用户名: 密码: 验证码:
粉末热挤压Al-Zn-Mg-Cu合金的制备工艺及组织性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Al-Zn-Mg-Cu高强铝合金以其高强、轻质、高韧、耐腐蚀等优良特性,被广泛应用于航空航天工业和现代高速列车制造工业。本文以充分挖掘现有铝合金型材生产设备潜力为前提,采用快速凝固雾化制粉、粉末热挤压成形、后续热处理的技术路线,制备了高强铝合金棒材。本课题的研究目的是希望获得晶粒和析出相尺寸细小且分布均匀的合金组织,从而显著提高铝合金的强度及塑性,同时改善其抗应力腐蚀性能,最终开发一种新的适合于工业化生产的低成本高强铝合金制备技术。
     本文研究了采用氮气雾化技术制备的Al-6.0Zn-2.7Mg-1.3Cu(1#粉末)和Al-10.OZn-3.2Mg-2.3Cu-0.2Zr(2#粉末)两种高强铝合金粉末的物相、组织及其热稳定性等特性;采用粉末热挤压法制备了合金棒材,并对挤压工艺参数(挤压温度、挤压比、粉末粒度)进行了优化;优化了挤压棒材的热处理工艺;对合金的断裂机制、强化机制和回复再结晶等机制进行了研究。
     研究结果表明,氮气雾化高强铝合金粉末的组织是细小的枝晶,其物相主要是α-Al和MgZn2相。快速凝固技术大幅提高合金元素在基体中的过饱和度,1#合金粉末和颗粒尺寸小于75μm的2#-C组粉末基体元素过饱和度最高。在400℃保温1h后粉末组织仍为细小的枝晶结构,在保持粉末快速凝固特征的同时,能够满足除气和顺利挤压的要求。
     挤压合金组织由剪切变形条带组织和沿挤压方向流线分布的析出相构成,物相主要是玖-Al、η(MgZn2)和少量的η’(MgZn2)和Al7Cu2Fe相。挤压过程中变形条带组织主要发生多边形化,即动态回复。提高挤压温度和挤压比,组织中的析出相颗粒粗化。粉末粒度影响挤压变形晶粒和析出相颗粒的尺寸,粒度最小的C组粉末挤压合金的变形晶粒和析出相颗粒尺寸最为细小。
     粉末热挤压合金的力学性能研究结果表明,1“合金的最优挤压工艺为采用C组粉末挤压,挤压温度300℃,挤压比为25,在此工艺条件下合金的σb、60.2和6分别为575MPa、547MPa和7.4%。1#-C组粉末在挤压温度300℃、挤压比λ=36的条件下挤压,合金σb和60.2最高达到650MPa和630MPa,但是6较低,仅为5.6%。2#合金的最优挤压工艺为采用C组粉末,挤压温度400℃,挤压比为25,在此工艺条件下合金的σb、σ0.2和δ分别为384MPa、275MPa和8.2%。
     粉末挤压合金的断裂机制是粉末粒度、挤压比等工艺参数和析出相尺寸、数量及分布综合作用的结果。挤压比较小时合金断裂机制为沿晶脆性断裂;采用大粒度粉末或高挤压比时,其合金断裂机制是内颈缩扩展和剪切扩展两种微孔聚集方式混合的韧窝型韧性断裂;当断裂机制为内颈缩扩展微孔聚集型韧性断裂时,合金具有良好的综合力学性能。合金的力学性能是细晶强化、沉淀强化和位错强化等多种强化机制共同作用的结果。粉末在较低温度挤压成形(1#-C组粉末在280~320℃挤压,挤压比λ=36),合金的动态回复机制以稳定多边形化为主;粉末在较高温度以较小的挤压比挤压成形(2#-C组粉末在400℃挤压,挤压比λ=25),组织的动态回复机制以再结晶前多边形化为主;粉末在较高挤压温度和挤压比条件下挤压成形(2#-C组粉末在400℃挤压,挤压比λ=36),组织发生完全动态再结晶,降低合金性能。挤压合金组织的再结晶形核机制包括晶界弓出形核、亚晶形核和位错塞积形核。出现完全动态再结晶的原因是大变形导致的合金畸变能增加、粗大析出相造成的位错塞积形核和变形热导致的挤压温度升高。
     挤压合金的热处理工艺研究表明,1#合金适宜的固溶热处理工艺为460℃/20min,2“合金适宜的固溶热处理工艺为460℃/2.5h。固溶后进行单级时效处理,研究合金表现出显著的时效硬化特性,其时效硬化曲线具有双峰时效特征,分别对应GP区和η’强化。1#合金适宜的峰值时效工艺为120℃/20h,在此工艺条件下,合金的6b、σ0.2和6分别为695MPa、675MPa和11.3%。2#合金适宜的峰值时效工艺为12℃/24h,在此工艺条件下,合金的σb、σ0.2和6分别为731MPa,670MPa和6.2%。合金在具有超高强度的同时,保持了良好的韧性。1“合金固溶后进行双级时效处理,其适宜的双级时效工艺为120℃/3h+160℃/18h,在此工艺条件下,合金的σb、60.2和6分别为582MPa、542MPa和15.1%,电导率达到38.7%IACS。在损失部分强度性能的前提下,伸长率和电导率相对于T6合金分别提高33.6%和18.3%,合金具有优良的综合性能。
     合金经过固溶及时效热处理后获得微晶组织,晶粒尺寸小于5μm。合金在热处理过程中的组织变化规律与传统热处理有所不同。1#合金120℃/3h+160℃/18h时效处理、2#合金120℃/24h时效处理后组织表现出回归再时效(RRA)合金的特征。分析认为主要由于晶粒细化导致的合金元素结构敏感性扩散,使研究合金可以在简化的热处理工艺条件下获得RRA组织。Zr元素在合金时效初期抑制GP区的形核,削弱了合金的时效硬化特性。随时效时间延长Zr以亚稳态Al3Zr粒子形式析出,促进η’强化相析出,合金得到强化。对位错的钉扎作用是亚稳态Al3Zr粒子实现细晶强化、弥散强化和形变强化机制的本质原因。
Al-Zn-Mg-Cu high strength aluminum alloy have been widely applied to aerospace industry and modern high speed strain industry because of the excellent characteristics, such as high strength, low density, good toughness, corrosion resistance, and so on. Based on the best use of the existing aluminum alloy production equipment, ultra-high strength aluminum alloy bars were fabricated using rapid solidification atomization, powder hot extrusion process, subsequent heat treatment technology. The objective of this research is to get fine grain and homogenously distributed precipitates to significantly improve the strength, plastic, resistance to stress corrosion, and ultimately to develop a new low-cost high-strength aluminum alloy fabrication technology that suitable for industrial production.
