用户名: 密码: 验证码:
塔里木盆地轮南地区原油沥青质的分子结构及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
原油沥青质是原油中不溶于低分子烷烃而能溶于苯、甲苯等溶剂的高分子物质。原油沥青质在结构上和母源干酪根的相似性、沥青质能够随原油一起排出并运移到储层以及沥青质的大分子和抗降解等特性子使得原油沥青质被广泛用于石油地球化学研究的很多领域,包括油/源和油/油对比、母源性质、成熟度、原油形成温度等。塔里木盆地是我国典型的叠合盆地,轮南地区是塔里木盆地原油成因类型最复杂的地区。原油的多期次充注使得利用原油低分子部分进行油/油和油/源对比非常困难,至今该区原油的母源还存在争论。
     本文首先采用热解-色谱-质谱、甲基化-热解-色谱-质谱、钌离子催化氧化等多种方法研究了塔里木盆地轮南地区原油沥青质的分子结构。在此基础上,主要运用热解-色谱-质谱对比研究了原油沥青质、志留系沥青砂沥青质以及烃源岩干酪根的结构组成,从高分子结构以及原油沉积环境的角度对轮南地区原油的母源进行了探讨。
     1.沥青质沉淀实验表明,不同的沉淀条件下沉淀出的沥青质的元素组成、碳同位素组成、分子结构参数没有明显变化,表明原油体系中低分子烃类的加入不会改变原油沥青质的结构特征,因此原油沥青质的分子结构可以用来对遭受后期生成的气体或凝析油注入的油藏进行油/源或油/油对比研究。这一结果为在叠合盆地原油沥青质的应用研究打下了理论基础。
     2)Py-GC-MS、甲基化-Py-GC-MS和RICO等多种热降解和选择性化学降解方法对原油沥青质分子结构研究的结果表明,轮南地区原油沥青质分子中的取代官能团以烷基侧链为主,烷基桥次之,另外还有少量的烷基环己烷、支链烷烃和苯系物,这些化合物可能大都以C-C键结合到缩合芳环体系上;部分脂肪酸类化合物通过酯键连接在沥青质分子中。沥青质分子中芳环体系大多数可能是萘或菲类型的芳香结构,高度缩合的芳香结构可能较少。
     3)轮南地区不同构造带、不同时代储层和不同类型原油沥青质热解产物的一致性,指示它们可能来自沉积环境相同的母源。塔北和塔中地区志留系沥青砂抽提物中的沥青质的热解产物特征十分一致,与轮南地区原油沥青质的热解产物也比较类似。热解产物中都检测到了较高含量的1,2,3,4-四甲基苯和少量的芳基类异戊二烯类化合物。
     通过碳同位素研究证实,轮南地区原油沥青质和志留系沥青砂中的沥青质热解产物中高含量的1,2,3,4-四甲基苯具有很重的碳同位素组成,与热解产物中正构烷烃相比偏重10‰以上。这一结果证明,沥青质中的1,2,3,4-四甲基苯来源于绿硫细菌,从而说明其母源应该形成于强还原条件下的分层水体中,轮南地区原油和志留系沥青砂的母源具有类似的沉积环境。
     4)利用Py-GC-MS和甲基化-Py-GC-MS对塔里木盆地寒武-奥陶系烃源岩干酪根进行了分子结构的研究。在此基础上,从沉积环境的角度研究对比研究了寒武系和奥陶系抽提物的分子地球化学特征。1,2,3,4-四甲基苯和长链的1-烷基-2,3,6-三甲基取代的芳基类异戊二烯类化合物在寒武和奥陶系烃源岩中均有检出。但来自方1井和塔东2井的寒武系烃源岩抽提物中这类芳基类异戊二烯化合物的相对含量明显高于塔中6和塔中12井的中上奥陶统烃源岩。此外,寒武系烃源岩抽提物饱和烃部分检出了较高含量的伽马蜡烷。上述结果表明寒武系烃源岩的沉积环境可能是一种强还原条件下的高盐度的分层水体,而奥陶系烃源岩则不具备这些特征。
    
    塔里木盆地轮南地区原油沥青质的分子结构及其应用研究
     尽管从沉积环境上来看轮南地区原油来源于寒武系烃源岩的可能性很大,但丛前人
    对烃源岩生烃史的研究来看,该区原油不可能直接来源于该套烃源岩。原油沥青质志留
    系沥青砂中的沥青质的总碳同位素对比研究不支持塔里木广泛分布的志留系沥青砂作
    为寒武系生油中间体的设想。因此,轮南地区原油母源的沉积环境尽管和寒武系烃源岩
    很类似,但来源于寒武系烃源岩的可能性不大。轮南地区原油可能主要来自一套形成于
    强还原条件下的奥陶系烃源岩,但有待进一步的勘探证实。
Petroleum asphaltenes was defined as macromolecules which can be dissolved in benzene or toluene but not soluble in low molecular alkanes. Petroleum asphaltenes have been widely used in many areas of geochemical studies, such as oil/source and oil/oil correlations, tracing the source of studied samples, maturity of petroleum and the temperature of oil formation. Tarim basin is a typical compositional basin in China, and Lunnan oil field is the most complicated area of Tarim basin due to its diversity of oil chemical and physical properties. It was difficult to carry oil/oil or oil/source correlations with low molecular compounds, and the source of oils from Lunnan area is still a question in debate.
