用户名: 密码: 验证码:
离子液体的合成及在酯化/转酯反应中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
离子液体是一种环境友好的新型的绿色材料,它不仅可作为反应的催化剂,还可以作为非水生物催化反应的绿色介质。目前,离子液体已成功应用于有机合成、生物催化、分离提取和电化学等领域。此外,离子液体能解决日益严重的环境问题,提高产品品质,降低生产成本。因此,设计开发新型的具有特殊功能的离子液体,以满足不同的需求并丰富离子液体基础化学理论具有重要意义。
     设计合成包括两种未见报道的复合离子液体硫酸-1,3-二正戊基咪唑四氟硼酸盐(H_2SO_4-[D(n-C_5)Im][BF_4])和磷酸-1,3-二正戊基咪唑四氟硼酸盐(H3PO4- [D(n-C_5)Im][BF_4])在内的五种酸性离子液体,以及三种新型1,3-二戊基咪唑六氟磷酸盐同分异构离子液体?1,3-二正戊基咪唑六氟磷酸盐([D(n-C_5)Im][PF_6])、1,3-二异戊基咪唑六氟磷酸盐([D(i-C_5)Im][PF_6])和1,3-二(2-甲基丁基)咪唑六氟磷酸盐([D(2-mb)Im][PF_6])。采取无溶剂法和程序升温法对传统的二步合成法进行改进,提高了产品的纯度,得出生成中间产物1,3-二烷基咪唑溴化盐([RIm][Br])的反应是控速反应。采用红外光谱和核磁共振对产品进行结构表征后,分别研究离子液体的极性、粘度、含水量、熔点和密度等物理化学性质,发现离子液体构型是影响其理化性质的重要因素。
     五种酸性离子液体分别应用于棕榈油酸多元醇酯的合成反应,结果发现硫酸三乙基铵盐( [Et_3NH][HSO_4])催化活性最大。利用[Et_3NH][HSO_4]的温控特点,设计出一种“高温反应”和“低温分离”相结合的棕榈油酸多元醇酯的合成方法。通过对影响转化率的各种因素考察,得到合成棕榈油酸季戊四醇酯的最佳反应条件:棕榈油酸与季戊四醇摩尔比为6:1,5% (w/w)的离子液体用量,210℃的反应温度和3.5 h反应时间。在最佳条件下,制备出的季戊四醇棕榈油酸酯、三羟甲基丙烷棕榈油酸酯、二羟甲基新戊烷棕榈油酸酯,它们的转化率分别为94.63%、94.47%及96.97%。反应完成后,随着体系温度的下降[Et_3NH][HSO_4]离子液体沉淀析出,此离子液体可直接用于下一次棕榈油酸多元醇酯的合成。尽管离子液体重复使用2次后,转化率开始缓慢下降,但补充适量酸后离子液体即可恢复催化活性。产品的理化性质被详细研究,结果表明棕榈油酸多元醇酯具有良好的流动及低温特性,其粘度指数和倾点范围分别在184~388和-38℃~-23℃之间,这些数据显示棕榈油酸多元醇酯可作为可生物降解润滑剂的基础油。与传统的强酸催化剂相比,[Et_3NH][HSO_4]离子液体体系具有产品色泽好、催化剂易回收与重复利用。
     为了探讨多元醇棕榈油酸酯的反应机理,我们对三种多元醇棕榈油酸酯的动力学进行了研究,发现多元醇的结构对反应的活化能有重要的影响。反应的活化能随着醇支链的增加而增加,反应速率随着温度的升高而加快,这是因为支链越多,羟基越多,反应越艰难,反应所需的温度也就越高。
     以褶皱念珠菌脂肪酶Canadida rugosa lipase酶催化合成乙酸辛酯为模型反应,分别考察介质对酶行为的影响。结果发现,酶在离子液体中的活性及反应性明显高于有机溶剂正己烷,尤其是[D(2-mb)Im][PF_6]。基于[D(2-mb)Im][PF_6]离子液体的温控特点,设计一种“高温反应”和“低温分离”相结合的乙酸辛酯合成路线。通过研究各种因素对1-辛醇转化率的影响,获得合成乙酸辛酯的最佳反应条件(温度:35℃,酶用量:20mg,离子液体用量:1.0g,反应时间:8h,含水量:1%)。在此最佳条件下,1-辛醇的转化率达99.3%,酶在[D(2-mb)Im][PF_6]中的稳定性是正己烷中的8.3倍,离子液体可重复使用5次催化活性没有明显的降低。此外,圆二色谱和内源荧光光谱被应用于不同介质中脂肪酶结构变化,结果表明酶在[D(2-mb)Im][PF_6]中有较大的氨基酸残基裸露程度和良好的二级结构稳定性。
Ionic liquids are new types of environment-friendly materials and can be used as catalysts as well as biological response of the green non-aqueous media. At present, ionic liquids have been successfully applied to many different areas, such as organic synthesis, biocatalysis reaction, separation process, electrochemistry etc. In addition, ionic liquids can resolve the increasingly serious environmental problems, improve product quality and reduce the cost of production. Therefore, it is significance to degisn the new ionic liquids with special function that can satisfy the various demands and enrich the fundamental theory about the ionic liquids.
