用户名: 密码: 验证码:
豌豆肌动蛋白异型体(PEAc1)的原核表达及其藻荧光探针的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肌动蛋白在真核生物中广泛存在,由肌动蛋白参与形成的动态微丝骨架系统是细胞生命活动的基础。在植物细胞中,肌动蛋白由多基因家族编码,从而产生了多种肌动蛋白异型体。肌动蛋白异型体在植物体内的表达具有组织特异性,在植物生长发育的不同阶段具有不同的表达模式,从而发挥不同的功能,它们与众多肌动蛋白结合蛋白也具有不同的相互作用。因此,体外研究植物肌动蛋白异型体理化特性将对深入了解它们在体内的功能及其动态调节具有重要意义。荧光标记技术虽然广泛用于细胞内微丝骨架分布及其动态的研究,但传统的荧光标记方法用于植物肌动蛋白研究时都具有一定的局限性,利用GFP融合以及研制新型的藻荧光探针有助于对植物肌动蛋白的深入了解。
     利用基因融合技术,原核表达并从包涵体中纯化了豌豆肌动蛋白异型体PEAc1、His-tagged PEAc1、His-tagged GFP以及His-tagged PEAc1-GFP,并通过诱导条件的筛选达到了可溶性表达与大量纯化His-tagged PEAc1-GFP的目的。利用圆二色谱法对肌动蛋白二级结构的测定表明:与预测值相比,可溶性表达与纯化的His-tagged PEAc1-GFP具有更为合理的二级结构,His-GFP-tag的融合促进了PEAc1的可溶性表达与正确折叠。这一方法可能是解决植物肌动蛋白及其他在包涵体中表达蛋白难以正确折叠和大量纯化的有效途径之一。
     对纯化的上述肌动蛋白的聚合活性进行了详细研究。荧光标记结合荧光显微观察表明:从可溶性上清中纯化的His-tagged PEAc1-GFP聚合形成的微丝不仅可以直接在荧光显微镜下观察,也可被微丝的特异标记物鬼笔环肽所标记,而且其直径、长度以及形态上与已知的聚合肌动蛋白荧光丝一致;电镜负染的结果进一步证实其直径为9nm,与传统微丝直径相当(7—10nm);聚合曲线有明显的停滞期,为典型的S型聚合曲线,聚合临界浓度为0.75μmol/L,这一结果与已有报道相似。上述结果表明,通过GFP的融合而在大肠杆菌中可溶性表达的PEAc1,不仅很好保持了肌动蛋白的聚合活性,而且GFP的荧光特性也方便了微丝体外特性的研究。
     通过肌动蛋白体外对DNase Ⅰ以及肌球蛋白ATPase活性影响的研究,发现单体His-tagged PEAc1-GFP能显著抑制DNase Ⅰ活性,在肌动蛋白聚合条件下能有效激活肌球蛋白ATPase活性,这一结果预示着PEAc1在体内可能参与相关的生命活动,为利用GFP直接与肌动蛋白异型体融合来研究体内微丝的动态变化及其调节提供了实验依据。
     以原核表达的PEAc1为抗原制备了免疫活性较好的抗豌豆肌动蛋白的多克隆抗体,从螺旋藻中纯化了高纯度、高活性、能结晶的藻胆蛋白,将两者偶联制备的藻荧光探针,不仅保持了藻胆蛋白很强的抗荧光淬灭能力,而且用于豌豆卷须气孔细胞荧光标记时有更低的荧光背景。对豌豆肌动蛋白藻荧光探针的初步研究,不仅为豌豆肌动蛋白的免疫荧光检测提供了便利条件,而且通过改变抗体,则可以将藻荧光探针用于其他植物蛋白的标记,藻荧光探针优越的荧光特性使其在植物材料的免疫荧光检测中具有广阔的应用前景。对藻蓝蛋白两个亚基基因的克隆、原核表达与纯化及其荧光特性恢复的初步研究为优化藻荧光探针及拓宽其应用范围提供了一定的实验依据。
Actin, the major component of the dynamic microfilaments system, exists in nearly all eukaryotic cells, and plays an essential role in living activities. In plants, actins are encoded by multi-gene families. There are many kinds of actin isoforms expressed in tissue-specificity and different phases during plant development for different functions. Actin isoforms have complicated interactions with actin-binding proteins. So it is important to study the physicochemical properties of plant actin isoforms in vitro for further understanding their functions and dynamic regulation in vivo. Although fluorescence labeling method was widely used in the observation of microfilaments' dynamic distributions in vivo, all of the traditional methods have their limits. The use of GFP fusion and the preparation of new type of algae fluorescent probe will facilitate our further study on plant actins.
