg-Zn alloy[J]. Materials Science and Engineering: A, 2008, 492(1-2): 11-19.
    [30] Kaichi Saito, Akira Yasuhara, Kenji Hiraga. Microstructural changes of Guinier-Preston zones in an Mg-1.5 at% Gd-1 at% Zn alloy studied by HAADF-STEM technique[J]. Journal of Alloys and Compounds, 2011, 509(5): 2031-2038.
    [31] P. A. Nuttall, T. J. Pike, B. Noble. Metallography of dilute Mg-Nd-Zn alloys[J]. Metallography, 1980, 13(1): 3-20.
    [32] K. Oh-ishi, R. Watanabe, C. L. Mendis. Age-hardening response of Mg-0.3 at.%Ca alloys with different Zn contents[J]. Materials Science and Engineering: A, 2009, 526(1-2): 177-184.
    [33] D. H. Ping, K. Hono, J. F. Nie. Atom probe characterization of plate-like precipitates in a Mg-RE-Zn-Zr casting alloy[J]. Scripta Materialia, 2003, 48(8): 1017-1022.
    [34] Chunju Niu, Miao Liu, Changrong Li. Thermodynamic description on the miscibility gap of the Mg-based solid solution in the Mg-Zn, Mg-Nd and Mg-Zn-Nd systems[J]. Calphad, 2010, 34(4): 428-433.
    [35] P. E. Marth, H. I. Aaronson, G. W. Lorimer. APPLICATION OF HETEROGENEOUS NUCLEATION THEORY TO PRECIPITATE NUCLEATION AT GP ZONES - REPLY[J]. Metallurgical Transactions a-Physical Metallurgy and Materials Science, 1978, 9(1): 137-138.
    [36] P. E. Marth, H. I. Aaronson, G. W. Lorimer. APPLICATION OF HETEROGENEOUS NUCLEATION THEORY TO PRECIPITATE NUCLEATION AT GP ZONES[J]. Metallurgical Transactions a-Physical Metallurgy and Materials Science, 1976, 7(10): 1519-1528.
    [37] E. Hornbogen. DISCUSSION OF APPLICATION OF HETEROGENEOUS NUCLEATION THEORY TO PRECIPITATE NUCLEATION AT GP ZONES[J]. Metallurgical Transactions a-Physical Metallurgy and Materials Science, 1978, 9(1): 134-137.
    [38] E.O. Hall. J. Inst. Metals[J], 1968, 96(21).
    [39] I.J.Polmear, ed. Light Metals. fourth edition ed[J]. 2006, Butterworth Heinemann: Oxford.
    [40] J.B.Clark. Acta Met[J], 1965, 13:1281.
    [41] J.S.CHUN, J.G.BYRNE. Precipitate Strengthening Mechanisms in Magnesium Zinc Alloy Single Crystals [J]. JOURNAL OF MATERIALS SCIENCE, 1969, 4(861-872 .
    [42] L. Sturkey, J.B. Clarke. J. Inst. Metals, 1959–60, 88 (177).
    [43] L.Y. Wei, G.L. Dunlop, H. Westengen. Precipitation Hardening of Mg-Zn and Mg-Zn-RE Alloys[J]. Metall. Mater.Trans. A, 1995, 26A (1705-1716.
    [44] J. Buha. Characterisation of precipitates in an aged Mg-Zn-Ti alloy[J]. Journal of Alloys and Compounds, 2009, 472(1-2): 171-177.
    [45] J.Gallot, K. Lal, R. Gra. Comptes Rendu[J], 1965, 258B(2818-2820.
    [46] J.F. Nie X. Gao. Characterization of strengthening precipitate phases in an Mg-Zn alloy[J]. Scripta Materialia, 2007, 56(645-648.
    [47] Alok Singh, A. P. Tsai. Structural characteristics of precipitates in Mg-Zn-based alloys[J]. Scripta Materialia, 2007, 57(10): 941-944
    [48] C. L. Mendis, K. Oh-ishi, Y. Kawamura. Precipitation-hardenable Mg-2.4Zn-0.1 Ag-0.1 Ca-0.16Zr (at.%) wrought magnesium alloy[J]. Acta Materialia, 2009, 57(3): 749-760.
    [49] Muhammad Shahzad, Lothar Wagner. Microstructure development during extrusion in a wrought Mg-Zn-Zr alloy[J]. Scripta Materialia, 2009, 60(7): 536-538.
    [50]毛卫民,朱景川,郦剑.金属材料的结构与性能[M].北京:清华大学出版社, 2007: 183-185.