     This paper studies the phase structure, microstructure, thermostability and other characteristics of two kinds of ultra-high strength aluminum alloy powder fabricated by nitrogen atomization technology, which composition are Al-6.0Zn-2.7Mg-1.3Cu (1#) and Al-10.0Zn-3.2Mg-2.3Cu-0.2Zr (2#), respectively. The powder hot extruded alloy bars were prepared by above mentioned raw materials, and extrusion process parameters, i.e. extrusion temperature, extrusion ratio, powder size, and heat treatment process were optimized. The fracture mechanism, strengthen mechanism, dynamic recovery and recrystallization mechanisms were studied as well.
     The results show that the microstructure of nitrogen atomizing ultra-high strength aluminum powder is fine dendrite, and the phases are mainlyα-Al and MgZn2. The rapid solidification process greatly increased the solubility of alloy elements in solid solution,1# and 2#-C group alloy powder have the highest degree of saturation. The fine dendrite is retained after powder are exposed to high temperature 400℃for 1h, which can meet the request for degassing and extrusion successfully.
     The microstructures of extruded alloys are mainly made up by shear bands and densely distributed precipitates distributed along the extrusion direction. The phase of extruded alloys is mainlyα-Al,η(MgZn2) and a spot ofη'(MgZn2), AlCu2Fe phase. Shear bands polygonized during extrusion, thus, dynamic recovery occurs. The precipitates coarsen with improving the extrusion temperature and extrusion ratio. The size of deformed grains and precipitate particles are influenced by granularities. The smallest size of deformed grains and precipitates in the extruded alloy are observed in group C powder.
     Mechanical properties of powder hot extrusion alloys show that the optimum preparation parameters of 1# alloy are using group C powder, extrusion temperature at 300℃and extrusion ratio of 25, theσb,σ0.2 andδof extruded alloy are 575MPa, 547MPa and 7.4%, respectively. After the 1#-C group of powder are extruded at 300℃by extrusion ratioλof 36, theσb andσ0.2 up to 650MPa and 630MPa, but the elongation 8 is only 5.6%. The optimum preparation parameters of 2# alloy are using group C powder, extrusion temperature at 400℃and extrusion ratio of 25, theσb,σ0.2 andδof extruded alloy are 384MPa,275MPa and 8.2%.
     Fracture mechanisms of the extruded alloys are synthetically determined by granularity, extrusion ratio and the size, quantity and distribution of precipitates. When extrusion ratio is relatively small, the fracture mechanism is intergranular brittle fracture. When using large size powder or high extrusion ratio, the fracture mechanism is mix model of dimple fracture consist of internal necking and shearing spread microvoid coalescence. When the fracture mechanism of alloy is internal necking microvoid coalescence dimple fracture, the alloys have good overall performance. Dynamic recovery mechanisms of alloys extruded at lower temperature by 1#-C group powder and extruded at higher temperature with higher extrusion ratio by 2#-C group powder are stabilized polygonization and polygonization previous to recrystallization, respectively. The dynamic recrystallization occurs in the alloy made by 2#-C group powder because the severe deformation can increase the distortional strain energy, coarse precipitates promote piled-up dislocation to form nucleus, and thermal deformation cause the rise of extrusion temperature. Nucleation mechanisms of extruded alloy include projecting grain boundary nucleation, sub-grain nucleation and dislocation pileup nucleation.
     Heat treatment process of extruded alloys shows that the suitable solution treatment of 1# alloy is 460℃/20min, and that of 2# alloy is 460℃/2.5h. After solution and single-stage aging treatment, the alloys show significant age-hardening characteristics. The age-hardening curves of two kind of alloys have two aging peaks, corresponding to GP zones andη'strengthening, respectively. The suitable peak aging process of 1# alloy is 120℃/20h, and theσb,σ0.2 and 8 are 695MPa,675MPa and 11.3%, respectively. The counterpart of 2# alloy is 120℃/24h, and theσb,σ0.2 andδare 731MPa,670MPa and 6.2%. Alloys after solution and aging have ultra-high strength and maintain good toughness. The appropriate two-stage aging process of 1# alloy is 120℃/3h+160℃/18h, and theσb,σ0.2 andδare 582MPa,542MPa and 15.1%, conductivity reaches 38.7% IACS. On condition of loss part of the strength properties the alloy has excellent overall performance, whose elongation and electrical conductivity relative to T6 alloy are increased by 33.6% and 18.3%.
     Solution and aging treated alloys have fine grains, whose size is less than 5μm. The research shows the evolution of the microstructure of powder hot extruded alloys is different from that of traditional alloys during heat treatment. The microstructure s of 1# alloy treated by 120℃/3h+160℃/18h and 2# alloy treated by 120℃/24h show the characteristic of retrogression and reaging (RRA) microstructure. It is indicated that grain refinement lead to structural sensitivity diffusion of alloying elements, which make the RRA microstructure can be required by simplified heat treatment process. Zr elements suppress the nucleation of GP zone in the early stage of aging, which weakens the age-hardening characteristics of alloys. Zr elements precipitates in the shape of metastable Al3Zr particles with prolonging of aging time, promoting the form ofη'phase precipitates and strengthening the alloys. Pinning of metastable Al3Zr particles on dislocations is the essential reason to achieve fine-grain strengthening, dispersion strengthening and deformation strengthening mechanisms.