    By gene fusion and prokaryotic expression, we purified a pea actin isoform (PEAc1), His-tagged PEAc1, His-tagged GFP and His-tagged PEAc1-GFP from inclusion body. After filtrating a series of induction condition, we expressed and purified His-tagged PEAc1 with soluble form in a large amount. The secondary structure of fusion proteins was determined by circular dichroism spectrum (CD). Compared with the results predicted with biology software, His-tagged PEAc1-GFP expressed in soluble form has more reasonable secondary structure, indicating that the fusion of His-GFP-tag facilitates PEAcl's soluble expression and correct folding. This may be a good method for obtaining soluble and abundant plant actin isoforms and other proteins which could not fold exactly and exist in inclusion body by prokaryotic expression.
    The polymerization ability of the fusion actins above was studied in detail. The his-tagged PEAcl-GFP purified from the supernatants could polymerize into green fluorescent filamentous structures with diameter, length and shape being identical to that of muscle F-actins, which could be labeled by TRITC-phalloidin (a specific agent for staining actin microfilaments), and were identified as having a 9 nm diameter by negative staining, corresponding with that of the muscle F-actins (7-10 nm). Under polymerization conditions, His-tagged PEAcl-GFP polymerized with kinetics similar to those of skeleton muscle actin, that is, an obvious lag nucleation period at the beginning of polymerization and an S-like typical polymerization curve could be obtained. The critical concentration is 0.75 umol/L near to that of chicken muscle actin (0.56 umol/L) under the same condition. All above showed that PEAcl preserved the polymerization activities of actin, and GFP fusion gave facilities for the study of microfilaments proper
    ties in vitro.
    Monomer His-tagged PEAc1-GFP could notably inhibit DNase I activities. Polymer His-tagged PEAc1-GFP efficiently activated myosin Mg-ATPase activity, which indicated that PEAcl might take part in correlative living activities in vivo. Moreover, this result provided experimental proof in vitro for fusing GFP to actin isoform directly to study the dynamics of microfilaments and its regulation in vivo.
    We prepared rabbit anti-pea actins polyclonal antibodies using PEAcl as antigen which being expressed and purified from prokaryotic cells, and the antibodies possessed better immunity activity to pea actins. .From the direct mutant of Spirulina platensis(SP-D), we got high purity and activity
    
    
    phycobiliprotein which could grow crystals. The algae fluorescent probe prepared by coupling the above polyclonal antibody to phycobilipotein not only keeps the property of stronger anti-fluorescence quenching but also has the lower fluorescent background when it was used for labeling stoma cells of pea tendril. The data above showed that algae phycobiliprotein fluorescent probes not only facilitate the study to pea actins but also provide a doable method to label other plant proteins. It has a good foreground for algae fluorescence probe to be used in the immunity fluorescent detection of plant cells. The gene clon
引文
Allen PG, Shuster CB, Kas J, et al. Phalloidin binding and theological differences among actin isoforms. Biochem, 1996, 5:14062~14069
    Allwood EG, Smertenko AP and Hussey PJ. Phosphorylation of plant actin depolymerising factor by calmodulin-like domain protein kinase. FEBS Lett, 2001, 499:97~100
    Alpha-Bazin B, Bazin H, Boissy L, et al. Europium cryptate-tethered ribonucleotide for the labeling of RNA and its detection by time-resolved amplification of cryptate emission. Anal Biochem, 2000,286(1): 17~25
    An YQ, McDowell JM, Huang S, et al. Strong constitutive expression of the Arabidopsis ACT2/ACT8 actin subclass in vegetative tissues, Plant J, 1996, 10(1): 107~21
    Anderssonl D, Carlssonl U, Freskgard PO. Contribution of tryptophan residues to the CD spectrum of the extracellular domain of human tissue factor---Application in folding studies and prediction of secondary structure. Eur. J. Biochem,. 2001,268:1118~1128
    Apt KE, Collier JL and Grossman AR. Evolution of the phycobiliproteins. J Mol Biol, 1995,248(1): 79~96
    Ballestrem C, Wherle-Haller B and Imhof BA. Actin dynamics in living mammalian cells. J Cell Sci 1998, 111:1649~1658
    Baneyx F. Recombinant protein expression in Escherichia coli. Curr. Opin. in Biotech.,1999,10:411~21
    Banno H, Chua NH. Characterization of the Arabidopsis forming-like protein AFH1 and its interacting protein. Plant Cell Physiol,2000, 41:617~26
    Becker EW. Micro-algal Biotechnology. London: Cambridge University Press, 1994, 9~41
    Bernatsky R and Tanksley SD.Genetics of actin-related sequences in tomato. Theor Appl Genet, 1986, 72:314~321
    Bottag DM and Edelstein SJ. Protein Methods (2nd). New York: Wiley-Liss Press, 1991, 95~180
    Boussiba S and Richmond A.Isolation and characterization of phycocyanin from the blue-green alga Spirulina. Arch Microbiol, 1979, 120:155~159
    Boyer M, Roustan C and Benyamin Y. DNaseI:actin complex-an immunological study, Bioscience Reports,1985, 5:39~46
    Braun M, Baluska F, von Witsch M, et al. Redistribution of actin, profiling and phosphatidylinositol-4,5-bisphosphate in growing and maturing root hairs. Planta, 1999,209:435~43
    Brejc K, Ficner R, Huber R, et al. Isolation, crystallization, crystal structure analysis and refinement of allophycocyanin from the cyanobacterium Spirulina platensis at 2.3 A resolution. J Mol Biol, 1995,249(2): 424~40
    
    
    Burkhard R and Chris S. Combining evolutionary information and neural networks to predict protein secondary structure. Proteins, 1994, 19, 55-72.
    Cao J. Vescio RA, Hong CH, et al. Identification of malignant cells in multiple myeloma bone marrow with immunoglobulin VH gene probes by fluorescent in situ hybridization and flow cytometry. J. Clin. Invest,1995,95(3): 964~72
    Cao XF, Wang RC, Yen LF, et al. Construction of a pea tendril cDNA library and sequence analysis of a pea actin cDNA, PEAcl. Chinese Science Bulletin, 1994, 39(4): 332~337
    Chalfie M, Tu Y, Euskirchen G, et al. Green fluorescent protein as a marker for gene expression. Science, 1994, 263: 802~805
    Chen CY, Wong EI, Vidali L, et al. The Regulation of Actin Organization by Actin-Depolymerizing Factor in Elongating Pollen Tubes. Plant cell, 2002, 14:2175~2190
    Cheung AY and Wu HM. Overexpression of an Arabidopsis Formin Stimulates Supernumerary Actin Cable Formation from Pollen Tube Cell Membrane. 2004, plant cell, 16:257~269
    Chiu W, Niwa Y, Zeng W, et al. Engineered GFP as a vital reporter in plants. Curr Biol, 1996, 6(3): 325~30
    Cho MJ, Choi HW, Okamoto D, et al. Expression of green fluorescent protein and its inheritance in transgenic oat plants generated from shoot meristematic cultures. Plant Cell Reports, 2002, 21 (5): 467~474
    Choidas A, Jungbluth A, Sechi A, et al. The suitability and application of a GFP-actin fusion protein for long-term imaging of the organization and dynamics of the cytoskeleton in mammalian cells. J Cell Biol, 1998, 77:81~90
    Collings DA, Harper JDI, Marc J, et al. Life in the fast lane: actin-based motility of plant peroxisomes. Can. J. Bot., 2002, 80:430~41
    Dancker P, Hess L. Phalloidin reduces the release of inorganic phosphate during actin polymerization. Biochim Biophys Acta, 1990, 1035(2): 197~200
    David M, Arciero SP, Donald AB, et al. In vitro attachment of bilins to apophycocyanin (I specific covalent adduct formation at cysteinyl residues involed in phycocyanobilin binding in C-phycocyanin). J. Biol. Chem, 1988, 263 (34): 18343~18349
    Dayle AH, Burgess, RR. Elution of proteins from sodium dodecyl sulfate-polyacrylamide gels, removal of sodium dodecyl sulfate, and renaturation of enzymatic activity: Results with sigma subunit of Escherichia coli RNA polymerase, wheat germ DNA topoisomerase, and other enzymes. Anal Biochem, 1980, 109:76~86
    De La Cruz E and Pollard TD. Transient kinetic analysis of rhodamine phalloidin binding to actin filaments. Biochem, 1994, 33:14387~92
    de Ruijter NCA and Emons AMC. Actin-binding proteins in plant cells. Plant Biol., 1999, 1:26~35
    Delagrave S, Hawtin RS, Silva CM, et al. Red-shifted excitation mutants of the green fluorescent protein. Biotechnology (NY), 1995, 13(2): 151~4
    
    
    Diaz-camino C and Villanueva MA. Purification of multiple functional leaf-actin isoforms from Phaseolus vulgaris L. Biochem J 1999, 343:597~602
    Dong CH, Xia GX, Hong Y, et al. ADF Proteins Are Involved in the Control of Flowering and Regulate F-Actin Organization, Cell Expansion, and Organ Growth in Arabidopsis. Plant cell, 2001, 13(6): 1333~1346
    Drouin G and Dover GA. A plant processed pseudogene. Nature, 1987,328:557~558
    Eglman EH. The structure of F-actin, the actin thin filament. J Muscle Res Cell Motil, 1985, 6:129~151
    Elke R, Grit S, Kim S, et al. Rapid evaluation and optimization of recombinant protein production using GFP tagging. Protein Expression and Purification, 2001, 21:220~223
    Elzinga M, Collins JH, Kuehl WM, et al. Complete amino acid sequence of actin of rabbit skeletal muscle. PNAS, USA, 1973,70:2687~2691
    Eun SO, Bae SH, Lee Y. Cortical actin filaments in guard cells respond differently to abscisic acid in wild-type and abil-1 mutant Arabidopsis. Planta, 2001, 212:466~469
    Fox JEB, Dockter ME and Phillips DR. An improved method for determing the actin filament content of nonmuscle cells by the DNase I inhibition assay. Anal Biochem, 1981, 116:170~177
    Frankel S, Condeelis J and Leinwand L. Expression of actin in Escherichia coli. J Biol Chem, 1990, 265:17980~17987
    Frederiksen DW and Cunningham LW. Methods in Enzymology. In Cooper JA, Pollard TD. Methods to measure actin polymerization. Academic Press, New York London: 1982, 55~210
    Fu Y, Li H and Yang Z. The ROP2 GTPase controls the formation of cortical fine F-actin and the early phase of directional cell expansion during Arabidopsis organogenesis. Plant Cell, 2002, 14:777~794
    Fyrberg EA, Mahaffey JW, Bond BJ, et al. Transcripts of the six Drosophila actin genes accumulate in a stage-and tissue-specific manner. Cell, 1983; 33(1): 115~23.