    [51] S. Tanigawa, M. Doyama. Hume-Rothery's 15% rule and the pseudo-alloy-atom model[J]. Physics Letters A, 1973, 43(1): 17-18.
    [52] M. Stiehler, J. Rauchhaupt, U. Giegengack. On modifications of the well-known Hume-Rothery rules: Amorphous alloys as model systems[J]. Journal of Non-Crystalline Solids, 2007, 353(18-21): 1886-1891.
    [53] Y. M. Zhang, S. Yang, J. R. G. Evans. Revisiting Hume-Rothery's Rules with artificial neural networks[J]. Acta Materialia, 2008, 56(5): 1094-1105.
    [54] Hidetoshi Somekawa, Yoshiaki Osawa, Toshiji Mukai. Effect of solid-solution strengthening on fracture toughness in extruded Mg-Zn alloys[J]. Scripta Materialia, 2006, 55(7): 593-596.
    [55]陈振华,变形镁合金. 2005,化学工业出版社:北京. 120..
    [56] G. Mann, J. R. Griffiths, C. H. Cáceres. Hall-Petch parameters in tension and compression in cast Mg-2Zn alloys[J]. Journal of Alloys and Compounds, 2004, 378(1-2): 188-191.
    [57] J. Buha. Grain refinement and improved age hardening of Mg-Zn alloy by a trace amount of V[J]. Acta Materialia, 2008, 56(14): 3533-3542.
    [58] J. Buha. The effect of micro-alloying addition of Cr on age hardening of an Mg-Zn alloy[J]. Materials Science and Engineering: A, 2008, 492(1-2): 293-299.
    [59] Jie Yang, Jianli Wang, Lidong Wang. Microstructure and mechanical properties of Mg-4.5Zn-xNd (x = 0, 1 and 2, wt%) alloys[J]. Materials Science and Engineering: A, 2008, 479(1-2): 339-344.
    [60]陈增,张密林,吕艳卓.锆在镁及镁合金中的作用[J].铸造技术, 2007, 28(6): 820-823.
    [61]李亚维,宇文建鹏,张妍.镁及其合金组织细化方法研究现状[J].热加工工艺, 2005, 12): 74-76.
    [62]赵莉萍,赵勇桃,张明利.稀土元素Nd在铸造镁-锌合金中的晶粒细化作用[J].有色合金及特种铸造工艺, 2009, 30(12): 1543-1546.
    [63] A. Das, G. Liu, Z. Fan. Investigation on the microstructural refinement of an Mg-6 wt.% Zn alloy[J]. Materials Science and Engineering: A, 2006, 419(1-2): 349-356.
    [64]张丁非,齐福刚,赵霞兵. Mg-Zn系高强度镁合金的研究进展[J].重庆大学学报, 2010, 3 3(11): 53-61.
    [65]张青来,卢晨,朱燕萍.轧制方式对az31镁合金薄板组织和性能的影响[J].中国有色金属学报, 2004, 14(3).
    [66]夏伟军,蒋俊锋,朱素琴.多道次等径角轧制对az31镁板组织性能的影响[J].湖南大学学报:自然科学版, 2010, 2).
    [67] M.M. Avedesian, H. Baker, ASM Specialty Handbook:Magnesium and Magnesium Alloys. 1999, ASM International,Materials Park: OH.
    [68]康煜平.金属固态相变及应用[M].北京:化学工业出版社, 2007: 225-226.
    [69] C. L. Mendis, K. Oh-ishi, K. Hono. Enhanced age hardening in a Mg-2.4 at.% Zn alloy by trace additions of Ag and Ca[J]. Scripta Materialia, 2007, 57(6): 485-488.
    [70] C. L. Mendis, K. Oh-ishi, K. Hono. Effect of Al additions on the age hardening response of the Mg-2.4Zn-0.1Ag-0.1Ca (at.%) alloy--TEM and 3DAP study[J]. Materials Science and Engineering: A, 2010, 527(4-5): 973-980.
    [71]康煜平.金属固态相变及应用[M].北京:化学工业出版社, 2003: 16-18.
    [72]刘宗昌,任慧平,宋义全.金属固态相变教程[M].北京:冶金工业出版社, 2003: 16-18.
    [73] A. Deschamps, Y. Brechet. Influence of predeformation and agEing of an Al-Zn-Mg alloy--II. Modeling of precipitation kinetics and yield stress[J]. Acta Materialia, 1998, 47(1): 293-305.
    [74] A. Deschamps, F. Livet, Y. Bréchet. Influence of predeformation on ageing in an Al-Zn-Mg alloy--I. Microstructure evolution and mechanical properties[J]. Acta Materialia, 1998, 47(1): 281-292.