     In this work, we designed and synthesized five acidic ionic liquids including two no reported composite ionic liquids, sulfuric acid-1,3-di-n-pentylimidazolium tetrafluoroborate (H_2SO_4-[D(n-C_5)Im][BF_4]) and phosphoric acid-1,3-di-n-pentylimidazolium tetrafluoroborate (H_3PO_4-[D(n-C_5)Im][BF_4]), and three new 1,3-dipentylimidazolium hexafluorophosphate ionic liquids’isomers, 1,3-di-n-pentylimidazolium hexafluorophosphate ([D(n-C_5)Im][PF_6]), 1,3-di-isopentylimidazolium hexafluorophosphate([D(i-C_5)Im][PF_6]) and 1,3-di(2-methylbutyl)imidazolium hexafluorophosphate ([D(2-mb)Im][PF_6]). We taken no solvent and temperature programmed to improve traditional two-step synthesis method which improved product purity, and we obtained that the speed of intermediate product 1,3-dialkyl imidazolium bromide ([RIm][Br]) generated was the control response. After we characterized the products by using infrared spectroscopy and NMR, we researched the physical and chemical properties, including polarity, viscosity, water content, melting point and density, and displayed ionic liquids’configuration is an important factor that affected their properties.
     Five acidic ionic liquids were investigated to synthesize palm acide polyol esters, the results indicated triethylammonium sulfate ([Et_3NH][HSO_4]) offered best catalytic activity. Based on temperature-controlled characteristics of [Et_3NH][HSO_4], we designed a novel method for preparation of palm acide polyol esters, in which the reaction under relatively high temperature combined with the separation under relatively low temperature. By studying on the effect of various factors on the conversion rate, we obtained optimal conditions to produce palm acide pentaerythritol esters, these include a 6:1 of palm acide/pentaerythritol, 5% of the ionic liquid, 210℃of the reaction temperature and 3.5h of reaction time.Under corresponding optimal conditions, three palm acide polyol esters, which included palm acide pentaerythritol ester, palm acide trimethylolpropane ester, and palm acide dihydroxymethylneopentane ester were synthesized, their conversions were 94.63 %, 94.47%, and 96.97%, respectively。After the reaction completed, [Et_3NH][HSO_4] would precipitate and separate from the system with decreasing the temperature. The ionic liquid obtained can be used to subsequent new synthesis of palm acide polyol ester. Although the conversion slightly reduced after the ionic liquid was reused for two times, it catalytic activity can reach to original level by adding suit acid. The physicochemical properties of three palm acide polyol esters were investigated in detail, the results exhibited these are of excellent fluid and low temperature characteristics, their viscosity index and pour point were in the range of 184~388 and -38℃~-23℃, these data indicate palm acide polyol esters can be used as base oil of biodegradable lubricant. Comparing with classical strong acid catalysts, the reaction system using ionic liquid [Et_3NH][HSO_4] as catalyst offers many advantages of colour of the product, recovery, and reuse of the catalyst.
     In order to research the reaction mechanism of palm acide polyol esters, the kinetics of three palm acide polyol esters were researched and we found that the structure of polyol had a major impact on activation energy. The activation energy increased by the branched-chain alcohols increased, the reaction rate was acceleration with the increasing temperature, because the more branched chain, the more hydroxy, the reaction was more difficulity, the higher the reaction temperature was required.
     The synthesis of octyl acetate catalyzed by Canadida Rugosa Lipase was selected as the modern reaction to investigate effect of different medium on the lipase performance. It was found activity and reactivity of the lipase in these ionic liquids studied are obviously higher than that in organic solvent hexane, especially to [D(2-mb)Im][PF_6]. Based on the temperature-controlled characteristics of [D(2-mb)Im][PF_6], a novel synthesis scheme was developed for synthesis of octyl acetate catalyzed by lipase, in which the reaction and the separation of the product from the system were carried out under a relatively high and low temperature, respectively. By investigating the influence of various factors on the conversion of 1-octanol, the optimal conditions for synthesis of octyl acetate was obtained, which are reaction temperature of 35℃, amounts of the lipase of 20mg, the ionic liquid of 1.0g, reaction time of 8h and water content of 1%. Under the optimal conditions, the conversion of 1-octanol was up to 99.3%. And the stability of the lipase in the [D(2-mb)Im][PF_6] medium was as same as 8.3-fold that in hexane. Also, the ionic liquid can be reused for five times without obvious reduction of catalytic properties. Moreover, circular dichroism and autofluorescence spectrum were also applied to research on molecular structure change of the lipase in different solvent. The results exhibited the lipase in the ionic liquid is of excellent secondary structure stability and slightly big exposure level of amino-acid residue in the lipase.
引文
1. Wilkes J S.A short history of ionic liquids-from molten salts to neoteric solvents.Green Chem,2002,4(2):73—80
    2. Favre F,Olivier-Bourbigou H,Commereuc D,et al.Hydroformylation of 1-hexene with rhodium ln non-aqueous ionic liquids:how to design the solvent and the ligand to the reaction.Chem Commun,2001,(15):1360—1361
    3. Armstrong D W,He L F,Liu Y S. Examination of ionic liquids and their lnteraction with molecules,when used as stationary phases ln gas chromatography.Anal Chem,1999,71 (17):3873—3876
    4.李涛,李心琮,吾满江·艾力等.两种新型酸性离子液体的合成及其在酯化反应中的应用[J].化学与生物工程,2007,24(8):66—68
    5.王军,杨许召,吴诗德等.离子液体的性能及应用[M].北京:中国纺织出版社.2007, (5):115—171
    6.高军,陈波水,赵光哲,高来长.可生物降解润滑剂的发展概况[J].化学工业与工程技术,2008,29(3):1—3
    7. Shah S,Gupta M N.Klnetic resolution of (±)-1-phenylethanol ln [Bmim][PF6] uslng high activity preparations of lipases. Bioorg Med Chem Lett,2007,17(4):921—924
    8. Welton T.Ionic liquids ln catalysis.Coordlnation Chemistry Reviews,2004(21-24):2459—2477