    Gantt E. Phycobilisomes: a model. Arch. Rev. Plant Physiol., 1981, 32:327~347
    Gao Y, Thomas JO, Chow RL, et al. A cytoplasmic chaperonin that catalyzes-actin folding. Cell, 1992, 69:1043~1050
    Georgiou G, Bahra SS, Mackie AR, et al. Measurement of the Lateral Diffusion of Human MHC Class Ⅰ Molecules on HeLa Cells by Fluorescence Recovery after Photobleaching Using a Phycoerythrin Probe. Biophys J, 2002, 82:1828~1834
    Gibbon BC. Actin monomer binding proteins and the regulation of actin dynamics in plants. J. Plant Growth Regul, 2001, 20:103~12
    Gilliland LU, Kandasamy MK, Pawloski LC, et al. Both Vegetative and Reproductive Actin Isovariants Complement the Stunted Root Hair Phenotype of the Arabidopsis act2-1 Mutation. Plant Physiology, 2002, 130: 2199~2209
    Gothot A, Grosdent JC, and Paulus JM. A strategy for multiple immunophenotyping by image cytometry: model studies using latex microbeads labeled with seven streptavidin-bound fluorochromes. Cytometry, 1996, 24(3): 214~25
    
    
    Greimers R, Trebak M, Moutschen M, et al. Improved four-color flow cytometry method using fluo-3 and triple immunofluorescence for analysis of intracellular calcium ion fluxes among mouse lymph node B-and T-lymphocyte subsets. Cytometry, 1996, 23(3): 205~17
    Hall A. Rho GTPases and the actin cytoskeleton. Science, 1998, 279:509~514
    Haseloff J, Siemering KR, Prasher DC, et al. Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. PNAS, 1997, 94:2122~2127
    Heim R, Cubitt AB and Tsien RY. Improved green fluorescence, Nature, 1995, 373:663~664
    Hemmila I. Fluoroimmunoassays and immunofluorometric assays. Clin. Chem., 1985, 31: 359~370
    Hepler PK, Cleary AL, Gunning BES, et al. Cytoskeletal dynamics in living plant cells. Cell Biol Int 1993, 17:127~142
    Hepler PK, Vidali L and Cheung AY. Polarized cell growth in higher plants. Annu Rev Cell Dev Biol, 2001, 17:159~187
    Higgs HN and Pollard TD. Regulation of actin filament network formation through ARP2/3 complex: activation by a diverse array of proteins. Annu Rev Biochem, 2001, 70:649~676
    Hightower RC and Meagher RB. Divergence and differential expression of soybean actin genes. EMBO J, 1985, 4:1~8
    Hitchcok-Degregori S E. Structure-Function analysis of thin filament proteins expressed in E. coli. Cell Motil Cytoskel, 1989, 14:12~20
    Huang S, An YQ, McDowell JM, et al. The Arabidopsis ACT11 actin gene is strongly expressed in tissues of the emerging inflorescence, and pollen developing ovules. Plant Mol Biol, 1997, 33:125~139
    Huang S, An YQ, McDowell JM, et al. The Arabidopsis thaliana ACT4/ACT12 actin gene subclass is strongly expressed throughout pollen development. Plant J, 1996, 10(2): 189~202
    Huang SJ, Blanchoin L, Chaudhry F, et al. A Gelsolin-like Protein from Papaver rhoeas Pollen (PrABP80) Stimulates Calcium-regulated Severing and Depolymerization of Actin Filaments. J. Biol. Chem, 2004, 279 (22): 23364~23375
    Hwang JU, Lee Y. Abscisic acid-induced actin reorganization in guard cells of dayflower is mediated by cytosolic calcium levels and by protein kinase and protein phosphatase activities. Plant Physiol, 2001, 125:2120~2128
    Imlau A, Truernit E, and Sauer N. Cell-to-Cell and Long-Distance Trafficking of the Green Fluorescent Protein in the Phloem and Symplastic Unloading of the Protein into Sink Tissues. Plant cell, 1999, 11: 309~322
    Jackson WT, Actomyosin. In CW Lloyd, ed, The Cytoskeleton in plant Growth and Development. London: Academic Press, 1982, 3~29
    Jarmila JB and Sung HK. Sparse matrix sampling: a screening method for crystallization of proteins, J.Appl.Cryst., 1991,24:409~411
    Jenny B, Jinyan D, Tatiana K, et al. Histidine-tagged wild-type yeast actin: Its properties and use in an
    
    approach for obtaining yeast actin mutants. PNAS, USA, 1999, 96(6):2823~2827
    Jiang YQ and Zhao WL. Expression and phylogenetic analysis of pea actin isoforms. Acta Botanica Sinica, 2002, 44(12):1456~1461
    Johan AH. Algal biliproteins: handbook of phycological method. Cambridge University Press, 1978, 111~122
    Johnson WC. Analyzing protein circular dichroism spectra for accurate secondary structures. Proteins, 1999; 35(3): 307-12.