    [75] P. Ratchev, B. Verlinden, P. De Smet. Effect of Cooling Rate and Predeformation on the Precipitation Hardening of an Al-4.2wt.%Mg-0.6wt.%Cu Alloy[J]. Scripta Materialia, 1998, 38(8): 1195-1201.
    [76] G. Waterloo, V. Hansen, J. Gj?nnes. Effect of predeformation and preaging at room temperature in Al-Zn-Mg-(Cu,Zr) alloys[J]. Materials Science and Engineering: A, 2001, 303(1-2): 226-233.
    [77] Reza S. Yassar, David P. Field, Hasso Weiland. The effect of predeformation on the [beta]'' and [beta]' precipitates and the role of Q' phase in an Al-Mg-Si alloy; AA6022[J]. Scripta Materialia, 2005, 53(3): 299-303.
    [78] Kai-yun Zheng, Jie Dong, Xiao-qin Zeng. Effect of pre-deformation on aging characteristics and mechanical properties of Mg-Gd-Nd-Zr alloy[J]. Transactions of Nonferrous Metals Society of China, 2007, 17(6): 1164-1168.
    [79] Ding-fei Zhang, Guo-liang Shi, Qing-wei Dai. Microstructures and mechanical properties of high strength Mg-Zn-Mn alloy[J]. Transactions of Nonferrous Metals Society of China, 2008, 18(Supplement 1): s59-s63.
    [80] J.F.Nie. Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys[J]. Scripta Materialia, 2003, 48(1009-1015.
    [81] Wan Diqing, Wang Jincheng, Wang Gaifang. Effect of Mn on damping capacities, mechanical properties, and corrosion behaviour of high damping Mg-3 wt.%Ni based alloy[J]. Materials Science and Engineering: A, 2008, 494(1-2): 139-142.
    [82] Gaowu W. Qin, Yuping Ren, Wei Huang. Grain refining mechanism of Al-containing Mg alloys with the addition of Mn-Al alloys[J]. Journal of Alloys and Compounds, 2010, 507(2): 410-413.
    [83] Taisuke Sasaki, Y. Takigawa, K. Higashi. Effect of Mn on fracture toughness in Mg-6Al-1 wt.%Zn alloy[J]. Materials Science and Engineering: A, 2008, 479(1-2): 117-124.
    [84] L. B. Tong, M. Y. Zheng, S. W. Xu. Effect of Mn addition on microstructure, texture and mechanical properties of Mg-Zn-Ca alloy[J]. Materials Science and Engineering: A, 2011, 528(10-11): 3741-3747.
    [85] F. von Buch, J. Lietzau, B. L. Mordike. Development of Mg-Sc-Mn alloys[J]. Materials Science and Engineering A, 1999, 263(1): 1-7.
    [86] Li Jianping, G. W. Lorimer, J. Robson. Investigation on microstructures of heat treated Mg-Zr and Mg-Mn alloys[J]. Materials Science Forum, 2005, 488-489(189-192.
    [87] Li Jianping, G. W. Lorimer, J. Robson. The microstructures of as-cast Mg-Zr and Mg-Mn alloys[J]. Materials Science Forum, 2005, 488-489(329-332.
    [88] P. M Skjerpe, C. J. Simensen. Precipitation in Mg–Mn alloys [J]. Metal Science, 1983, 17(8): 403-407.
    [89] M. X. Zhang, P. M. Kelly. Edge-to-edge matching and its applications: Part II. Application to Mg-Al, Mg-Y and Mg-Mn alloys[J]. Acta Materialia, 2005, 53(4): 1085-1096.
    [90] J. D. Robson, D. T. Henry, B. Davis. Particle effects on recrystallization in magnesium-manganese alloys: Particle-stimulated nucleation[J]. Acta Materialia, 2009, 57(9):2739-2747.
    [91] J. D. Robson, D. T. Henry, B. Davis. Particle effects on recrystallization in magnesium- manganese alloys: Particle pinning[J]. Materials Science and Engineering: A, 2011, 528(12): 4239-4247.
    [92]宫秀敏.相变理论基础及应用[M]武汉理工大学出版社, 2004.
    [93] Joy Mittra, U. D. Kulkarni, G. K. Dey. Hardness based model for determining the kinetics of precipitation[J]. Materials Science and Engineering: A, 2009, 500(1-2): 244-247.
    [94]雷静果.新型高强高导Cu-Ag-Cr合金的组织性能及时效动力学研究[D].西安理工大学. 2007.
    [95]雷静果,刘平,赵冬梅.用导电率研究Cu-Ni-Si-Cr合金时效早期相变动力学[J].金属热处理学报, 2003, 04 {Pages}: 22-26+82-83).