    9. Hajipour A R, Rajaei A,Ruoho A E.A mild and efficient method for preparation of azides from alcohols uslng acidic ionic liquid [H-NMP]HSO4.Tetrahedron Lett,2009,50(6):708—711
    10. Sunitha S,Kanjilal S,Reddy P S,et al.An efficient and chemoselective Bronsted acidic ionic liquid-catalyzed N-Boc protection of amines.Tetrahedron Lett,2008,49(16):2527—2532
    11.康丽琴,周燕萍,蔡月琴.芳亚甲基双(3-羟基-5,5-二甲基-2-环己烯-1-酮)类化合物的合成[J].有机化学,2010,30(8):1230—1232
    12. Zhang L,Xian M,He Y C,et al.A Bronsted acidic ionic liquid as an efficient and environmentally benign catalyst for biodiesel synthesis from free fatty acids and alcohols. Bioresource Technol,2009,100(19):4368—4373
    13. Cole A C,Jensen J L,Tran K L T,et al.Novel bronsted acidic ionic liquids and their use as dual solvent-catalysts.J Am Chem Soc,2002,124(2l): 5962—5963
    14.姜明月.新型咪唑类离子液体的合成及反应性能的研究[D]:[硕士学位论文].无锡:江南大学化学工艺专业,2008
    15. Sarma D,Kumar A,Rare earth metal triflates promoted Diels-Alder reactions ln ionic liquids.Appl Catal A-Gen,2008,335(1):1—6
    16. Nobuoka K,Kitaoka S,Kunimitsu K,et al.Camphor ionic liquid:Correlation between stereoselectivity and cation-anion lnteraction.Org Chem,2005,70(24):10106—10108
    17. Park J K,Sreekanth P,Kim B M.Recycllng chiral imidazolidln-4-one catalyst for asymmetric Diels-Alder reactions: Screenlng of various ionic liquids.Adv Synth Catal, 2004,346(1):49—52
    18. Aggarwal A,Lancaster N L,Sethi A R,et al.The role of hydrogen bondlng ln controlllng the selectivity of Diels-Alder reactions ln room-temperature ionic liquids.Green Chem, 2002,4(5):517—520
    19. Schrelner E R,Wittkopp A.H-bondlng additives act like Lewis acid catalysts.Org Lett, 2002,4(2):217—220
    20. Zhu A L,Jiang T,WangD,et al.Direct aldol reactions catalyzed by 1,1,3,3- tetramethylguanidlne lactate without solvent.Green Chem,2005,7(7):514—517
    21. Kim Y J,Varma R S,Tetrahalolndate(III)-based ionic liquids ln the coupllng reaction of carbon dioxide and epoxides to generate cyclic carbonates: H-bondlng and mechanistic studies.J Org Chem,2005,70(20):7882—7891
    22. Erbeldlnger M,Mesiano A J,Russell A J.Enzymatic catalysis of formation of Z-aspartame ln ionic liquid–an alternative to enzymatic catalysis ln organic solvents.Biotech Prog, 2000,16(6):1129—1131
    23.杨婧.脂肪酶的固定化及其在油酸丁酯合成中的应用:[硕士学位论文].北京:北京化工大学化学工程专业,2008
    24.郭诤,张根旺.脂肪酶的结构特征和化学修饰[J].中国油脂,2003,28(7): 5—10
    25. Tsukada Y,Iwamoto K,Furutani H,et al.Preparation of novel hydrophobic fluorlne- substituted-alkyl sulfate ionic liquids and application as an efficient reaction medium for lipase-catalyzed reaction.Tetrahedron Lett,2006, 47(11):1801—1804
    26. De los Rio A P,Hernandez-Fernandez F J,Rubio M,et al.Stabilization of native penicillln G acylase by ionic liquids.J Chem. Technol Biot,2007,82(2):190—195
    27. Hernandez-Fernandez F J,Rios A P D L,Lozano-Blanco L J,ed al.Biocatalytic ester synthesis ln ionic liquid media.J Chem Technol Biot,2010,85(11):1423—1435