    Jones MA, Shen JJ, Fu Y, et al. The Arabidopsis Rop2 GTPase Is a Positive Regulator of Both Root Hair Initiation and Tip Growth, Plant cell. 2002, 14:763~776
    Jung TM and Dailey MO. A novel and inexpensive source of allophycocyanin for multicolor flow cytometry. J Immunol Methods, 1989, 121(1): 9~18
    Kabsch W, Mannherz EG. Suck D, et al. Atomic structure of the actin:DNase I complex. Nature, 1990, 347:37~44
    Kandasamy MK, Gilliland LU, McKinney EC, et al. One plant actin isovariant, ACT7, is induced by auxin and required for normal callus formation, Plant cell, 2001, 13: 1541~1554
    Kandasamy MK, McKinney EC and Meagher RB. Functional nonequivalency of actin isovadants in Arabidopsis. Mol Biol Cell, 2002, 13: 251~261
    Kandasamy MK, McKinney EC and Meagher RB. The late pollen-specific actins in angiosperms. The Plant Journal, 1999, 18:681~691
    Katsuta J, Shibaoka H. The roles of the cytoskeleton and the cell wall in nuclear positioning In tobacco BY-2 cells. Plant Cell Physiol, 1988, 29:403~413
    Kelly, S.M. & Price, N.C. The application of circular dichroism to studies of protein folding and unfolding. Biochim.Biophys. Acta, 1997, 1338:161~185
    Ketelaar T, Allwood EG, Anthony R, et al. The actin-interacting protein AIP1 is essential for actin organization and plant development. Curr Biol, 2004, 14(2): 145~9
    Kim E, Miller CJ and Reisler E. Polymerization and in vitro motility properties of yeast actin: a comparison with rabbit skeletal alpha-actin. Biochemistry, 1996, 35(51): 16566~72
    Kim M, Hepler PK, Eun SO, et al. Actin Filaments in Mature Guard Cells Are Radially Distributed and Involved in Stomatal Movement. Plant Physiology, 1995, 109:1077~1084
    Kirshenbaum K, Young M and Highsmith S. Predicting allosteric switches in myosins. Protein Sci., 1999; 8:1806-1815.
    Klahre U, Friederich E, Kost B, et al. Villin-Like Actin-Binding Proteins Are Expressed Ubiquitously in Arabidopsis. Plant Physiology, 2000, 122:35~48
    K(?)hler RH, Zipfel WR, Webb WW, et al. The green fluorescent protein as a marker to visualize plant mitochondria in vivo. Plant J, 1997, 11(3): 613~21
    Kost B, Mathur J and Chua NH. Cytoskeleton in plant development. Curr Opin Plant Biol, 1999, 2: 462~470
    Kost B, Spielhofer P, Chua NH. A GFP-mouse talin fusion protein labels plant actin filaments in vivo
    
    and visualizes the actin cytoskeleton in growing pollen tubes. Plant J, 1998, 16:393~401
    Kovar DR, Drobak BK, Staiger CJ: Maize profilin isoforms are functionally distinct. Plant Cell 2000, 12:583-598.
    Kovar DR, Gibbon BC, McCurdy DW, et al. Fluorescentlylabeled fimbrin decorates a dynamic actin filament network in live plant cells. Planta, 2001, 213:390~395
    Kuroda K. Cytoplasmic streaming in plant cells. Int Rev Cytol, 1990, 121:267~307
    Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227:680~4584
    Laval V, Koroleva OA, Murphy E, et al. Distribution of actin gene isoforms in the Arabidopsis leaf measured in microsamples from intact individual cells. Planta (Berlin), 2002, 215(2): 287~292
    Le Bel D, Poirier GG, Beaudoin AR. A convenient method of ATPase assay. Anal Biochem, 1978, 85:86~89
    Leadbeater L and Perry SV. The effect of actin on the magnesium-activated adenosine triphosphatase of heavy meromyosin. Biochem J, 1963, 87:233~238
    Li H, Lin Y, Heath RM, et al. Control of pollen tube tip growth by a Rop GTPase-dependent pathway that leads to tip-localized calcium influx. Plant Cell, 1999, 11:1731~1742
    Li LN, Zhang JP, Jiang T, et al. Purification, crystallization, crystal study of phycocyanin containing Se from spiruliana platensis, Science in China (series C), 2000, 30(5):449~455
    Lim CR, Kimata Y, Oka M, et al. Thermosensitivity of green fluorescent protein fluorescence utilized to reveal novel nuclear-like compartments in a mutant nucleoporin NSP1. J. Biochem. (Tokyo), 1995, 118:13~17
    Liu Xiong and Yen Lung-Fei. Interaction of pollen F-actin with rabbit muscle myosin and its subfragments(HMM, S1). Protoplasma, 1995, 186:87~92
    Liu Xiong and Yen Lung-Fei. Purification and Characterization of actin from maize pollen, Plant physiol. 1992, 99:1151~1155
    Lloyd CW. The plant cytoskeleton. Curr Opin Cell Biol, 1989, 1:30~35
    Loewy AG. An actomyosin-like substances from the plasmodium of a myxomycete. J. Cell. Comp. Physiol. 1952, 40:126~56
    Ma Y Z and Yen L F. Actin and myosin in pea tendrils. Plant Physiol, 1989, 89:586~589
    Mannbenz HG, Barrington J, Cebeman R, et al. A specific 1 : 1 G-actin: DNase I complex formed, the action of DNase I on F-actin. FEBS Letters, 1975, 60:34~37
    Mathur J and Chua NH. Microtubule Stabilization Leads to Growth Reorientation in Arabidopsis Trichomes, Plant cell, 2000: 12: 465~478.
