用户名: 密码: 验证码:
Al-Mg-Si-Cu系6005A合金的时效硬化行为及析出相的微观结构表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为可热处理强化型铝合金,Al-Mg-Si-Cu合金具有中等的强度、良好的耐蚀性、优异的成形性以及较低的密度,目前已经占有了世界铝合金市场的大部分比例。良好的宏观性能离不开合金的微观组织结构,而微观组织结构又和一些纳米析出相的晶体结构以及它们的相变过程紧密联系在一起。从纳米和原子尺度调控Al-Mg-Si-Cu合金的组织以及一些纳米析出相的结构、尺寸、形状和分布是实现其性能优化的根本途径和有效方法。
     本文选取Al-Mg-Si-Cu系6005A合金挤压型材为研究对象,采用常规的透射电子显微镜(TEM)、高分辨透射电子显微镜(HRTEM)和选区电子衍射(SADP)等技术手段,对6005A合金在线挤压淬火态的组织和织构、合金时效过程中的硬化行为及相变规律、纳米时效析出相的微观结构以及析出相组织结构对合金宏观性能的影响等进行了系统的研究,目的是从原子和纳米尺度加深对6005A合金性能和工艺的理解,为探索合金改性的新工艺和新思路奠定理论基础。本文研究得出了如下主要结论:
     (1)6005A合金挤压型材晶粒呈纤维状分布,平均尺寸在50μm左右,晶内存在大量的Mg2Si相、少量含Fe的AlFeMnMgSi相和含Mn、Cr的AlCrMnMgSi相;经550℃/1h固溶处理,Mg2Si相大部分回溶,含Fe和含Mn、Cr的相不能消除;主要存在黄铜型{110}<112>织构和再结晶立方型{001}<001>织构,经固溶时效处理,其主要织构并未发生明显改变。
     (2)6005A合金经单级时效处理,175℃/12h达到硬度峰值,硬度为120Hv,峰值过后,β"相长时间存在于基体当中,合金表现出明显的抗过时效软化能力,90h以后,硬度开始迅速下降;200℃时效,4h即可达到硬度峰值,硬度为113Hv,峰值过后,β"相迅速消失,合金出现明显的过时效软化。经变温时效处理,分别在100℃和250℃附近出现硬度峰值,对应于一些团簇和GP区以及β"相的析出,其中,β"相为合金的主要强化相;160℃附近一些尺寸较小的团簇发生回溶使得合金硬度有所降低。经二次时效处理,合金18h可达到硬度峰值,硬度为127Hv,其中,中断时效处理可以产生更多细小、弥散分布的GP区组织,为β"相的析出提供了更加充分的形核核心。
     (3)借助空位结合能和平衡相图分析,发现在早期时效硬化过程中,Al-Mg-Si-Cu合金中的Si原子控制着Mg-Si共同团簇以及GP区的数量,并对合金的时效硬化过程起主导作用。结合TEM组织观察,6005A合金的时效序列可以表示为:SSSS→Si-空位对,Mg-空位对和富Mg原子团簇→富Mg原子团簇的溶解和富Si原子团簇→游离的Mg原子扩散到富Si原子团簇中→Mg-Si共同团簇→GP区→亚稳的β"相→亚稳的β'和Q'相→稳定的p相和Q相。
     (4)HRTEM研究表明,β"相具有C-心单斜结构,其点阵参数为:a=1.516m,b=0.405nm,c=0.674nm,β=105.26°;p'相和Q'相均为HCP结构,其中,β'相的点阵参数为:a=0.715nm,c=0.405nm,γ=120°,Q'相的点阵参数为:a=1.032nm,b=0.405nm,γ=120°。
     (5)6005A合金中的三种主要析出相(β"、p'和Q’相)均具有12种变体,它们和Al基体的取向关系可以分别表示为:(010)β"//{100}Al,[001]β"//<310>Al和[100]β"//<230>Al;(0001)β'//{100}Al,[2110]β'//<310>Al和[1210]β'//<110>A1;(0001)Q'//{100}Al,[2110]Q'//<510>Al和[1210]Q,//<110>Al。
     (6)提出了一个集HRTEM结构表征、矩阵计算、衍射花样模拟和极图分析为一体的研究方法。利用这个方法可以很科学地去分析任何合金中任意一个析出相与基体之间的取向关系以及任意带轴下复杂的SADP现象。据此,分别建立了6005A合金峰时效和过时效状态下的[001]Al带轴下的SADP模型,并对时效过程中出现的一些“十字形”衍射斑纹现象做了合理解释,即:峰时效状态出现的“十字形”衍射斑纹来自于β"相的变体5~12在[304]β"和[106]β"带轴下的±1阶衍射斑点;过时效状态出现的“十字形''衍射斑纹主要来自于Q'相变体5~12在[1450]Q'和[3210]Q带轴下的衍射斑点。
     (7)TEM和SADP研究表明,沿A1基体的[001]Al方向析出时,β"相、p'相和Q'相均具有3个不同的带轴,即:[010]β",[304]β"和[106]β";[0001]β',[1450]β'和[5410]β';[0001]Q',[1450]Q'和[3210]Q'。据北,分别对平躺和插入等不同方位的β"相、β'相和Q'相进行了详细地HRTEM结构表征,对β'相和Q'相中出现的moire条纹做出了分析;同时,也发现一些内部位错的存在会使得析出相的界面位错数量偏离理论计算值。
     (8) HRTEM研究表明,β"相和Al基体基本上完全共格,具有2维方向的共格应变场;β'相和A1基体的(200)Al面半共格,与(020)Al面非共格;Q'相和A1基体的(200)Al面基本共格,与(020)Al面半共格。共格性的差异引起了三个主要析出的强化效应出现差异,从应变场角度考虑,其强化顺序可以表示为:β"相>Q'相>p'相。
     (9)根据界面控制生长理论,β"相沿其生长方向与A1基体基本共格,具有缓慢的粗化速度,易生长为针状;β'相和Q'相分别沿其长轴与基体半共格和基本共格,沿其短轴均与基体非共格,且易生长为板状;由于β'相更加非共格,它的横截面形貌要比Q'相更为粗大。