    28. Zaks A,Klibanov A M.Enzyme-catalyzed processes ln organic solvents.Proc Natl Acad Sci USA,1985,82(10):3192—3196
    29.王刊,王菊芳.离子液体在生物催化中的应用研究进展[J].化学与生物工程,2008,25(6):5—9
    30. Yang Z,Pan W B.Ionic liquids:Green solvents for nonaqueous biocatalysis.Enzyme Microb Tech,2005,37(1): 19—28
    31. Ecksteln M,Seslng M,Kragl U,et al. At low water activity chymotrypsln is more active ln an ionic liquid than ln non-ionic organic solvents. Biotehnol Lett. 2002,24(11):867—872
    32. Kaar J L,Jesionowski A M,Berberich J A.Impact of ionic liquid physical properties on lipase activity and stability.J Am Chem Soc,2003,125(14):4125—4131
    33. Park S,Kazlauskas R J.Improved preparation and use of room-temperature ionic liquids ln lipase-catalyzed enantio- and regioselective acylations. J Org Chem,2001,66(25):8395—8401
    34. Ulbert O,Belafi-Bako K,Tonova K,et al.Thermal stability enhancement of Candida rugosa lipase uslng ionic liquids.Biocatalysis and Biotransformation,2005,23(3-4):177—183
    35. De Diego T,Lozano P,Gmouh S,et al.Understandlng structure-Stability relationships of Candida antartica lipase B ln ionic liquids.Biomacromolecules,2005,6(3):1457—1464
    36. Lozano P,de Diego T,Gmouh S,et al.Dynamic structure-function relationships ln enzyme stabilization by ionic liquids.Biocatal Biotransfor,2005,23(3-4):169—176
    37. Kim K W,Song B,Choi M Y,et al.Biocatalysis ln ionic liquids:markedly enhanced enantioselectivity of lipase.Org.Lett,2001,3(10):1507—1509
    38. Kiebasiski P,Albrycht M,Luczak J,et al.Enzymatic reactions ln ionic liquids: lipase -catalysed klnetic resolution of racemic,P-chiral hydroxymethane phosplnates and hydroxymethylphosphlne oxides.Tetrahedron Asymmertry,2002,13(7):735—738
    39.刘丽英,陈洪章.离子液体在生物催化中的应用[J].化工学报,2005,56,(3):382—386
    40.袁毅,姜晓妍.在[BMIM][PF6]离子液中外消旋DL-薄荷醇催化手性选择性酯化[J].化学工业与工程,2008,25(6):493—498
    41.李明,方银军,李在均等.新型对称烷基咪唑离子液体介质中酶催化合成l-乙酸薄荷酯[J].化学学报, 2009,67(11):1252—1258
    42. Lozano P,De Diego T,Gmouh S,et al. Criteria to design green enzymatic processes ln ionic liquid/supercritical carbon dioxide systems.Biothchnol Progr,2004,20(3):661—669
    43.辛嘉英,赵永杰,石彦国等.水饱和离子液体中脂肪酶催化萘普生甲酯对映选择性水解[J].催化学报,2005,26(2):118—122
    44.吴虹,娄文勇,宗敏华.含离子液体介质中脂肪酶高效催化对羟基苯甘氨酸甲酯不对称氨解[J].高校化学工程学报,2007,21(3):481—487
    45.单海霞,陆杨,李在均等.新型1,3-二丁基咪唑离子液体中脂肪酶催化折分(R,S)-1-苯乙醇[J].化学学报,2010,68(10): 1010—1016
    46.李斐瑾.Bronsted酸性离子液体催化酯化反应的研究:[硕士学位论文].杭州:浙江大学生物化工专业,2008
    47.王敬娴,吴芹,黎汉生.酸性离子液体及其在催化反应中的应用研究进展[J].化工进展,2008,27(10):1574—1580
    48. Yi Y,Shu B,Yan S.Comparison of lipase-catalyzed enantio selective esterification of (+/-)-menthol ln ionic liquids and organic solvents.Food Chem.2006,97(2):324-330
    49. Tahmina Y,Tao J,Buxlng H.Novozym 435 catalyzed regioselective acylation of ethane- 1,2-diol ln the presence of ionic liquids.Catal lett.2007,116(1-2),46—49
    50. Dzyuba S V,Bartsch R A.Efficient synthesis of 1-alkyl(aralkyl)-3-methyl(ethyl)–imidazolium halides:Precursors for room temperature ionic liquids. J Heterocyclic Chem, 2001,38(1):265—268