    Mathur J, Mathur N, H(?)lskamp M. Simultaneous visualization of peroxisomes and cytoskeletal elements reveals actin and not microtubule-based peroxisome motility in plants. Plant Physiol 2002, 128:1031~1045.
    McCurdy DW and Kim M. Molecular cloning of a novel fimbrin-like cDNA from Arabidopsis thaliana. Plant Mol. Biol., 1998,36:23~31
    
    
    McCurdy DW, Kovar DR, Staiger CJ. Actin and actin-binding proteins in higher plants. Protoplasma 2001.215:89~104
    McDowell JM, Huang S, McKinney EC, et al. Structure and evolution of the actin gene family in Arabidopsis thialiana. Genetics, 1996, 142:587~602
    McElroy D, Rothenberg M, Reece KS, et al. Characterization of the rice (Oryza sativa) actin gene family. Plant Mol Biol, 1990, 15:257~268
    McKinney EC, Kandasamy MK and Meagher RB. Small Changes in the Regulation of One Arabidopsis Profilin Isovariant, PRF 1, Alter Seedling Development. Plant cell, 2001, 13: 1179~1191
    McLean BG, Eubanks S and Meagher RB. Tissue-specific expression of divergent actins in soybean root. Plant Cell, 1990, 2:335~344
    McLean BG, Huang SR, Mckinney, et al. Plants contain highly divergent actin isovariants. Cell Motil Cytoskel, 1990, 17:276~90
    Meagher RB, McKinney EC and Kandasamy MK. Isovariant dynamics expands and buffers the responses of complex systems: The diverse plant actin family. Plant Cell, 1999, 11:1~12
    Meagher RB. Divergence and differential expression of actin gene families in higher plant, Int Rev Cytol, 1991, 125:139~163
    Miller DD, de Ruijter NCA, Bisseling T, et al. The role of actin in root hair morphogenesis: Studies with lipochito-oligosaccharide as a growth stimulator and cytochalasin as an actin perturbing drug. Plant J, 1999, 17:141~154
    Morise H, Shimomura O, Johnson FH, et al. Intermolecular energy transfer in the bioluminescent system of Aequorea. Biochemistry, 1974, 13(12): 2656~62
    Moutinho A, Hussey PJ, Trewavas AJ, et al. cAMP acts as a second messenger in pollen tube growth and reorientation. Proc Natl Acad Sci USA, 2001, 98:10481~10486
    Mullins RD, Heuser JA and Pollard TD. The interaction of Arp2/3 complex with actin: nucleation, high-affinity pointed end capping, and formation of branching networks of filaments. Proc Natl Acad Sci USA, 1998, 95:6181~6186
    Murakoshi H, Iino R, Kobayashi T, et al. Single-molecule imaging analysis of Ras activation in living cells. Proc. Natl. Acad. Sci. U. S. A., 2004, 101:7317~7322
    Nagai R, Rebhun LI. Cytoplasmic microfilaments in streaming Nitella cells. J. Ultrastruct Res. 1966,14:571~589
    Nairn CJ, Winesett L and Ferl RJ. Nucleotide sequence of an actin gene from Arabidopsis thaliana. Gene, 1988, 65:247~257
    Nefsky B and Bretscher A. Yeast actin is relatively well behaved. Eur. J. Biochem., 1992, 206:949~955
    Niedz RP, Sussman MR and Satterlee JS. Green fluorescent protein: an in vivo reporter of plant gene expression. Plant Cell Reports, 1995, 14:403~406
    Nishimura T, Yokota E, Wada T, et al. An Arabidopsis ACT2 Dominant-Negative Mutation, which Disturbs F-actin Polymerization, Reveals its Distinctive Function in Root Development. Plant Cell
    
    Physiol., 2003, 44:1131~1140
    Oi VT, Glazer A N and Stryer L. Fluorescent phycobiliprotein conjugates for analyses of cells and molecules, J. Cell Biol., 1982, 93:981~986
    Ong LJ and Glazer AN. Phycoerythrins of marine unicellular cyanobacteria,(I bilin types and locations and energy transfer pathwaysi in synechococcus spp. Phycoerythrins. J. Biol. Chem, 1991, 266 (15):9515~9527
    Ormo M, Cubitt AB, Kallio K, et al. Crystal structure of the Aequorea victoria green fluorescent protein. Science, 1996, 273:1392~95
    Pang KM, Lee E and Knecht D. Use of a fusion protein between GFP and an actin-binding domain to visualize transient filamentous-actin structures. Current Biology, 1998, 8:405~408