As the heat-treatable alloys, Al-Mg-Si-Cu alloys have the medium strength, good corrosion resistance, excellent formability and low density. Therefore, they have occupied main markets of Al alloys in the world. And, the excellent macro-performance is inseparable from the microstructure of alloy, which is always bound with crystal structure and phase transition of some nano-precipitates. It is a fundamental approach and effective way to optimize the performance by controlling the microstructure of Al-Mg-Si-Cu alloys and the structure, size, shape and distribution of these nano-precipitates in nanometer and atomic scale.
     In this paper, the conventional transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SADP) and other some technical means are used to research the Al-Mg-Si-Cu 6005A alloy extruded profile. The work mainly focuses on the microstructure and texture of as-quenched 6005A alloys, age-hardening and phase transformation in aging process, microstructure of precipitates and their influence on macro-performance of alloy. The aims are to understand deeply the microstructure and performance of 6005A alloy at nanoscale and further to explore new technologies and ideas. The main results can be described as follows:
     (1) 6005A alloy extrusion profile shows some fibrous grains with 50μm, and there are a large number of Mg2Si phases, a few AlFeMnMgSi phases with Fe and AlCrMnMgSi with Mn and Cr; After solution treatment at 550℃for 1h, these Mg2Si phases can be re-dissolved, however, these phase containing Fe, Mn and Cr can not be eliminated; The main texture are brass {110}<112> and recrystallization cubic {100}<001>, after solution and aging treatment, the main texture components are not changed obviously.
     (2) 6005 A alloy can reach its peak hardness about 120Hv when it is aged at 175℃for 12h. After the peak-aging, theβ" phases can be existed in Al matrix for a long time so that this alloy presents an obvious anti over-aged softening capability until aging for 90h, when the hardness starts to decrease rapidly. The alloy can reach its peak hardness about 113Hv aged at 200℃for 4h. After peak-aging, theβ" phases can rapidly disappear so that the alloy gives an obvious over-aged softening behavior. In addtion, the alloy is also heated to different temperatures at 10℃min-1 and displays two different peaks at 100℃and 250℃, respectively. The two peaks can be formed because of the precipitation of some clusters and GP zone andβ" phase, respectively. Theβ" phase is the mainly strengthening phase. And, it is also found that the valley should be related to some smaller clusters solution at 160℃. In addition, the alloy can reach the peak about 127Hv at 18h by secondary aging treatment. And after interruption aging treatment, these GP zone are more dispersed in matrix compared to the microstructure aging at 175℃for 30min so as to provide more nucleation sites for P" phase.