    [96]闵娜.共析钢室温大变形和时效过程相变研究[D].上海:上海交通大学. 2007.
    [97] M. Dehmas, A. Ma?tre, J. B. Richir. Kinetics of precipitation hardening in Pb-0.08 wt.% Ca-x wt.%Sn alloys by in situ resistivity measurements[J]. Journal of Power Sources, 2006, 159(1): 721-727.
    [98] Youcef Aouabdia, Abdelhamid Boubertakh, Smail Hamamda. Precipitation kinetics of the hardening phase in two 6061 aluminium alloys[J]. Materials Letters, 2010, 64(3): 353-356.
    [99]魏芳,李金山,陈昌麒.用差热法分析Al-Zn-Mg-Cu-Li合金组织转变动力学及TTT曲线[J].稀有金属材料与工程, 2008, 08 ): 1348-1351.
    [100] I. A. Yakubtsov. Effects of composition and microstructure on behaviors of electrical resistivity during continuous heating above room temperature in Mg-based alloys[J]. Journal of Alloys and Compounds, 2010, 492(1-2): 153-159.
    [101] Juanhua Su, Ping Liu, Hejun Li. Phase transformation in Cu-Cr-Zr-Mg alloy[J]. Materials Letters, 2007, 61(27): 4963-4966.
    [102]毛卫民,朱景川,郦剑.金属材料结构与性能[M].北京:清华大学出版社, 2007: 271.
    [103] Pierre Archambault, David Godard. High temperature precipitation kinetics and ttt curve of a 7xxx alloy by in-situ electrical resistivity measurements and differential calorimetry[J]. Scripta Materialia, 2000, 42(7): 675-680.
    [104] D.A.波特, K.E.依斯特林.金属和合金中的相变[M].北京:冶金工业出版社, 1983: 269-292.
    [105] J. Cermák, I. Stloukal. Diffusion of 65Zn in AZ91 and in QE22 reinforced by Saffil fibers[J]. Composites Science and Technology, 2008, 68(2): 417-423.
    [106] S. Ganeshan, L. G. Hector Jr, Z. K. Liu. First-principles study of self-diffusion in hcp Mg and Zn[J]. Computational Materials Science, 2010, 50(2): 301-307.
    [107] S. Ganeshan, L. G. Hector Jr, Z. K. Liu. First-principles calculations of impurity diffusion coefficients in dilute Mg alloys using the 8-frequency model[J]. Acta Materialia, 2011, 59(8): 3214-3228.
    [108]程晓农,戴奇勋,邵红红.材料固态相变与扩散[M].北京:化学工业出版社, 2006: 72-74.
    [109]孟庆昌.透射电子显微学[M].哈尔滨:哈尔滨工业大学出版社, 1998: 74.
    [110] D.A.波特, K.E.依斯特林.金属和合金中的相变[M].北京:冶金工业出版社, 1988: 114-115.
    [111] A. R. Eivani, A. Karimi Taheri. Modeling age hardening kinetics of an Al-Mg-Si-Cu aluminum alloy[J]. Journal of Materials Processing Technology, 2008, 205(1-3): 388-393.
    [112] L.M.Brown, R.K.Ham. Strengening Methods in Crystals[M].New York: John Wiley &Sons Inc, 1971.
    [113] Shahrzad Esmaeili. Precipitation hardening behaviour of AA6111[D]. Canada: The University of British Columbia. 2002.
    [114]石德珂.位错与材料强度[M].西安:西安交通大学出版社, 1988: 99-101.
    [115] A. W. Zhu, E. A. Starke. Strengthening effect of unshearable particles of finite size: a computer experimental study[J]. Acta Materialia, 1999, 47(11): 3263-3269.
    [116] G. Liu, G. J. Zhang, X. D. Ding. Modeling the strengthening response to aging process of heat-treatable aluminum alloys containing plate/disc- or rod/needle-shaped precipitates[J]. Materials Science and Engineering: A, 2003, 344(1-2): 113-124.
    [117] A.K.Jena, M.C.Chaturvedi. Phase transformation in materials[M].New Jersey: Prentice-hall press, 1992: 151.
    [118] M. Ferrante, R. D. Doherty. Influence of interfacial properties on the kinetics of precipitation and precipitate coarsening in aluminium-silver alloys[J]. Acta Metallurgica, 1979, 27(10): 1603-1614.
    [119] O. R. Myhr, ? Grong, S. J. Andersen. Modelling of the age hardening behaviour of Al-Mg-Si alloys[J]. Acta Materialia, 2001, 49(1): 65-75.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700