    Pollard TD, Blanchoin L and Mullins RD. Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu Rev Biophys, 2000, 29:545~576
    Pollard TD. Myosin purification and characterization. Methods Cell Biol, 1982, 24:333~371
    Prasher D, McCann RO and Cormier MJ. Cloning and expression of the cDNA coding for aequorin, a bioluminescent calcium-binding protein. Biochem Biophys Res Commun. 1985, 126(3): 1259~68
    Prasher DC, Eckenrode VK, Ward WW, et al. Primary structure of the Aequorea victoria green-fluorescent protein. Gene, 1992, 111(2): 229~33
    Pruyne D, Evangelista M, Yang CS, et al. Role of formins in actin assembly: Nucleation and barbed-end association. Science,2002, 297:612~615
    Reece KS, McElroy D and Wu R. Genomic nucleotide sequence of four rice(Oryza sativa) actin genes. Plant Mol. Biol., 1990, 14:621~624
    Ren HY, Gibbon BC, Ashworth SL, et al. Actin purified from maize pollen functions in living plant cells. Plant Cell, 1997, 9:1445~1457
    Ringli C, Baumberger N, Diet A, et al. ACTIN2 Is Essential for Bulge Site Selection and Tip Growth during Root Hair Development of Arabidopsis. Plant Physiology, 2002, 129:1464~1472
    Schmit AC and Lambert AM. Microinjected fluorescent phalloidin in vivo reveals the F-actin dynamics and assembly in higher plant mitotic cells. Plant Cell, 1990, 2:129~138
    Segura M and Lindberg U. Separation of non-muscle isoactins in the free form or as profilactin complexes. J Biol Chem, 1984, 259:3949~54
    Shah DM, Hightower RC and Meagher RB. complete nucleotide sequence of a soybean actin gene. Proc. Natl. Acad. Sci. USA, 1982, 79:1022~1026
    Shah DM, Hightower RC and Meagher RB. Genes encoding actin in higher plants: intron positions are highly conserved but the coding sequences are not. J. Mol. Appl. Genet. 1983, 2:111~126
    Shapiro HM, Glazer AN, Christenson L, et al. Immunofluorescence measurement in a flow cytometer using low-power helium-neon laser excitation. Cytometry, 1983, 4(3): 276~9
    Shimomura O, Johnson FH and Saiga Y. Extraction, purification and properties of Aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J. Cell Comp. Physiol., 1962, 59:223~239
    
    
    Shirota H, Sano K, Hirasawa N et al. Novel Roles of CpG Oligodeoxynucleotides as a Leader for the Sampling and Presentation of CpG-Tagged Antigen by Dendritic Cells. The Journal of Immunology, 2001, 167:66~74
    Smertenko AP, Jiang CJ, Simmons NJ , et al. Ser6 in the maize actin-depolymerizing factor, ZmADF3, is phosphorylated by a calcium-stimulated protein kinase and is essential for the control of functional activity. Plant J, 1998, 14:187~193
    Staehelin LA and Hepler PK. Cytokinesis in higher plants. Cell, 1996, 84:821~824
    Staiger CJ. Signaling to the actin cytoskeleton in plants. Annu Rev Plant Physiol, 2000, 51:257~288
    Stec B, Troxler RF and Teeter MM. Crystal Structure of C-Phycocyanin from Cyanidium caldarium Provides a New Perspective on Phycobilisome Assembly. Biophysical Journal, 1999(76):2912~2921
    Straub FB. Actin. Stud. Inst. Med. Chem. Univ. Szeged. 1942, 2:3~15
    Suck D, Lahm A and C Oefner. Structure refined to 2A of a nicked DNA octanucleotide complex with DNase I. Nature, 1988, 332(6163): 464~8
    Szymanski DB, Marks MD and Wick SM. Organized F-actin is essential for normal trichome morphogenesis in Arabidopsis. Plant Cell, 1999, 11:2331~2347
    Timmers ACJ, Niebel A, Balague C, et al. Differential localisation of GFP fusions to cytoskeleton-binding proteins in animal, plant, and yeast cells. Protoplasma, 2002, 220(1-2): 69~78
    Tominaga M, Yokota E, Vidali L, et al. The role of plant villin in the organization of the actin cytoskeleton, Cytoplasmic streaming and the architecture of the transvacuolar strand in root hair cells of Hydrocharis. Planta, 2000, 210:836~843
    Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc Natl Acad Sci USA 1979; 76:4350~4354.
    Triantafilou K, Triantafilou M, and Wilson KM, Phycobiliprotein-Fab conjugates as probes for single particle fluorescence imaging. Cytometry, 2000, 41(3): 226~34
    Tsien, RY. The green fluorescent protein. Annu. Rev. Biochem. 1998, 67, 509~544
    Vahey M, Titus M, Trautwein R, et al. Tomato actin and myosin: Contractile proteins from higher land plant. Cell Motil, 1982, 2:131~147
    Vantard M and Blanchoin L. Actin polymerization processes in plant cells. Curr. Opin. in Plant Biol., 2002, 5:502-506
    Vidali L and Hepler PK. Actin and pollen tube growth. Protoplasma, 2001, 215:64~76
    Villanueva MA, Ho SC and Wang JL. Isolation and characterization of one isoform actin from cultured soybean cells. Arch Biochem Biophys, 1990, 277:35~41
    Vladislav V, Verkhusha A, Mikhail M, et al. Expression of recombinant GFP-actin fusion protein in the methylotrophic yeast Pichia pastoris. FEMS Yeast Research, 2003, 3: 105~111
    Waldo GS, Standish BM, Berendzen J, et al. Rapid protein-folding assay using green fluorescent protein.
    
    Nat. Biotechnol, 1999, 17:691~695
    Wang S and Hazelrigg T. Implications for bcd mRNA localization from spatial distribution of exu protein in Drosophila oogenesis. 1994, Nature, 369:400~403
    Wang XQ, Li LN, Chang WR, et al. Structure of C-phycocyanin from Spirulina platensis at 2.2 A resolution: a novel monoclinic crystal form for phycobiliproteins in phycobilisomes. Acta Crystallogr D Biol Crystallogr, 2001, 57:784~92
    Wasteneys GO and Galway ME, Remodeling the cytoskeleton for growth and form: an overview with some new views, Annu. Rev. Plant Biol. 2003, 54:691~722
    Wegner A, Treadmilling of actin at physiological salt concentrations. An analysis of the critical concentrations of actin filaments. J Mol Biol, 1982, 161(4): 607~15
    Westphal M, Jungbluth A, Heidecker M, et al. Microfilament dynamics during cell movement and chemotaxis monitored using a GFP-actin fusion protein. Curr Biol, 1997, 7:176~183
    Williamson RE. Organelle movements. Annu Rev Plant Physiol Plant Mol Biol, 1993, 44:181~202
    Wilson KM, Morrison IE, Smith PR, et al. Single particle tracking of cell-surface HLA-DR molecules using R-phycoerythrin labeled monoclonal antibodies and fluorescence digital imaging. Journal of Cell Science, 1996, 109(8):2101~2109
    Yen LF, Liu X and Cai ST. Polymerization of actin from maize pollen. Plant physiol, 1995, 107:73~76
    Zhang shaobin, Ren dongtao, Xu xiaojing and Liu guoqin. Prokaryotic expression and characterization of a pea actin isoform (PEAc1) fused to GFP. Chinese Science Bulletin, 2004, 49(9): 915~921
    曹晓风,赵武玲,吴玮,等.豌豆肌动蛋白基因在大肠杆菌中的表达.中国农业大学学报,2001,6(3):11~15
    胡鸿钧.螺旋藻生物学及生物技术原理.科学出版社,北京:2003,81~97
    胡松年,阎隆飞.豌豆卷须肌动蛋白Ⅱ类异型体cDNA克隆的序列分析.中国生物化学与分子生物学报,1999,15(6):857~860
    黄绍兴,刘俊君,阎隆飞,等.肌动蛋白基因在豌豆幼苗的发育阶段和器官特异性表达.中国农业大学学报,1997,2(1):25~29
    凌毅,赵武铃.豌豆肌动蛋白异型体基因的特异性表达.植物学通报,2001,18(1):76~80
    刘雄,阎隆飞.花粉肌动蛋白和兔肌肌动蛋白与DNase Ⅰ相互作用的比较研究.植物学报,1995,37(3):212~216
    彭卫民,商树田,刘国琴,等.钝顶螺旋藻(SP-D)藻胆蛋白的提取.食品科学,1999,6:48~49
    阎隆飞,石德权.高等植物中的收缩蛋白.生化与生物物理学报,1963,3:490~495
    颜子颖,王海林(译).精编分子生物学实验指南.科学出版社,北京:1998:414.[译自:Frederich MA et al., Short protocols in molecular biology, (3rd ed) John Wiley & Sons. InC. 1995.]
    杨毅,刘国琴,阎隆飞.衣藻肌动蛋白-绿色荧光蛋白的融合基因在烟草悬浮细胞中的表达及融合蛋白的体外聚合.科学通报,2001,46(6):461~466

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700