引文
1. 王祝堂,田荣璋.铝合金及其加工手册.长沙:中南工业大学出版社,1989
    2. 田福泉,李念奎,崔建忠.超高强铝合金强韧化的发展过程及方向.轻合金加工技术,2005,33(12):1-9
    3. 黄世民.铝合金在飞机结构上的应用和发展.轻金属,1985,(1):39-42
    4. Y.L. Wu, F.H. Froes. Microstructure and properties of a new superhigh-strength Al-Zn-Mg-Cu alloy C912. Materials and Design,1997,18 (4/6):211-215
    5. 陈昌麟.超高强铝合金的发展.中国有色金属学报,2002,12(Al Special):22-27
    6. A.L. David, M.H. Ray. Aluminum alloy development efforts for compression dominated structure of aircraft. Light Metal Age,1991,2(9):11-15
    7. 潘志军.高强铝合金的研究现状及展望.铝加工,2001,24(4):39-41
    8. 马场义雄.超硬铝ESD及飞机铝合金发展动向.铝加工技术,1990,(4):21-31
    9. D.A. Lukasak, R.M. Hart. Strong aluminum alloy shaves airframe weight. Advanced Materials&Processes,1991,10(4):46-49
    10. 周鸿章.高强铝合金的研究进展.稀有金属材料与工程,2001,30(6):87-92
    11. 谢燮揆,范靖亚.Al-Zn-Mg-Cu系高强铝合金RRA处理.轻合金加工技术,1996,24(2):31-32
    12. J.N. Fridlyander, O.G Senatorova. Development and application of high-strength Al-Zn-Mg-Cu alloys. Materials Science Forum,1996,217-212:1813-1818
    13. K.H. Rendigs. Aluminium Structures Used in Aerospace-Status and Prospects. Materials Science Forum,1997,242:11-24
    14. 谢优华,扬守杰,戴圣龙,等.含锆超高强铝合金的研究及发展概况.材料导报,2002,16(5):8-10
    15. 尚勇,张立武.高强铝合金的热处理技术.上海有色金属,2005,26(2):97-102
    16. 任建平,宋仁国,陈小明,等.7xxx系铝合金热处理工艺的研究现状及进展.材料热处理技术,2009,38(6):119-124
    17. 李国锋,张新明,朱航飞,等.7B50高强度铝合金的均匀化.中国有色金属学报,2008,17(5):764-770
    18. 刘晓涛,董杰,崔建忠,等.高强度铝合金均匀化热处理.中国有色金属学报,2003,12(4):909-913
    19. 陆政,杨守杰,姜海峰,等.一种新型超高强铝合金的均匀化工艺研究.航空材料学报,2001,21(2):14-17
    20. 龚澎,张坤,戴圣龙.一种新型Al-Zn-Mg-Cu系铝合金的均匀化工艺研究.航空材料学报,2009,29(5):33-38
    21. 宁爱林,曾苏民.强化均匀化对7B04铝合金铸态组织与性能的影响.热加工工艺,2003,(6):5-7
    22. 陈康华,刘允中,刘红卫.7075和2024铝合金的固溶组织与力学性能.中国有色金属学报,2000,10(6):819-822
    23.林高用,彭大暑,魏圣明,等.强化固溶处理对7075铝合金组织的影响.金属热处理,2002,27(11):30-33
    24.刘红卫,陈康华,刘允中.强化固溶对7075铝合金组织与性能的影响.金属热处理,2000,25(9):16-17
    25.陈康华,刘红卫,刘允中.强化固溶对7055铝合金力学性能和断裂行为的影响.中南工业大学学报,2000,31(6):528-531
    26.陈康华,刘红卫,刘允中.强化固溶对Al-Zn-Mg-Cu合金力学性能和断裂行为的影响.金属学报,2001,37(1):29-33
    27. K.H. Chen, H.W. Liu, Z. Zhang, et al. The improvement of constituent dissolution and mechanical properties of 7055 aluminum alloy by stepped heat treatments. Journal of Materials Processing Technology,2003,142(1):190-196
    28.刘胜胆,张新明,黄振宝,等.固溶处理对高纯7055铝合金组织的影响.材料热处理学报,2006,27(3):54-59
    29.张茁,陈康华,刘红卫,等.近固溶限预析出对7055铝合金组织和力学性能的影响.粉末冶金材料科学与工程,2003,8(2):162-167
    30.张茁,陈康华,刘红卫,等.高温预析出对7055铝合金强度、塑性和应力腐蚀抗力的影响.铝加工,2002,(2):10-14
    31.张茁,陈康华,刘红卫,等.高温预析出对Al-Zn-Mg-Cu铝合金显微组织、强度和应力腐蚀抗力的影响.金属热处理,2003,28(7):13-16
    32.张新明,游江海,张小艳,等.固溶后预析出对7A55铝合金力学及腐蚀性能的影响.中国有色金属学报,2007,17(12):1922-1927
    33.刘海江.单级时效对7475合金组织和性能的影响.轻合金加工技术,2004,32(5):41-44
    34.李杰,尹志民,王涛,等.固溶-单级时效处理对7055铝合金力学和电学性能的影响.轻合金加工技术,2004,32(11):39-43
    35. K. Shen, Z.M Yin, T. Wang. TEM Study on microstructural development of single-ageing 7055 aluminum alloys. Transactions of Nanjing University of Aeronautics & Astronautics, 2007,24(3):265-269
    36.张录泉.7xxx系合金的双级时效.轻合金加工技术,1986,14(12):21-23
    37.中国航空材料手册编辑委员会.中国航空材料手册.北京:标准出版社,1989
    38.莫志民,郑子樵,黄翠萍.7000系高强铝合金的RRA处理.铝加工,1996,19(1):28-34
    39. J.S. Robinson, D.A. Tanner, S.D. Whelan. Retrogression, reaging and residual stresses in 7010 forgings. Fatigue & Fracture Engineering Material & Structure,2002,22(1):51-58
    40. F. Vianaa, A.M.P. Pintob, H.M.C. Santos, et al. Retrogression and re-ageing of 7075 aluminium alloy:microstructural characterization. Journal of Materials Processing Technology,1999,92-93:54-59
    41. A. Uguz, J.W. Martin. The effect of retrogression and re-ageing on the ductile fracture toughness of Al-Zn-Mg alloys containing different dispersoid phases Journal of Materials Science,1995,30(23):5923-5926
    42.邱宏伟,于淑滨,马洪武.7050铝合金厚板RRA处理过程中性能和组织的变化.轻合金加工技术,1997,25(9):34-37
    43.谷亦杰,林建国,张永刚,等.回归再时效(RRA)处理对7050铝合金的影响.金属热处理,2001,(1):31-35
    44. C. Feng, Z.Y. Liu, A.L. Ning, et al. Retrogression and re-aging treatment of Al-9.99%Zn-1.72%Cu-2.5%Mg-0.13%Zr aluminum alloy. The Nonferrous Metals Society of China,2006,16(5):1163-1170
    45.冯春,刘志义,宁爱林,等.RRA处理对超高强铝合金抗应力腐蚀性能的影响.中南大学学报(自然科学版),2006,37(6):1054-1059
    46. A.F. Oliveira, M.C. Barros Jr., K.R. Cardoso, et al. The effect of RRA on the strength and SCC resistance on AA7050 and AA7150 aluminium alloys. Materials Science and Engineering A,2004,379(1-2):321-326
    47. C. Vives. Electromagnetic refining of aluminum alloys by the CREM process:PartⅠ. Working principle and metallurgical results. Metallurgical and Materials Transactions B, 1989,20(5):623-629
    48. C. Vives. Effects of forced electromagnetic vibrations during the solidification of aluminum alloys:Part Ⅱ. Solidification in the presence of collinear variable and stationary magnetic fields. Metallurgical and Materials Transactions B.1996,27(3):457-464
    49. Z.H. Zhao, J.Z. Cui, J. Dong, et al. Effect of low-frequency magnetic field on microstructures and macrosegregation of horizontal direct chill casting 7075 aluminum alloy. Journal of Materials Processing Technology,2007,182(1-3):185-190
    50. Y.B. Zuo, H. Nagaumi, J.Z. Cui. Study on the sump and temperature field during low frequency electromagnetic casting a superhigh strength Al-Zn-Mg-Cu alloy[J]. Journal of Materials Processing Technology,2008,197(1-3):109-115
    51. J. Dong, J.Z. Cui, W.J. Ding. Theoretical discussion of the effect of a low-frequency electromagnetic vibrating field on the as-cast microstructures of DC Al-Zn-Mg-Cu-Zr ingots. Journal of Crystal Growth,2006,295(2):179-187
    52. Y.B. Zuo, J.Z. Cui, Z.H. Zhao, et al. Effect of low frequency electromagnetic field on casting crack during DC casting superhigh strength aluminum alloy ingots. Materials Science and Engineering A,2005,406(1-2):286-292
    53. Y.B. Zuo, J.Z. Cui, J. Dong, et al. Effects of low frequency electromagnetic field on the as-cast microstructures and mechanical properties of superhigh strength aluminum alloy. Materials Science and Engineering A,2005,408(1-2):176-181
    54. Y.B. Zuo, J.Z. Cui, J. Dong, et al. Effect of low frequency electromagnetic field on the constituents of a new super high strength aluminum alloy. Journal of Alloys and Compounds, 2005,402(1-2):149-155
    55. J. Dong, J.Z. Cui, X.Q. Zeng, et al. Effect of low-frequency electromagnetic field on microstructures and macrosegregation of Ф270 mm DC ingots of an Al-Zn-Mg-Cu-Zr alloy. Materials Letters,2005,59(12):1502-1506
    56. X.T. Liu, J.Z. Cui, E.G. Wang, et al. Influence of a low-frequency electromagnetic field on precipitation behavior of a high strength aluminum alloy. Materials Science and Engineering A,2005,402(1-2):1-4
    57. H.T. Zhang, H. Nagaumi, J.Z. Cui. Coupled modeling of electromagnetic field, fluid flow, heat transfer and solidification during low frequency electromagnetic casting of 7xxx aluminum alloys:Part Ⅰ:Development of a mathematical model and comparison with experimental results. Materials Science and Engineering A,2007,448(1-2):189-203
    58. H.T. Zhang, H. Nagaumi, J.Z. Cui. Coupled modeling of electromagnetic field, fluid flow, heat transfer and solidification during low frequency electromagnetic casting of 7xxx aluminum alloys:Part Ⅱ:The effects of electromagnetic parameters on casting processes. Materials Science and Engineering A,2007,448(1-2):177-188
    59.左玉波,董杰,崔建忠.铸造工艺参数对超高强铝合金低频电磁半连续铸锭微观组织的影响.铸造,2005,54(5):455-458
    60.张勤,崔建忠.CREM法抑制7075铝合金半连铸坯中溶质元素宏观偏析的机制.稀有金属材料与工程,2005,34(4):627-631
    61.董杰,崔建忠,赵志浩.低频电磁铸造超高强高韧铝合金元素晶内固溶度和力学性能研究.航空材料学报,2003,23(1):16-20
    62. X. Jiang, H. Xu. Effect of power ultrasound on solidification of aluminum A356 alloy. Material Letters,2005,59 (3):190-193
    63. O.V.Abramov. Action of high intensity ultrasound on solidifying metal. Ultrasonics,1987, 25(2):73-82
    64. A. Puskar. The use of high-intensity ultrasonic. Amsterdam:Elsevier,1982
    65.马立群,舒光冀,陈锋.金属熔体在超声场中凝固的研究.材料科学与工程,1995,13(4):2-7
    66.范金辉,翟启杰.物理场对金属凝固组织的影响.中国有色金属学报,2002,12(1):11-15
    67.胡化文,陈康华,黄兰萍,等.超声熔体处理对Al-Zn-Mg-Cu合金显微组织和性能的影响.金属热处理,2005,30(5):43-46
    68.胡化文,陈康华,刘红卫,等.熔体超声处理对7055铝合金显微组织和性能的影响.粉末冶金材料科学与工程,2004,9(2):156-160
    69.胡化文,陈康华,黄兰萍.超声溶体处理对7055铝合金铸态组织和性能的影响.铝加工,2004,(3):1-3,6
    70.胡化文,陈康华,黄兰萍.超声波熔体处理对铝合金组织和性能的影响.特种铸造及有色合金,2004,24(4):11-13
    71.李晓谦,刘诗月,蒋日鹏.超声场对7B50铝合金凝固组织的影响.上海有色金属,2008,29(2):47-50
    72. H.N. Azari, G.S. Murty, G.S. Upadhyaya. Superplastic behavior of thermomechanically treated P/M 7091 aluminum alloy. Metallurgical and Materials Transactions A,1994,25(10): 2153-2160
    73. J.R. Pickens, W. Precht, A.R.C. Westwood. Embrittlement of P/M X7091 and I/M 7175 aluminium alloys by mercury solutions. Journal of Materials Science,1983,18(6): 1872-1880
    74. J.R. Pichens. Aluminium powder metallurgy technology for high-strength application. Journal of Materials Science,1981,16(6):1437-1457
    75. V.V. RAO. Centrifugal atomization and rapid-solidification processing of high-strength aluminium alloys. Journal of Materials Science Letters,1992,11(3):135-137
    76.陈振华,陈鼎.快速凝固粉末铝合金.北京:冶金工业出版社,2009
    77. P.S. Grant. Spray forming. Progress in Materials Science,1995,39(4-5):497-545
    78. P. Lengsfeld. Microstructure and mechanical behavior of spray deposited Zn modified 7xxx series A1 alloys. International Journal of Rapid Solidification,1995,8(4):237-265
    79. S.A. Jenabali Jahromi. Creep behavior of spray-cast 7xxx aluminum alloy. Materials and Design,2002,23(2):169-172
    80.张永安,韦强.喷射成形制备高性能铝合金材料.机械工程材,2001,25(4):22-25
    81. J.B. Plies, N.J. Grant. Structure and properties of spray formed 7150 containing Fe and Si. International Journal of Powder Metallurgy,1994,30(3):335-343
    82. M. Desanctis. Structure and properties of rapidly solidified ultrahigh strength Al-Zn-Mg-Cu alloys produced by spray deposition. Materials Science and Engineering A,1991,141(1): 103-121
    83. M.M. Sharma. Microstructural and mechanical characterization of various modified 7xxx series spray formed alloys. Materials Characterization,2008,59(1):91-99
    84. F.Wang, B.Q. Xiong, Y.A.Zhang, et al. Microstructure and mechanical properties of spray-deposited Al-Zn-Mg-Cu alloy processed through hot rolling and heat treatment. Materials Science and EngineeringA,2009,518(1-2):144-149
    85. F. Wang, B.Q. Xiong, Y.A. Zhang, et al. Effect of heat treatment on the microstructure and mechanical properties of the spray-deposited Al-10.8Zn-2.8Mg-1.9Cu alloy. Materials Science and Engineering A,2008,486(1-2):648-652
    86. F. Wang, B.Q. Xiong, Y.A. Zhang, et al. Microstructure and mechanical properties of spray-deposited Al-10.8Zn-2.8Mg-1.9Cu alloy after two-step aging treatment at 110 and 150 ℃. Materials Characterization,2007,58(1):82-86
    87.王洪斌,崔华,郝斌,等.喷射沉积超高强Al-Zn-Mg-Cu合金的回归再时效处理.金属学报,2005,41(12):1267-1271
    88.王洪斌,刘慧敏,黄进峰,等.热处理对喷射成形超高强Al-Zn-Mg-Cu系铝合金的影响.中国有色金属学报,2004,14(3):398-404
    89.王洪斌,陈美英,刘慧敏,等.喷射成形Al-Zn-Mg-Cu系超高强铝合金热处理制度的研究.北京科技大学学报,2003,25(5):436-440
    90. X.Q. He, B.Q. Xiong, Z.M. Sun, et al. Solidification microstructures of Al-Zn-Mg-Cu alloys prepared by spray deposition and conventional casting methods. Rare Metals,2008,27(2): 210-215
    91. F. Wang, B.Q. Xiong, Y.A. Zhang, et al. Microstructural development of spray-deposited Al-Zn-Mg-Cu alloy during subsequent processing. Journal of Alloys and Compounds,2009, 477(1-2):616-621
    92.周娟,肖于德,张林林,等.喷射成形Al-Zn-Mg-Cu-Zr系合金热处理工艺研究.金属热处理,2006,31(6):45-48
    93.吴一雷,李永伟.超高强度铝合金的发展和应用.航空材料学报,1994,14(1):49-55
    94. G.J. Hildeman, L.C. Labarre, D.J. Brownhill, et al. AlZnMgCu powder metallurgy alloy. US patent,4732610,1988
    95.林水根,菅又信,金子纯一.迁移金属与添加レたAl-9%Zn-2.5Mg-1%Cu合金の急冷凝固P/M材料的时效硬化と机械性质.轻金属,1991,21(4):41-44
    96.#12
    97.李裕仁,王田珍,冯玉书.RS高强Al-Zn-Mg-Cu系合金热处理温度与性能的关系.材料工程,1999,(4):23-26
    98.邓至谦,周善初.金属材料及热处理.长沙:中南工业大学出版社,1988
    99.杨守杰,谢优华,朱娜,等.Zr对Al-Zn-Mg-Cu系超高强铝合金力学性能的影响.材料研究学报,2002,16(4):406-412
    100.孙立明,于化顺,闵光辉,等.Zr对Al-Zn-Mg-Cu合金组织和性能的影响.特种铸造及有色合金,2007,27(5):380-381
    101.杨守杰,谢优华,陆政,等.Zr对超高强铝合金时效过程的影响.中国有色金属学报,2002,12(4):226-230
    102.王月.含钪铝合金的研究进展.上海金属,2003,25(1):36-40
    103.贺永东,张新明,游江海.复合添加微量Sc,Zr对Al-Zn-Mg-Cu合金组织性能的影响.稀有金属材料与工程,2007,36(4):665-670
    104. L. Zou, Q.L. Pan, Y.B. He, et al. Effect of minor Sc and Zr addition on microstructures and mechanical properties of Al-Zn-Mg-Cu alloys. Transactions of Nonferrous Metals Society of China,2007,17(2):340-345
    105.刘黄,罗兵辉,柏振海.Sc、Zr对Al-Zn-Mg-Cu合金组织与性能的影响.轻合金加工技术,2006,34(2):43-47,54
    106. F.H. Froes, Y. Kim, F. Hehmann. Rapid solidification of Al, Mg and Ti. Journal of metals, 1987,39(8):14-21
    107. M.J. Koczak, G.J. Hileman. High-strength powder metallurgy aluminum alloy. New York: The Metallurgical Society of AIME,1982
    108. J.E. Flinn. Rapid solidification technology for reduced consumption of strategic materials. New Jersey:Noyes Publications,1985
    109.I.J. Polmear. Light alloys, London:Edward Arnold Ltd,1981
    110.ASM International Handbook Committee. ASM Metal Handbook Vol.2 (Tenth edition). Ohio: ASM International,1990
    111.李雪春,杨玉英,王永志,等.塑性变形对铝合金弹性模量的影响.中国有色金属学报,2002,12(4):701-705
    112. P.P. Pronko, R.S. Bhattacharya, J.J. Kleek, et al. Use of ion scattering in characterizing the surface oxide of P/M aluminum alloy 7091. Metallurgical and Materials Transactions A,1988, 19(5):1372-1374
    113. Z.H. Chen, X.Y. Jiang, Y. Wang, et al. Preparation of rapid solidified amorphous Al85Ni5Y10 powder and alloy. Journal of the Less Common Metals,1991,171(2):187-194
    114. Z.H. Chen, Y. Wang, D.S. Zhou, et al. Preparation and consolidation of Al-based alloy quasicrystalline powders. Scripta Metallugica et Materialia,1990,24(3):599-603
    115. Z.H. Chen, X.Y. Jiang, Y. Wang, et al. Preparation and consolidation of Al-based alloy quasicrystalline powders. Scripta Metallugica et Materialia,1991,25(1):159-163
    116. P.R. Roberts, B.L. Ferguson. Extrusion of metal powders. International Materials Reviews, 1991,36(2):62-79
    117. T. Sheppard, P.J.M.Chare. The Extrusion of Atomized Aluminium Powders. Powder Metallurgy,1972,15(29):17-41
    118. P.J.M. Chare, J. Sheppard. Powder extrusion as a primary fabricating process for AI-Fe Alloys. Powder Metallurgy,1973,32(16):437-458
    119. J.Q. Guo, K. Kita, N.S. Kazama, et al. Mechanical properties, microstructure and crystal structures of Al98-3xCu2xFexCe1Zr1 (x=1-3 at.%) alloys extruded from their atomized powders. Materials Science and Engineering A,1995,203(1):420-426
    120. J.Q. Guo, N.S. Kazama. Mechanical properties of rapidly solidified Al-Ti-Fe, Al-Cu-Fe and Al-Fe-Cu-Ti based alloys extruded from their atomized powders. Materials Science and Engineering A,1997,232(1):177-182
    121. Y. Kawamural, A. Inouel, M. Takagi, et al. Rapidly solidified powder metallurgy of Al-Ti-Fe-X Alloys. Scripta Materialia,1999,40(10):1131-1137
    122. K. Hono, Y. Zhang, T. Sakurai, et al. Microstructure of a rapidly solidified Al-V-Fe ultrahigh strength aluminum alloy. Materials Science and Engineering A,1998,250(2):152-157
    123. A.D. Setyawan, D.V. Louzguine, K. Sasamori, et al. Phase composition and transformation behavior of readily solidified Al-Ni-Fe alloys in a-Al-decagonal phase region. Journal of Alloys and Compounds,2005,399(1-2):132-138
    124. S.J. Hong, T.S. Kim, H.S. Kim.et al. Microstructural behavior of rapidly solidified and extruded Al-14wt%Ni-14wt%Mm (Mm, misch metal) alloy powders. Materials Science and Engineering A,1999,271(1):469-476
    125. T. Grosdidier, P. Keramidas, J.J. Fundenberger, et al. Influence of atomised powder characteristics on texture and microstructure development in extruded Al-8Fe-4Ni base alloys. Materials Science and Engineering A,1999,267(1):71-81
    126. A. Inoue, H.M. Kimura, T Zhang. High-strength aluminum and zirconium-based alloys containing nanoquasicrystalline particles. Materials Science and Engineering A,2000, 294-296:727-735
    127. T.H. Lee, S.J. Hong. Microstructure and mechanical properties of Al-Si-X alloys fabricated by gas atomization and extrusion process. Journal of Alloys and Compounds,2009,487(1-2): 218-224
    128. Y.Y. Li, D.T. Zhang, X. Wei, et al. Study on the extruded structure of rapidly solidified hypereutectic Al-Si alloys. Journal of Materials Science Letters,2002,21(7):537-538
    129.杨伏良,甘卫平,陈招科等.快速凝固/粉末冶金制备高硅铝合金材料的组织与力学性能.中国有色金属学报,2004,14(10):1717-1722
    130.孙剑飞,沈军,谢壮德,等.快速凝固AlSi17Fe6Cu4.5Mg0.5合金的组织及性能.粉末冶金技术,2002,20(1):8-12
    131.陈桂云,谢赞华,藏志新,等.快速凝固粉末冶金AI-Si-Cu-Mg合金的组织和性能.粉末冶金技术,1994,12(4):3-7
    132. T. Werner, K.Markus. Hot direct extrusion-A novel method to produce abrasion-resistant metal-matrix composites. Wear,2007,263(7-12):896-904
    133. L.X. Hu, Z.Y. Liu, E.D. Wang. Microstructure and mechanical properties of 2024 aluminum alloy consolidated from rapidly solidified alloy powders. Materials Science and Engineering A,2002,323(1):213-217
    134. C. Zubizarreta, S. Gimenez, J.M. Mart'n, et al. Effect of the heat treatment prior to extrusion on the direct hot-extrusion of aluminium powder compacts. Journal of Alloys and Compounds,2009,467(1-2):191-201
    1. E.J. Lavernia, J.D. Ayers, T.S.Srivatsan. Rapid solidification processing with specific application to alumimum alloys. International Materials Reviews,1992,37(1):1-44
    2. 谢壮德.快速凝固粉末冶金高硅铝合金微观结构及性能研究.哈尔滨工业大学.博士论文.2001
    3. 李月珠.快速凝固技术和材料.北京:国防工业出版社,1993:22-23
    4. S.J.Hong, C.Suryanarayana, B.S.Chun. Size-dependent structure and properties of rapidly solidified aluminum alloy powders. Scripta Materials,2001,45:1341-1347
    1. D.Thevenet, M. Mliha-Touati, A. Zeghloul. The effect of precipitation onportevin-Le Chatelier effect in an Al-Zn-Mg-Cu alloys. Material Science Engineering A,1999,266(1-2): 175-182
    2.#12等.铝合金的动态再结晶.洪永先译.轻合金加工技术,1984,12(12):32-35
    3. J. Capus, S. Pickering, A. Weaver. Hoeganaes offers higher density at lower cost. Metal Powder Report,1994,49(7/8):22-24
    4. C.C. Degnan, P.H. Shipway, A.R. Kennedy. Comparison of the green strength of warm compacted Astaloy CrM and Distaloy AE Densmix powder compacts. Materials Science and Technology,2004,20(6):731-738
    5. 李元元,项品峰,夏伟,等.温压工艺制备高密度粉末冶金零件的新技术.材料导报,2000,14(2):25-27
    6. 肖志瑜,李元元,倪东惠.粉末冶金温压的致密化机理.粉末冶金材料科学与工程,2006,11(2):85-90
    7. 曹顺华,易健宏,奉东文,等.温压致密化机理及其在温压粉末设计中的应用.粉末冶金材料科学与工程,2001,6(3):198-204
    8. 肖志瑜,陈维平,温利平,李元元.温压动态压制曲线及颗粒重排贡献率的探讨.粉末冶金材料科学与工程,2005,10(2):96-99
    9.崔约贤,王长利著.金属断口分析.哈尔滨:哈尔滨工业大学出版社,1998
    10.王占学著.塑性加工金属学.北京:冶金工业出版社,1991
    11. V. Patlan, A. Vinogradov, K. Higashi, et al. Overview of fatigue properties of fine grain 5056 Al-Mg alloy processed by equal-channel angular pressing. Materials Science and Engineering A,2001,300(1-2):171-182
    12.石德珂著.材料科学基础.北京:机械工业出版社,2003
    13.谢壮德.快速凝固粉末冶金高硅铝合金微观结构及性能研究.哈尔滨工业大学.博士论文.2001
    14.杨德庄著.位错与金属强化机理.哈尔滨:哈尔滨工业大学出版社,1981
    15.张胜华,胡泽豪,朱旭霞等.LY12CZ挤压棒材粗晶环微观分析.中国有色金属学报,1996,6(3):123-126
    16.毛卫民,赵新兵著.金属的再结晶与晶粒长大.北京:冶金工业出版社,1994
    17.潘金生,仝健民,田民波.材料科学基础.北京:清华大学出版社,1998
    18.林高用,张胜华,胡泽豪.2024铝合金挤压过程动态再结晶问题的研究.兵器材料科学与工程,2000,23(1):40-45
    19. J. Zhou, T. J. Zhang, X.M. Zhang, et al. The influence of strain rate and solution treatment on dynamic recrystallization for 7075 aluminum alloy. Rare Metal Materials and Engineering, 2004,33(6):580-584
    20. H.E. Hu, L. Zhen, B.Y. Zhang, et al. Microstructure characterization of 7050 aluminum alloy during dynamic recrystallization and dynamic recovery. Materials Characterization,2008, 59(9):1185-1189
    21.易幼平,杨积慧,蔺永诚.7050铝合金热压缩变形的流变应力本构方程.材料工程,2007,(4):20-22,26
    22. L.M. Dougher, I.M. Robertson, J.S. Vetrano. Direct observation of the behavior of grain boundaries during continuous dynamic recrystallization in an Al-4Mg-0.3Sc alloy. Acta Materialia,2003,51(15):4367-4378
    23. J. Shen, S.S. Xie, J.H. Tang. Dynamic recovery and dynamic recrystallization of 7005 aluminium alloy during hot compression. Acta Metallurgica Sinica,2000,13(1):379-386
    1. M.M. Sharma. Microstructural and mechanical characterization of various modified 7XXX series spray formed alloys. Materials Characterization,2008,59(1):91-99
    2. F. Wang, B.Q. Xiong, Y.A. Zhang, et al. Microstructure and mechanical properties of spray-deposited Al-10.8Zn-2.8Mg-1.9Cu alloy after two-step aging treatment at 110 and 150 ℃. Materials Characterization,2007,58(1):82-86
    3.王洪斌,刘慧敏,黄进峰,等.热处理对喷射成形超高强Al-Zn-Mg-Cu系铝合金的影响.中国有色金属学报,2004,14(3):398-404
    4.王洪斌,陈美英,刘慧敏,等.喷射成形Al-Zn-Mg-Cu系超高强铝合金热处理制度的研究.北京科技大学学报,2003,25(5):436-440
    5. F. Wang, B.Q. Xiong, Y.A. Zhang, et al. Age-hardening characteristic of an Al-Zn-Mg-Cu alloy produced by spray deposition. RARE METALS,2007,26(2):163-168
    6.王少卿,于化顺,张振亚,等.粉末热挤压Al-Zn-Mg-Cu系合金的热处理工艺研究.材料 热处理学报,2009,30(6):98-102
    7.刘继华,李荻,刘培英,等.时效和回归处理对7075铝合金力学及腐蚀性能的影响.材料热处理学报,2002,23(1):50-53
    8.蹇海根,姜锋,官迪凯,等.固溶处理对7B04铝合金组织和性能的影响.材料热处理学报,2007,28(3):87-91
    9.戴晓元,夏长清,刘昌斌,等.固溶处理及时效对7xxx铝合金组织与性能的影响.材料热处理学报,2007,28(4):59-63
    10.石德珂.材料科学基础.北京:机械工业出版社,1999
    11.费豪文著,卢光熙译.物理冶金学基础.上海:上海科学技术出版社,1974
    12.张宝昌.有色金属及其热处理.西安:西北工业大学出版社,1993
    13. H.R. Shercliff, M.F. Ashby. A process model for age hardening of aluminium alloys-Ⅱ. Applications of the model. Acta Metallurgica,1990,38(10):1803-1812
    1. L.K. Berg, J. Gj(?)nnes, V. Hansen, et al. GP-zones in Al-Zn-Mg-Cu alloys and their role in artificial aging. Acta Materialia,2001,49(17):3443-3451
    2. Z. Katz, N. Ryum. Precipitation kinetics in Al-alloys. Scripta Metallurgica,1981,15(3): 265-268
    3. H. Loffler, I. Kovacs, J. Lendvai. Decomposition processes in Al-Zn-Mg alloys. Journal of Materials Science,1983,18(8):2215-2240
    4. J.C. Werenskiold, A. Deschamps, Y. Brechet. Characterization and modeling of precipitation kinetics in an Al-Zn-Mg alloy. Materials Science and Engineering A,2000,293(1-2):267-274
    5. G. Sha, A. Cerezo. Early-stage precipitation in Al-Zn-Mg-Cu alloy (7050). Acta Materialia, 2004,52(15):4503-4516
    6. K. Stiller, P.J. Warren, V. Hansen, et al. Investigation of precipitation in an Al-Zn-Mg alloy after two-step ageing treatment at 100℃and 150℃. Material Science and Engineering A,1999, 270(1):55-63
    7. S.R. Ortner, C.R.M. Grovenor, B.A. Schollock. On the structure and composition of G-P zones in high purity AlZnMg alloys. Scripta Metallurgica,1988,22(6):839-842
    8. G. Waterloo, V. Hansen, J. Gjennes, et al. Effect of predeformation and preaging at room temperature in Al-Zn-Mg-(Cu,Zr) alloys. Materials Science and Engineering A,2001, 303(1-2):226-233
    9.陈小明,宋仁国,唐普洪.7xxx系铝合金时效处理研究的新进展.金属热处理,2009,34(12):73-77
    10.陈小明,宋仁国.7xxx系铝合金“双峰”时效工艺的普适性研究.热加工工艺,2009,38(6):93-97
    11.陈小明,宋仁国,何源,等.双峰时效对7075合金组织与性能的影响.宇航材料工艺,2009,(6):23-25
    12.杨守杰,谢优华,陆政,等.Zr对超高强铝合金时效过程的影响.中国有色金属学报,2002,12(2):226-230
    13. J.D. Embury, R.B. Nicholson. The nucleation of precipitates:The system Al-Zn-Mg. Acta Metallurgica,1965,13(4):403-417
    14. J.K. Park, A.J. Ardell. Microstructures of the commercial 7075 Al alloy in the T651 and T7 tempers. Metallurgical and Materials Transactions A,1983,14(10):1957-1965
    15. A. Deschamps, Y. Brechet. Nature and distribution of quench-induced precipitation in an Al-Zn-Mg-Cu Alloy. Scripta Materialia,1998,39(11):1517-1522
    16. X.Z. Li, V. Hansen, J. Gjonnes, et al. HREM study and structure modeling of the η'phase, the hardening precipitates in commercial Al-Zn-Mg alloys. Acta Materialia,1999,47(9): 2651-2659
    17. J. Buha, R.N. Lumley, A.G. Crosky. Secondary ageing in an aluminium alloy 7050. Material Science and Engineering A,2008,492(1-2):1-10
    18.曾渝,尹志民,朱远志,等.RRA处理对超高强铝合金微观组织与性能的影响.中国有色金属学报,2004,14(7):1188-1194
    19. G.W Lorimer, R.B Nicholson. Further results on the nucleation of precipitates in the Al-Zn-Mg system. Acta Metallurgica,1966,14(8):1009-1013
    20.白朴存,张秀云,陈伟.喷射成形Al-Zn-Mg-Cu合金的组织与性能研究.金属热处理,2006,31(6):17-20
    21.宁爱林,刘志义,冯春,等.Al-Zn-Mg-Cu合金组织和电导率及抗应力腐蚀性能研究.材料热处理学报,2008,29(2):108-113
    22.张茁,陈康华.固溶处理对Al-Zn-Mg-Cu铝合金电导率的影响.粉末冶金材料科学与工程,2004,9(1):79-83
    23.谢优华,杨守杰,戴圣龙,等.含锆超高强铝合金的研究及发展概况.材料导报,2002,16(5):8-10
    24.谢优华,杨守杰,戴圣龙,等.锆元素在铝合金中的应用.航空材料学报,2002,22(4):56-61
    25. A.K. Mukhopadhyay, G.J. Shiflet, E.A. Starke Jr. Role of vacancies on the precipitation processes in Zr modified aluminum based alloys. Scripta Metallurgica et Materialia,1990, 24(2):307-312
    26. A.K. Mukhopadhyay, Q.B. Yang, S.R. Singh. The influence of zirconium on the early stages of aging of a ternary Al-Zn-Mg alloy. Acta Metallurgica et Materialia,1994,42(9):3083-3091
    27.谢优华,杨守杰,戴圣龙,等.含锆铝合金的力学性能和强化机理.中国有色金属学报,2003,13(5):1192-1195

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700