    51. Sato T,Masuda G,Takagi K.Electrochemical properties of novel ionic liquids for electric double layer capacitor applications.Electrochimica Acta,2004,49(21):3603—3611
    52. Del Sesto R E,Corley C,Robertson A,et al.Tetraalkylphosphonium-based ionic lquids.J Organomet Chem,2005,690(10):2536—2542
    53. Gao Y,Arritt S W,Twamley B,et al.Guanidlnium-based ionic liquids.Lnorg Chem, 2005, 44(6):1704—1712
    54. Patrascu,Sugisaki C,Mingotaud C,et al.New pyridlnium chiral ionic liquids. Heterocycles, 2004,63(9):2033—2041
    55. Sheldon R.Catalytic reactions ln ionic liquids.Chem Commum,2001(23):2399—2407
    56. Deetlefs M,Seddon K R.Improved preparation of ionic liquids uslng microwave irradiation.Green Chem,2003,5(2):181—186
    57.李静,蒋剑春,徐俊明等.酸性离子液体合成及其催化合成柠檬酸三乙酯的研究[J].生物质化学工程,2009,43(4):15—20
    58. Congmin W,Liplng G,Haoran L,et al.Preparation of simple ammonium ionic liquids and their application ln the cracklng of dialkoxypropanes.Green Chem,2006, 8(7):603—607
    59.李鲁宁,孙秀兰,姚卫蓉等.1-异丁基-3-甲基咪唑四氟硼酸盐离子液体在呕吐毒素酶联免疫检测中的应用研究[J].分析测试学报,2009,28(9),1049—1053
    60.许建和,朱洁,川本卓男等,外消旋薄荷醇对映选择性酶促酯化中酸酐与羧酸的比较研究[J].生物工程学报,1997,13(4):387—393
    61. Aki S N V K,Brennecke J F,Samanta A.How polar are room-temperature ionic liquids. Chem Commun,2001(5):413—414
    62. Reichardt C.Polarity of ionic liquids determined empirically by means of solvatochromic pyridlnium N-phenolate betalne dyes.Green Chem,2005,7(5):339—351
    63. Fletcher K A,Storey I A,Hendricks A E,et al.Behavior of the solvatochromic probes Reichardt's dye,pyrene,dansylamide,Nile Red and 1-pyrenecarbaldehyde withln the room-temperature ionic liquid bmimPF(6).Green Chem,2001,3(5):210—215
    64.王勇.离子液体的结构及其相互作用研究[D]:[博士学位论文].杭州:浙江大学化学工程与技术专业,2007
    65.万金培,胡献国,汪家权.绿色润滑剂的研究及进展[J].环境技术,2003,21(2):26—30
    66.张强.植物环氧化合成环境友好润滑剂的研究[D]:[硕士学位论文].武汉:华中农业大学粮食、油脂与植物蛋白工程专业,2009
    67.高军,陈波水,赵光哲等.可生物降解润滑剂的发展概况[J].化学工业与工程技术,2008, 29(3):1—3
    68.陈波水,方建华.生态润滑剂可持续发展的必然选择[J].后勤工程学院学报,2005,21 (2):8—11.
    69.刘树文.合成香料技术手册[M].北京:中国轻工业出版社,2000.384
    70.宋光林,郭峰,曾广铭等.乳香中乙酸辛酯含量的测定[J].贵州科学,2008(26):57—60
    71.王树清,高崇.强酸性阳离子交换树脂催化合成乙酸辛酯的研究[J].精细石油化工进展,2004, 5(8):12—14
    72.杨义文,李蕾,陈慧宗.稀土复合固体超强酸SO42 -/ZrO2--2%Sm2O3催化合成乙酸辛酯[J].稀土,2008,29(3):81—84
    73.汤晓君,刘明武.β沸石分子筛催化合成乙酸辛酯[J].大庆石油学院学院,2008,32(3): 46—48
    74. Kragl U, Ecksteln M, Kaftzik N. Enzyme catalysis ln ionic liquids.Curr Opln Biotech, 2002,13(6):565—571
    75.陈志刚,宗敏华,顾振新.离子液体毒性、生物降解性及绿色离子液体的设计与合成[J].有机化学,2009(29):672—680
    76. Pavlidis I V,Gournis D,Papadopoulo G K,et al.Lipases ln water-ln-ionic liquid microemulsion:Structural and activity studies. Mol Catal B-Enzym,2009,60(1-2):50—56
    77. Shan H X,Li Z J,Li M, et al.Improved activity and stability of pseudomonas capaci lipase ln a novel biocompatible ionic liquid,1-isobutyl-3-methylimidazolium hexafluoro -phosphate. J Chem Technol Biot,2008,83(6):886—891
    78. Xia Y M,Fang Y,Zhang K C.Enzymatic synthesis of partial glycerol caprate ln solvent -free media. J Mol Catal B Enzym,2003,23(1):3—8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700