     (3) Accornding to binding energy calculation and phase diagrams analyses, Si atoms in Al-Mg-Si-Cu alloys pay a very important role to control the numbers of Mg-Si co-cluster and GP zones, and then lead to different age-hardening behaviors. Together with the TEM observations, the precipitation sequence of 6005A alloys may be described as:SSSS→Si-v pairs, Mg-V pairs and Mg clusters→Si clusters and dissolution of Mg clusters→Mg atoms segregate into existed Si clusters→Mg/Si co-clusters→GP zones→metastableβ"→metastableβ' and Q'→stableβand Q.
     (4) HRTEM studies show that theβ" phase has a C-centered monocline structure with a=1.516nm, b=0.405nm, c=0.674nm andβ=105.26°; theβ' phses has hexagonal structure with a=0.715nm, c=0.405nm andγ=120°; Q' phase is also believed as hexagonal structure with a=1.032nm, c=0.405nm and y=120°.
     (5) Three main precipitates (β",β' and Q') have 12 variants with Al matrix in 6005 A alloy, respectively. And their orientation relationships with Al matrix can be described as: (010)β"//{100}Al, [001]β"//<310>Al and [100]β"//<230>Al; (0001)β'/{100}Al, [2110]β'/<310>Al and [1210]β'//<110>Al; (0001)Q'//{100}Al, [2110]Q'//<510>Al and [1210]Q'//<110>Al.
     (6) An investigative strategy can be proposed by HRTEM technology together with Transition Matrix calculation, diffraction patterns simulation and stereographic projection. And it should be used to any alloys in researching orientation relationships and analyzing complicated MADP. Based on this investigative strategy, two SADP models can be established at peak-aged and over-aged stage for 6005A alloy, respectively. Further, some "cross-shaped" diffraction streaks, which are always observed in precipitation process, can be reasonably explained by the two SADP models:these "cross-shaped" diffraction streaks appeared in peak-aged stage come from some±1-order diffraction spots of variants 5-12 ofβ" phase under the [304]β" and [106]β" zone axis, and in over-aged stage, they should mainly come form the diffraction spots of variants 5-12 of Q' phase under the [1450]Q. and [3210]Q' zone axis.
     (7) TEM and SADP analysis show that theβ",β'and Q' phases have three different zone axis along the [001]Al direction of Al matrix:[010]β", [304]β" and [106]β" forβ" phases; [0001]β', [1450]β' and [5410]β' forβ' phases; [0001]Q', [1450]Q' and [3210]Q' for Q' phases. Based on these precipitate behaviors, the detailed HRTEM structural information have been characterzed for these lying and embededβ",β'and Q' phases on (001)Al plane. Further, some moire fringes appeared onβ'and Q' phases can also been explained reasonably. Simultaneity, it is also found that some inside dislocations existed in precipitates make some strain-fields released so that the numbers of interface dislocations are different from the theoretical calculation.
     (8) HRTEM studies show that the P" phase is coherent with the Al matrix and has 2-dismentions coherent strain field; theβ' phase is semi-coherent with the (200)Al plane and incoherent with the (020)Al plane of Al matrix; the Q'phase is basically coherent with the (200)Al plane and semi-coherent with the (020)Al plane of Al matrix. According to the coherency difference, the strengthening effect of three main precipitates is also different. Therefore, from the point of view in strain field, the strengthening effect of precipitates on alloys can be described to be:β" phase> Q' phase>β' phase.
     (9) According to the theory of interface controlled growth, it is found that theβ" phase is basically coherent with the Al matrix and has a slow coarsening speed, and it is easier to grow into needle-shaped; theβ' and Q' phases are semi-coherent and basically coherent with Al matrix along their long-axis, respectively, however, they are incoherent with Al matrix along their short axis. Therefore, some lath-shaped morphologies may be more favorable toβ' and Q' phases. However, more incoherentβ' phase will allow the particle to grow larger in cross-section comparing with Q' phase.
引文
[1]Sha G, Marceau RKW, Gao X, et al. Nanostructure of aluminium alloy 2024: Segregation, clustering and precipitation process [J]. Acta Materialia,2011,59: 1659-1670.
    [2]Berg LK, Gj(?)nnes J, Hansen V, et al. GP-zones in Al-Zn-Mg alloys and their role in artificial aging [J]. Acta Materialia,2001,49:3443-3451.
    [3]Vivas M, Lours P, Levaillant C, et aL Determination of precipitate strength in aluminium alloy 6056-T6 from transmission electrion microscopy in situ straining data [J]. Philosophical Magazine A,1997,76(5); 921-931.
    [4]Li BQ, Wawner FE. Observation of dislocation cutting Ω phase and its strengthening mechanism in an Al-Cu-Mg-Ag alloy [J]. Microscopy and Microanalysis,1997,3:139-145.
    [5]Yoshimura R, Kono TJ, Abe E, et al. Transmission election microscopy study of the evolution of precipitates in aged Al-Li-Cu alloys:the θ' and Ti phases [J]. Acta Materialia,2003,51:4251-4266.
    [6]Wang SC, Starink MJ, Gao N. Precipitation hardening in Al-Cu-Mg alloys revisited [J]. Scripta Materialia,2006,54:287-291.
    [7]Polmear IJ. Aluminium alloys-A century of age hardening [J]. Materials Forum,2004,28:1-14.
    [8]Nakai M, Eto T. New aspects of development of high strength aluminum alloys for aerospace applications [J]. Materials Science and Engineering A, 2000,285:62-68.
    [9]Williams JC, Starke, JR.EA. Progress in structural materials for aerospace systems [J]. Acta Materialia,2003,51:5775-5799.
    [10]Miller WS, Zhuang L, Bottema J, et al. Recent development in aluminum alloys for the automotive industry [J]. Materials Science and Engineering A, 2000,280:37-49.
    [11]Dupasquier A, Ferragut R, Iglesias MM, et al. Hardening nanostructures in an AlZnMg alloy [J]. Philosophical Magazine,2007,87(22):3297-3323.
    [12]Driver JH, Dubost F, Durand R, et al. Development and application of high-strength Al-Zn-Mg-Cu alloys [J]. Materials Science Forum,1996, 217-222:1813-1818.
    [13]Svenningsen G, Larsen MH, Walmsley JC, et al. Effect of artificial aging on intergranular corrosion of extruded AlMgSi alloy with small Cu content [J]. Corrosion Science,2006,48:1528-1543.
    [14]Bhattamishra AK, Lal K. Influence of ageing on corrosion behaviour of Al-Mg-Si alloys in chloride and acid media [J]. Zeitschrift fur Metallkunde, 1998,89(11):793-796.
    [15]Burleigh TD, Ludwiczak E, Petri RA. Intergranular corrosion of an aluminum-magnesium-silicon-copper alloy [J]. Corrosion,1995,51(1):50-55.
    [16]Lassance D, Fabregue, Delannay F, et al. Micromechanics of room and high temperature fracture in 6xxx Al alloys [J]. Progress in Materials Science,2007, 52:62-129.
    [17]Takeda M, Maeda Y, Yoshida A, et al. Discontinuity of GP(I) zone and 0" phase in an Al-Cu alloy [J]. Scripta Materialia,1999,41(6):643-649.
    [18]Eto T, Sata A, Mori T. Stree-oriented precipitation of GP zones and θ' in an Al-Cu alloy [J]. Acta Metallurgica,1978,26:499-508.
    [19]何立子,陈彦博,崔建忠等.Mn和zr对新型Al-Mg-Si-Cu合金组织与性能的影响[J].稀有金属材料与工程,2004,33(12):1337-1340.
    [20]王志伟,汪明朴,王正安等.在线挤压淬火对地铁列车用6005A合金力学性能及微观组织的影响[J].中国有色金属学报,2001,11(4):603-606.
    [21]沈健,李彦利,朱鸣峰.在线淬火工艺对6005A合金挤压型材组织与性能的影响[J].中国有色金属学报,2003,13(6):1461-1466.
    [22]杨文敏,沈健.车辆用6005A合金型材挤压与热处理工艺研究[J].重庆科技学报学报(自然科学版),2006,8(1):33-39.
    [23]田荣璋,王祝堂.铝合金及其加工手册(第二版)[M],长沙:中南大学出版社,2000.
    [24]张建新,高爱华,陈昊.合金元素对Al-Mg-Si系铝合金组织及性能的影响[J].铸造技术,2007,28(3):373-375.
    [25]Murayama M, Hono K, Miao WF. The effect of Cu additions on the precipitation kinetics in an Al-Mg-Si alloy with excess Si [J]. Metallurgical and Materials Transactions A,2001,32:239-246.
    [26]Hasting HS, Walmsley JC, Helvoort TJV, et al. Z-contrast imaging of the arrangement of Cu in precipitates in 6xxx-series aluminum alloys [J]. Philosophical Magazine Letters,2006,86(9):589-597.
    [27]何立子,张晓博,孙秋霞等.Cu及热处理制度对Al-Mg-Si系合金晶间腐蚀敏感性的影响[J].中国有色金属学报,2001,11(2):231-235.
    [28]何立子,任玉平,张晓博等.Cu含量对Al-Mg-Si合金固溶处理行为的影响[J].特种铸造及有色合金,2001,4:29-31.
    [29]何立子,陈彦博,崔建忠等.Mn和Zr对新型Al-Mg-Si-Cu合金组织与性能的影响[J].稀有金属材料与工程,2004,33(12):1337-1340.
    [30]Thanaboonsombut B, Sanders TH. The effect of cooling rate from the melt on the recrystallization behavior of aluminum alloy 6013 [J]. Metallurgical and Materials Transactions A,1997,28:2137-2142.
    [31]Zajac S, Hutchinson B, Johansson A, et al. Microstructure control and extrudability of Al-Mg-Si alloys microalloyed with manganese [J]. Materials Science and Technology,1994,10:323-333.
    [32]邹景霞,潘青林,彭志辉Al-Mg-Si-Mn-Cr合金的显微组织与拉伸性能[J].轻合金加工技术,2001,29(5):47-50.
    [33]柯东杰,蔡应铎.试述Fe在Al-Mg-Si系铝合金中的行为[J].铝加工,1990,4:20-22.
    [34]Tabatabaei N, Taheri AK, Vaseghi M. Dynamic strain aging of a commercial Al-Mg-Si-Cu alloy during equal channel angular extrusion process [J]. Journal of Alloys and Compounds,2010,502:59-62.
    [35]Murayama M, Hono K. Pre-precipitate clusters and precipitation process in Al-Mg-Si alloys [J]. Acta Materialia,1999,47:1537-1548.
    [36]Chou CY, Lee SL, Lin JC. Effect of cross-channel extrusion on microstructure and mechanical properties of AA6061 aluminum alloy [J]. Materials Science and Engineering A,2008,485:461-467.
    [37]Myhr OR, Grong Φ, Andersen SJ. Modelling of the age hardening behaviour of Al-Mg-Si alloys [J]. Acta Materialia,2001,49:65-75.
    [38]Miao WF, Laughlin DE. Effect of Cu content and presaging on precipitation characteristics in Aluminum alloy 6022 [J]. Metallurgical and Materials Transaction A,2000,31:361-371.
    [39]Buha J, Lumley RN, Grosky AG, et al. Secondary precipitation in an Al-Mg-Si-Cu alloy [J]. Acta Materialia,2007,55:3015-3024.
    [40]Thomas G. The aging characteristics if aluminum alloys electron transmission studied of Al-Mg-Si alloys [J]. Journal of Institute of Metals,1961,90:57-63.
    [41]Dutta I, Allen SM. A calorimetric study of precipitation in commercial aluminium alloy 6061 [J]. Journal of Materials Science Letters,1991,10:323-326.
    [42]Edwards GA, Stiller K, Dunlop GL, et al. The precipitation sequence in Al-Mg-Si alloys [J]. Acta Materialia,1998,46:3893-3904.
    [43]Matsuda K, Uetani Y, Sato T, et al. Metastable phases in an Al-Mg-Si alloy containing copper [J]. Metallurgical and Materials Transaction A,2001,32: 1293-1299.
    [44]Chakrabarti DJ, Laughlin DE. Phase relations and precipitation in Al-Mg-Si alloys with Cu additions [J]. Progress in Materials Science,2004,49:389-410.
    [45]Wang X, Esmaeili S, Lloyd DJ. The sequence of precipitation in the Al-Mg-Si-Cu alloy AA6111 [J]. Metallurgical and Materials Transaction A, 2006,37:2691-2699.
    [46]Gupta AK, Lloyd DJ, Court SA. Precipitation hardening in Al-Mg-Si alloys with and without excess Si [J]. Materials Science and Engineering A,2001, 316:11-17.
    [47]Andersen SJ, Zandbergen HW, Jansen J, et al. The crystal structure of the β" phase in Al-Mg-Si alloys [J]. Acta Materialia,1998,46:3283-3298.
    [48]Matsuda K, Sakaguchi Y, Miyata Y, et al. Precipitation sequence of various kinds of metastable phases in Al-1.0mass%Mg2Si-0.4mass%Si alloy [J]. Journal of Materials Science,2000,35:179-189.
    [49]Dumolt SD, Laughlin DE, Williams JC. Formation of a modified B' phase in aluminum alloy 6061 [J]. Scripta Metallurgica,1984,18:1347-1350.
    [50]Jacobs MH. The structure of the metastable precipitates formed during ageing of an Al-Mg-Si alloy [J]. Philosophical Magazine,1972,26:1-13.
    [51]Arnberg L, Aurivillius B. The crystal structure of AlxCu2Mg12-xSi7, (h-AlCuMgSi) [J]. Acta Chemica Scandinavica A,1980,34:1-5.
    [52]Murayama M, Hono K, Saga M, et al. Atom probe studies on the early stages of precipitation in Al-Mg-Si alloys [J]. Materials Science and Engineering A, 1990,250:127-132.
    [53]Chen JH, Costan E, Huis MA, et al. Atomic pillar-based nanoprecipitates strengthen AlMgSi alloys [J]. Science,2006,312:416-419.
    [54]Huis MA, Chen JH, Sluiter MHF, et al. Phase stability and structural features of matrix-embedded hardening precipitates in Al-Mg-Si alloys in the early stages of evolution [J]. Acta Materialia,2007,55:2183-2199.
    [55]Zandbergen HW, Andersen SJ, Jansen J. Structure determination of particles in Al by dynamic electron diffraction studies [J]. Science,1997,277: 1221-1225.
    [56]Matsuda K, Naoi T, Fujii K, et al. Crystal structure of the β" phase in an Al-1.0mass%Mg2Si-0.4mass%Si alloy [J]. Materials Science and Engineering A,1999,262:232-237.
    [57]Vissers R, Huis MA, Jansen J, et al. The crystal structure of the β' phase in Al-Mg-Si alloys [J]. Acta Materialia,2007,55:3815-3823.
    [58]Andersen SJ, Marioara CD, Vissers R, et al. The structural relation between precipitates in Al-Mg-Si alloys, the Al-matrix and diamond silicon, with emphasis on the trional phase Ul-MgAl2Si2[J]. Materials Science and Engineering A,2007,444:157-169.
    [59]Andersen SJ, Marioara CD, Fr(?)seth A, et al. Crystal structure of the orthorhombic U2-Al4Mg4Si4 precipitate in the Al-Mg-Si alloy system and its relation to the β' and β" phases [J]. Materials Science and Engineering A,2005, 390:127-138.
    [60]Tors(?)ter M, Lefebvre W, Marioara CD, et al. Study of intergrown L and Q' precipitates in Al-Mg-Si-Cu alloys [J]. Scripta Materialia,2011,64:817-820.
    [61]Marioara CD, Andersen SJ, Stene TN, et al. The effect of Cu on precipitation in Al-Mg-Si alloys [J]. Philosophical Magazine,2007,87(23):3385-3413.
    [62]Gupta AK, Jena AK, Chaturvedi MC. Insoluble phase in Al-1.52Cu-0.75Mg alloys containing silicon [J]. Materials Science and Technology,1987,3: 1012-1018.
    [63]Marioara CD, Andersen SJ, Jansen J, et al. Atomic model for GP-zone in A6082 Al-Mg-Si system [J]. Acta Materialia,2001,49:321-328.
    [64]Nie JF, Muddle BC. On the form of the age-hardening response in high strength aluminum alloys [J]. Materials Science and Engineering A,2001, 319-321:448-451.
    [65]Marioara CD, Andserse SJ, Zandbergen HW, et al. The influence of alloy composition on precipitates of the Al-Mg-Si system [J]. Metallurgical and Materials Transactions A,2005,36:691-702.
    [66]Marioara CD, Nordmark H, Andersen SJ, et al. Post-β" phases and their influence on microstructure and hardness in 6xxx Al-Mg-Si alloys [J]. Journal of Material Science,2006,41:471-478.