    In this work, the molecular structure of petroleum asphaltenes from Lunnan area was determined by pyrolysis-gas chromatrography-mass spectrometer(Py-GC-MS), methylation-Py-GC-MS and Ruthenium Ion Catalyzed Oxidation(RICO). Moreover, the structure of petroleum asphaltenes, asphaltenes from Silurian oil sandstones and kerogens from source rocks, Tarim basin, were analysed by Py-GC-MS. Based on these results, the source of oils from Lunnan area were discussed with a point of view of structure of macromolecules and sedimentary environments.
    1.It was found that the elemental compositions, isotopic compositions and the molecular structure of asphaltenes precipitated from oil didn't change under different conditions in the precipitation experimnet. The pyrolysate of asphaltenes can be used as the substituent of low molecular compounds for oil-source rock correlation and also for identification of oil source whatever the oil reservior in superposed basin was charged by secondary gas or condensate oil.
    2. The molecular structure of oil asphaltenes from Lunan area of Tarim basin was elucidated by flash pyrolysis, methylation-pyrolysis and RICO. The substituted functions in oil asphaltenes from Lunan area were dominated by n-alkyl side chains. H-Alkyl bridges and minor alkyl cyclohexanes, branched alkanes and alkyl benzenes were also identified. These functions maybe were linked to the structure of asphaltenes by C-C bonds. The aromatic ring systems of oil asphaltenes were mainly composed of naphthalene and phenanthrene and seldom of highly condensed aromatic rings.
    3.The pyrolysates of oil asphaltenes from different tectonic belt, reservoirs, and different kinds of oils from Lunnan area were similar, which suggested these oils were generated from sources under the same sedimentary environment. Moreover, The pyrolysates of asphaltenes extracted from Silurian oil sandstones of Tabei and Tazhong area, Tarim basin, also exhibited similar characteristics to that of petroleum aspaltenes from Lunnan area. A most striking feature of the pyrolysates was identification of high abundance of 1,2,3,4-tetramethyl benzene and minor amounts of aromatic isoprenoids. The 1,2,3,4-tetramethyl benzene of pyrolysates from closed system pyrolysis of asphaltenes from oils and Silurian oil sandstones show very heavy carbon isotopic compositions, and the 1,2,3,4-tetramethyl benzene was enriched in 13C by more than 10%o compared with the normal alkanes in pyrolysates. This results unambiguously proved that high
    
    
    1,2,3,4-tetramethyl benzene in asphaltenes from oils and Silurian oil sandstones was from green sulfur bacterial, and the source of Lunnan oils and Silurian oil sandstones was derived from an stratified water column under strong reducing conditions. 4. The molecular structure of kerogens from source rocks, Tarim basin, were also studied by Py-GC-MS and methylation-Py-GC-MS, and the depositional enviroment of Cambrian and Ordovician source rocks was compared based on the geochemical characteristics of extracts from these two sets of source rocks. 1,2,3,4-tetramethyl benzene and l-alkyl-2,3,6-trimethyl benzenes were both detected from extracts of Cambrian and Ordovician source rocks. However, the abundance of l-alkyl-2,3,6-trimethyl benzenes from extracts of Cambrian source rocks from Fang 1 and Tadong 2 wells was much hi
引文
1.范善发,周中毅,解启来,等.塔里木盆地下古生界高成熟干酪根生烃潜力的评估.地球化学,1996,25(5):503-511
    2.傅家谟,秦匡宗.干酪根地球化学.广州:广东科技出版社,1995
    3.郭绍辉,李术元,秦匡宗.用钌离子催化氧化法研究干酪根及其显微组分的化学结构.石油大学学报(自然科学版),2000,24(3):54-57
    4.胡玉峰,杨兰英,林雄森,等.原油正构烷烃沥青质聚沉机理研究及沉淀量测定[J].石油勘探与开发,2000,27(5):109~114
    5.黄第藩,赵孟军,张水昌.塔里木盆地满加尔油气系统下古生界油源油中蜡质烃来源的成因分析.沉积学报,1997,15,No.2:6-13
    6.李超.蓟县剖面元古宙沉积物(1.8-0.85Ga)的分子有机地球化学研究.中国科学院博士研究生学位论文,2001
    7.李术元,郭绍辉,沈润梅.沥青质催化降解特征及动力学研究.沉积学报,2001,19(1):136-140
    8.李素梅,王铁冠,郭绍辉,等.原油中含氧化合物.烷基酚类.石油学报,2000,21(1):44-48
    9.梁狄刚,张水昌,王飞宇,等.塔里木盆地生油岩与油源研究.国家“九五”重点科技攻关项目《塔里木盆地石油天然气勘探》成果报告,1998
    10.廖泽文,耿安松.沥青质傅立叶变换红外光谱(FT-IR)分析及其在有机地球化学研究中的应用.地球化学,2001,30,No.5:11432-438
    11.刘大锰,金奎励,王凌志.塔里木盆地志留系沥青砂岩地特性及其成因.现代地质,1999,13(2):169-175
    12.卢鸿,柴平霞,孙永革,等.轮南14井原油正构烷烃和类异戊二烯烃单体碳同位素研究.沉积学报,2002,20(3):477-504
    13.卢鸿.轮南油田原油多样性成因的分子和同位素地球化学研究.中国科学院广州地球化学研究所博士后研究工作报告.2002
    14.盛国英,傅家谟,江继刚,等.原油与生油岩中脱羟基维生素E的发现及意义.中国科学,B辑,1987,4:423-428
    15.王培荣,林壬子,等.塔里木盆地油源对比及主力油源层的确认.“八五”国家重点科技攻关项目《塔里木盆地油气资源》成果报告.1994
    16.王子军,梁文杰,阙国和,等.钌离子催化氧化法研究胜利减压渣油组分的化学结构.石油学报(石油加工),1997,13,No.4:1-9
    17.徐冠军,张大江,王培荣.用沥青质中生物标志化合物判识生物降解油的油源.科学通报,2003,48(4):400~404
    18.杨杰,黄海平,张水昌,等.塔里木盆地北部隆起原油混合作用半定量评价.地球化学,2003,32(2):105~111
    19.张敏,龙长河,张俊,等.塔北地区三叠系油藏原油中中性含氮化合物和烷基苯酚的运移分馏作用.沉积学报,2001,19(1):150-155
    20.张水昌,王飞宇,张保民,等.塔里木盆地中上奥陶统油源层地球化学研究.石油学报,2000,21(6):23-28
    21.张水昌.运移分馏作用:凝析油和蜡质油形成的一种重要机制.科学通报.2000,45:667-670
    
    
    22.张文正,李先奇,关得师,等.塔里木盆地凝析油单体烃碳同位素特征与成因分析.沉积学报,1995,13(4):109-115
    23.赵靖舟.塔里木盆地北部寒武-奥陶系海相烃源岩重新认识.沉积学报,19(1):117-123
    24.赵孟军,黄第藩,张水昌.原油单体烃类的碳同位素组成研究.石油勘探与开发.1994,21,No.3:52-59
    25.赵孟军,黄第藩.塔里木盆地古生界干酪根热解产物组成研究.石油勘探与开发.1995,22,No.5:18-23
    26.朱扬明.塔里木原油芳烃的地球化学特征.地球化学,1996,25(1):10~18
    27. Acevedo S., Mendez B. and Rojas A. et al. Asphaltenes and resins from the Orinoco basin. Fuel, 1985, 64:1741-1747
    28. Aizenshtat Z., Miloslavski I. and Tannenbaum E. Thermal behavior of immature asphalts and related kerogens. Organic Geochemistry, 1986, 10:537-546
    29. Alboudwarej H., Beck J. and Svrcek W.Y. et al. Sensitivity of asphaltene properties to separation techniques. Energy & Fuels, 2002, 16:462-469
    30. