用户名: 密码: 验证码:
BaSO_4/TPU型X射线摄影纤维的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题运用无机粒子硫酸钡(BaSO_4)填充改性热塑性聚氨酯(TPU),采用熔融纺丝技术纺制高性能X射线摄影纤维。用不同配比的BaSO_4/TPU共混切片进行熔融纺丝,将纺制的纤维进行后加工处理,以便获得综合性能较好的纤维。并对所纺制的纤维的结构和性能进行系统的研究。
     研究了温度、剪切力和BaSO4含量对BaSO4/TPU共混体系流变性的影响。结果表明,随着BaSO_4粒子的加入共混体系的粘度增大,体系流动性变差;其中温度和剪切力对共混体系的流动性也有很大的影响,当温度升高或剪切力增大时共混体系的粘度大大下降,流动性变好,共混体系表现出对温度的依赖性和切应力变稀性;但当共混体系温度升高到200℃以上时,共混体系粘度的变化随温度变化不再明显,共混体系表现出具有良好的加工性能;在进行熔融纺丝时,共混体系也表现出随BaSO_4含量增加,BaSO_4/TPU共混体系的可纺性变差,要求适当升高纺丝温度并增大螺杆转速使纺丝正常。
     研究了BaSO4/TPU共混体系的结构形态及二者的相容性。从SEM照片可以看出,BaSO_4在聚合物中有形成连续相的趋势,出现了典型的“混凝土结构”,并且随BaSO_4加入量增大,这种结构就越明显。另外从SEM照片分析得知BaSO_4/TPU为热力学不相容体系,两者之间相界面的清晰度与BaSO_4粒子表面是否加工改性有关。当BaSO_4表面未用偶联剂处理时,BaSO_4/TPU共混体系相界面清晰,界面粘合力较小;当BaSO_4表面用偶联剂处理后,BaSO_4/TPU共混体系相界面模糊,界面粘合力强。
     研究了BaSO_4对BaSO_4/TPU共混体系Tg的影响。DMA测试结果表明:BaSO_4对聚合物Tg影响不大。这说明BaSO_4对聚合物大分子的单健内旋转运动阻碍性较小,并不影响聚合物大分子链段运动。
     研究了BaSO_4对TPU纤维结构和性能的影响。加入BaSO_4对TPU纤维的影响较大,纤维的回弹性下降,纤维断裂伸长和断裂强度均大大降低。这是因为:①BaSO_4属于刚性粒子,阻碍TPU大分子链的回缩,降低了纤维的弹性;②BaSO_4与TPU相容性极差,共混时容易形成相界面,界面结合力小,受外力作用时相与相间容易发生分离,使纤维的力学性能下降;③BaSO_4在高含量下,纤维强度
    
    主要由聚合物的力学性能决定,随着BaSO4含量的增加,TPU所占比例下降,
    从而在宏观上表现出纤维的力学性能下降。可见BaSO;对改变纤维的综合性能
    起重要作用。
     通过对BaSO4/T PU共混切片进行熔融纺丝实验,确定了纺丝工艺参数。纺
    丝温度控制在190一205℃之间,螺杆转速<70r/mln,卷绕速度则是随着BaSO4
    含量的升高而下降,实验中采取低速卷绕,纺丝理想环境温度控制在10~15’C
    左右。
     通过对60%,70%,75%,80%四种不同BaSO;含量的纤维进行后加工热
    定型处理,从纤维拉伸实验可以看出:不同BaSO;含量的纤维后加工工艺参数
    不同。其中对60%,70%的纤维后加工处理时,其拉伸率为200一300%,水浴拉
    伸温度为40℃时,纤维的拉伸性能最好,可得到加工性能比较理想的纤维。另
    外从60%一80%纤维的应力一应变曲线可知,纤维的拉伸性能随BaS认含量升高下
    降,应力一应变曲线也发生变化,由开始模量随应变增大而增大,逐渐转化为出
    现平台直至断裂。
     通过选用不同品种的聚合物原材料和不同配比的BaSO4/T PU进行实验发
    现:原材料对纤维吸收X射线的性能影响不大;纤维对X射线的吸收性能只与
    BaSO;含量有关,且随着BasO;含量升高而增大,但二者并不呈线性关系;当
    BaSO;含量大于60%时,纤维对X射线具有很强的吸收性能,其吸收率可达95%
    以上。因此60%纤维基本达到医用摄影纤维的要求。
In this paper, high performance x-ray developing filament were fabricated from thermoplastic polyurethane (TPU) filled with inorganic particles of Barium Sulfate (BaSO4) by melt spinning. The structure and mechanical properties of the filament with the different content of Barium Sulfate were discussed roundly.
    The effects of temperature, shearing force and the content of BaSO4 on the rheological behaviours were investigated. The results showed that BaSO4 filler obviously enhanced the viscosity and lower the flowability of BaSCVTPU. Temperature and shearing force strongly affected on the viscosity of BaSCVTPU, in that with the increase of temperature or the increase of shearing force, the viscosity of the blend could decrease significantly, the flowability and the processability of the blend were highly improved; BaSCVTPU blend was a kind of temperature-sensitive and shear thinning resin. While the viscosity of the blend changed little up to 200℃, and had an good processability. During the melt-spinning process, the spinnability became bad with BaSO4 adding.
    The morphological structure of BaSCVTPU blend system and the compatibility of BaSO4 and TPU were studied by SEM. The SEM results showed that BaSO4 particles in TPU had a trend to form a continuous phase, which appeared a typical concrete structure; and with the increase of content of BaSO4 the above structure became more evident. Also showed the SEM result that BaSCVTPU blend was a thermodynamic incompatible system. The distinctness of the phase interface formed by BaSO4 and TPU depended on the surfaces of BaSO4 particles. If the surfaces of BaSO4 particles were not modified with couplant, the interface was clear with a very small adhesive force; while the surfaces modified, the interface was fuzzy with a strong adhesive force.
    The glass transition temperature (Tg) of BaSO4 /TPU blend was obtained by DMA. The results showed that BaSO4 particles had not big influence on Tg of TPU. The above phenomena could be explained from the following reasons: (1) BaSO4 particles didn't hinder macromolecular single bonded internal rotation. (2) BaSO4 particles hadn't effect on the action of macromolecular chain segment.
    
    
    The studies on influence of the addition of BaSO4 particles on structure and properties were carried out. The results showed that elastic recovery, breaking length and breaking tenacity decreased considerably deeply. This was due to three reasons: (1) BaSO4 particles were rigid inorganic particles, which could hinder the retraction of polymer molecules and decreased the elasticity. (2) A bad compatibility between BaSO4 and TPU, small interface adhesive force and the phase interface ready to separate. (3) During high content of BaSO4, the tenacity of filament mainly depended on TPU, so that the strength decreased with the content of TPU in filament down.
    The process parameters of melt spinning were decided. Spinning temperature were controlled ranging from 190℃ to 205℃, rotate speed of the screw was less than 70r/min,the ideal room temperature was 10~15℃, and the winding speed decreased with the increase of content of BaSO4 .
    Four kinds of filament with different content of BaSO4, 60%, 70%, 75%, 80%, were heat- treated. Post-treatment process parameters of the filament were different with the concentration of BaSO4 changing. Drawing behaviours reached the best value when the draw rate, draft temperature in bath and the content of BaSO4 were 200%~300%, 40℃, 60%~70%, respectively. From the stress-strain curves of the filament, with the increase of content of BaSO4, drawing behaviours of the filament declined and the stress-strain curves of the filament changed from the modulus increasing with strain enlarging at first to appearing a platform up to break.
    Polymers had a small effect on the performance of absorping X-ray, the filament's performance of absorping X-ray depended on the content of BaSO4. The property of absorping X-ray was stronger with the increase of content of BaSO4, but the relation was not linearity. When the content of BaSO4
引文
[01] J R Gaier et al. Effect of Intercalation in Graphite Epoxy Composites. J. Mater. Res., 1998, 13(8): 2297-2301
    [02] Eur. Pat Appl EP265075
    [03] Eur. Pat Appl EP265696
    [04] USSR SU14248417
    [05] Eur. Pat Appl EP360266
    [06] 公开特许公报 01261335
    [07] Ger(East) DD270660
    [08] Eur. Pat Appl EP451458
    [09] 公开特许公报 61102411
    [10] 公开特许公报 07096536
    [11] 公开特许公报 200096377
    [12] PCT. Int Appl .WO9428948
    [13] U.S.P2002087174
    [14] CN88101998.4
    [15] 齐鲁,段谨源,王学晨.屏蔽剂含量对x射线纤维力学性能及结构的影响.纺织学报,1995,16(6):338-340
    [16] 齐鲁,段谨源,王学晨,等.防x射线纤维的力学性能及屏蔽效果.纺织学报,1995,16(2):87-89
    [17] 齐鲁,段谨源.防x射线纤维材料流变性能及形态结构的研究.高分子材料科学与工程,1996,12(1):135-138
    [18] CN92114675.2
    [19] 颜志勇,袁孟红,黄速萍,等.x光显影纤维的研究.合成纤维工业.2002,25(2):32-34
    [20] PCT.Int Appl. WO9429499
    [21] 金山.我国氨纶的发展概括.精细化工原料及中间体.2003(4):37-38
    [22] Fabriclus M et al. Elastane(Spandex), Chemical Fibers International , 1996, 45:400
    [23] Ieth C, et al. New Developments in the Field of Synthrtic Elastomeric Yams. Chemical Fibers International, 1996, 46(2): 104-108
    
    
    [24] Urné.Chemiefsasem/Textilindustrie , 1994, 44 (96): 45-48
    [25] 侯养全,尹波,杨国虎.氨纶熔纺可行性探讨.合成纤维工业,1999,22(2):17
    [26] 殷景华,王亚珍,鞠刚.功能材料概论.哈尔滨:哈尔滨工业大学出版社.1999
    [27] 赵稼祥.医用功能纤维.北京:中国石化出版社.1996
    [28] 汪多仁.现代高分子材料生产及应用手册.北京:中国石化出版社.2002
    [29] 肖长发,尹翠玉,张华,等.化学纤维概论.北京:中国纺织出版社.1997
    [30] 山西省化工研究所.聚氨酯弹性手册.北京:北京化学工业出版社.2001
    [31] 王文科,赵元磊,周良,等.弹性纤维的熔融纺丝技术.合成纤维工业.,1999,22 (3):38-41
    [32] Ramesh S,. Radhakrishman G. Journal of Polymer Materials, 1999, 16:135-153
    [33] U.S.P203886
    [34] 刘英俊,刘伯元.塑料填充改性.北京:中国轻工业出版社.1998
    [35] M.C. Van der Leeden, The Role of Polyelectrolytes in Barium Sulfate Pricipitation. Ph.D. Thesis, TU Delft, 1991
    [36] 于建,胡平,陆明亚,等.复合体系中微观相界面对材料性能的影响.合成树脂及塑料,1999,16(2):14-17
    [37] Jancar J. and Dibennedetto A. T. The Mechanical Properties of Temary Composites of Polypropylene with Inorganic Fillers and Elastomer Inclusions. J. Mater. sci., 1994, 29: 4651-4658
    [38] Maiti S. N. and Sharma K. K. Studies on Polypropylene Composites Filled with Talc Particles. J. Mater. sci., 1992, 27: 4605-4613
    [39] 徐布衣PP/POE/BaSO三元复合材料的结构与性能的研究 中山大学博士论文 2001
    [40] 卢寿慈.粉体加工技术.北京:中国轻工业出版社 1999
    [41] E.P.普鲁特曼等.硅烷和钛酸酯偶联剂[美] 上海:上海科技文献出版社 1987
    [42] Limin Qi, Helmut Clfen and Markus Antonietti, Crystal Design of Barium Sulfate Using Double-Hydrophilic Block Copolymers. Communications, 2000, 39(3): 604-607
    [43] Masahiro Hasengawa, Kunio Arai and Shozaburo Saito. Uniform Encapsulation of Fine Inorganic Power with Soapless Emulsion Polymerization. Journal of Polymer Science: Part A: Polymer Chemistry , 1987, 25:3117-3125
    
    
    [44] Norio Tsubokawa and Kazuyo Seno. Radical Graft Polymerization of Viny Monomers onto Barium Sulfate Initiated by Azo Groups Introduced onto the Suface. J. M. S.-Pure Appl. Chem, 1996, A33(1): 23-31
    [45] Ian Ralph Collins. Surface Electrial Properties of Barium Sulfate Modified by Adsorption of Poly α, β Aspartic Acid. Journal of Colloid and Interface Science, 1999, 212: 535-544
    [46] Cesarano□ and Aksay I A. Processing of highly concentrated aqueous α-alumina suspensions stabilized with polyelectrolytcs. J Am Ceram Soc, 1988, 71(12): 1062
    [47] 周树学,武力民.纳米涂料制备技术及其系列产品研究开发.材料导报,2002, 16(3) :41-43
    [48] Klug. H.P., and Alexander, L.E., X-ray Diffraction Procedures. Wiley-Interscience, New York, 1954
    [49] 徐文兰,沈学基.物理.1995,24(5):292
    [50] 阮颖铮.雷达载面与隐身技术 北京:北京国际工业出版社 1998
    [51] 方俊鑫,殷之文.电介质物理学.北京:北京科学出版社,1989
    [52] 宛德福,罗世华.磁性物理.北京:北京电子工业出版社,1987
    [53] 赵玉庭.复合材料基体与界面 上海:华东化工学院出版社 1991
    [54] 曾汉民.材料表面与界面 北京:清华大学出版社 1990
    [55] Ramsteiner F. and Theysohn R., On the Tensile Behavior of Filled Composites. Composites, 1984, 15(2),121-128
    [56] Shen J., Hu B., Hu Band Huang Y. Effect of Filler Size and Surface Treatment on Impact and Rheological Properties of Wollastonite-Polypropylene Composites. J. Mater. Sci. Lett, 1993,12: 1344-1345
    [57] 何曼君.高分子物理.上海:复旦大学出版社,1990
    [58] 吴培熙、张留城.聚合物共混改性.中国轻工业出版社,1996
    [59] B. M. Sole and A. Ball, On the Abrasive Wear Behaviour of Mineral Filled Polypropylene. Tribology International, 1996, 29(6): 457-465
    [60] Katz. H. S. and Milewski, J.V., in Handbook of Fillers and Reinforcements for Plastics. Van Nostrand Reinhold. New York. NY. 1978
    [61] 金日光,华幼卿.高分子物理.北京:化学工业出版社 1997
    
    
    [62] Einstein A, Physik, 1906.19289; 1914.34, 591
    [63] Guth E. and Simna R., Kolloidzschr,. 1936, 74:266
    [64] 高雨生.化纤设备.北京:纺织工业出版社 1991
    [65] Enikolopyan. N.S. , Filled Polymers, in Mechanical Properties and Processability, in Advances in Polymer Science, 1989,96
    [66] S. Mann. G.A. Ozin ,Nature, 1996,382:13-318
    [67] Claes O. Hammer and Frans H.J. Maurer, Interfacially induced micromechanical transitions in BaSO_4-filled poly(styene-co-acrylonitrile). Polymer, 1998,39(18): 4243-4248
    [68] 董纪震,罗鸿烈等.合成纤维生产工艺学(第二版).北京:纺织工业出版社,1993
    [69] 石波.熔法-拉伸制孔法聚氨酯/聚丙烯腈共混中空纤维膜的研究.天津工业大学硕士论文 2003
    [70] 赵孝彬,杜磊,张小平.聚氨酯的结构与微相分离.聚氨酯工业,2001 16(1):4-8
    [71] 尼尔生LE.高分子和复合材料的力学性能.北京:轻工业出版社 1981

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700