    [67]Dupasquier A, Ferragut R, Iglesias MM, et al. Hardening nanostructures in an AlZnMg alloy [J]. Philosophical Magazine,2007,87:3297-3323.
    [68]Deschamps A, Livet F, brechet Y. Influence of predeformation and ageing in an Al-Zn-Mg alloy—IMicrostructure evolution and mechanical properties [J]. Acta Materialia,1999,47:281-292.
    [69]Myhr OR, Grong 0, Andersen SJ. Modeling of the age hardening behaviour of Al-Mg-Si alloys [J] Acta Materialia,2001,49:65-75.
    [70]Poole WJ, Wang X, Lloyd DJ, et al. The shearable-non-sherable transition in Al-Mg-Si-Cu precipitation hardening alloys:implications on distribution of slip, work hardening and fracture [J]. Philosophical Magazine,2005,85: 3113-3135.
    [71]黄孝瑛.材料微观结构的电子显微学分析[M].北京:冶金工业出版社,2008.
    [72]Jia CL, Urban K. Atomic-resolution measurement of oxygen concentration in oxide materials [J]. Science,2004,303:2001-2004.
    [73]Lentzen M, Jahnen B, Jia CL, et al. HighOresolution imaging with an aberration-corrected transmission election microscope [J].2002,92:233-242.
    [74]Radmilovic V, Kilaas R, Dahmen U, et al. Structure and morphology of S-phase precipitates in aluminum [J]. Acta Materialia,1999,47:3987-3997.
    [75]Karlik M, Bigot A, Jouffrey B, et al. HREM, FIM and tomographic atom probe investigation of Guinier-Preston zones in an Al -1.54at% Cu alloy [J]. Ultramicroscopy,2004,98:219-230.
    [76]杨平.电子背散射衍射技术及其应用[M].北京:冶金工业出版社,2007.
    [77]Dingley DJ, Randle V. Microtexture determination by electron back-scatter diffraction [J]. Journal of Material Science,1992,27:4545-4566.
    [78]Schwarzer RA. Crystallography and micro structure of thin films studies by X-ray and electron diffraction [J]. Materials Science Forum,1998,287-288: 23-60.
    [79]赵永军,谢延翠,于国林.轻合金加工技术,2006,34:18-20.
    [80]Loffler H. Structure and development of Al-Zn alloys [M]. Berlin:Akademie Verlag,1995.
    [81]Loffler H, Kovacs I, Lendvai J. Decomposition processes in Al-Zn-Mg alloys [J]. Journal of Materials Science,1983,18:2215-2221.
    [82]Starink MJ, Hobson AJ, Sinclair I, et al. Embrittlement of Al-Li-Cu-Mg alloys at slightly elevated temperatures:microstructural mechanisms of hardening [J]. Materials Science and Engineering A,2000,289:130-142.
    [83]Lumley RN, Morton AJ, Polmear IJ. Enhanced creep performance in an Al-Cu-Mg-Ag alloy through underagein [J]. Acta Materialia,2002,50:3597-3608.
    [84]Buha J, Lumley RN, Grosky AG. Microsturctural development and mechanical properties of interrupted aged Al-Mg-Si-Cu alloy [J]. Metallurgical and Materials Transactions A,2006,37:3119-3130.
    [85]Buha J, Lumley RN, Crosky AG. Secondary ageing in an aluminium alloiy 7050 [J]. Materials Science and Engineering A,2008,492:1-10.
    [86]李海,潘道召,王芝秀等.T616时效对6061铝合金拉伸及晶间腐蚀性能的影响[J].金属学报,2010,46:494-499.
    [87]Ferragut R, Dupasquier A, Macchi CE, et al. Vacancy-solute interactions during multiple-step ageing of an Al-Cu-Mg-Ag alloy [J]. Scripta Materialia, 2009,60:137-140.
    [88]Sha G, Cerezo A. Early-stage precipitation in Al-ZN-Mg-Cu alloy (7050) [J]. Acta Materialia,2004,52:4503-4516.
    [89]Geuser FD, Lefebvre W, Blavette D.3D atom probe study of solute-atoms clustering during natural ageing and pre-ageing of an Al-Mg-Si alloy [J]. Philosophical Magazine Letters,2006,86:227-234.
    [90]Eskin DG, Massardier V, Merle P. A study of high-temperature precipitation in Al-Mg-Si alloys with an excess of silicon [J]. Journal of Materials Science, 1999,34:811-820.
    [91]Gaber A, Mossad A, Matsuda K, et al. Study of the developed precipitates in Al-0.63Mg-0.37Si-0.5Cu (wt%) alloy by using DSC and TEM techniques [J]. Journal of Alloy and Compounds,2007; 432:149-155.
    [92]Esmaeili S, Wang X, Lloyd D J, et al. On the precipitation-hardening behavior of the Al-Mg-Si-Cu alloy AA6111 [J]. Metallurgical and Materials Transactions A,2003,34:751-763.
    [93]Yassar R S, Field D P, Weiland H. The effect of predeformation on the β" and β' precipitates and the role of Q'phase in an Al-Mg-Si alloy; AA6022 [J]. Scripta Materialia,2005,53:299-303.
    [94]Turnbull D, Treaftis HN. On the rate of formation of Guinier-Preston zones in Al-Ag alloys [J]. Acta Metallurgica 1957,5:534-542.
    [95]Kimura H, Hasiguti RR. Interaction of vacancies with Sn atoms and the rate of G-P zone formation in Al-Cu-Sn alloy [J] Acta Materialia,1961,9:1076-1078.
    [96]Ozbilen S, Flower HM. Zirconium-vacancy binding and its influence on S'-precipitation in an Al-Cu-Mg alloy [J]. Acta Metallurgica,1989,37:2993-3000.
    [97]Perry AJ. Solute-vacancy interaction energies and the effect of 0.009 at% Mg on the ageing kinetics of an Al-4.01 at% Zn alloy [J]. Acta Metallurgica,1966, 14:1143-1156.
    [98]Raman KS, Das ESD, Vasu KI. Clustering and solute-vacancy binding energies in Al-4.4%Zn alloy with 0.01% ternary additions [J]. Journal of Materials Science,1971,6:1367-1378.
    [99]Perry AJ. Copper clustering and vacancy loss during the quenching of aluminum-copper alloys [J]. Acta Metallurgica,1966,14:305-312.
    [100]Murayama M, Hono K, Saga M. Atom probe studies on the early stages of precipitation in Al-Mg-Si alloys [J]. Materials Science and Engineering A, 1998,250:127-132.
    [101]Somoza A, Petkov MP, Lynn KG. Stability of vacancies during solute clustering in Al-Cu-based alloys [J]. Physical Review B,2002,65:094107.
    [102]Hirosawa S, Stato T, Kamio A, et al. Classification of the role of microalloying elements in phase decomposition of Al based alloys [J]. Acta Materialia,2000,48:1797-1806.
    [103]张丽娜,高英俊,易杰等.钪,硅对Al-Mg-Cu合金时效初期微结构演化的作用[J].中国稀土学报,2008,26(5);661-665.
    [104]Jaswon MA, Wheeler JA. Atomic displacements in the austenite-martensite transformation [J]. Acta Crystallographica,1948,1:216-224.
    [105]Zhang M, Zhang WZ, Ye F. Interpretation of precipitation crystallography of Mg17Al12 in an Mg-Al alloy in terms of singular interfacial structure [J]. Metallurgical and Materials Transactions A,2005,36:1681-1688.
    [106]Zhang M, Zhang WZ. Interpretation of the orientation relationship and habit plane orientation of the equilibrium β-phase in an Mg-Y-Nb alloy [J]. Scripta Materialia,2008,59:706-709.
    [107]Perovic A, Perovic DD, Weatherly GC, et al. Precipitation in aluminum alloys AA6111 and AA6016 [J]. Scripta Materialia,1999,41:703-708.
    [108]Zhen L, Kang SB. Deformation and fracture behavior of two Al-Mg-Si alloys [J] Metallurgical and Materials Transactions A,1997,28:1489-1497.
    [109]Marioara CD, Andersen SJ, Jansen J, et al. The influence of temperature and storage time at RT on nucleation of the β" phase in a 6082 Al-Mg-Si alloy [J]. Acta Materialia,2003,51:789-796.
    [110]Cerri E, Leo P. Influence of severe plastic deformation on aging of Al-Mg-Si alloys [J]. Materials Science and Engineering A,2005,410-411:226-229.
    [111]Hillert M. Diffusion and interface control of reactions in alloys [J]. Metallurgical and Materials Transactions A,1975,6:5-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700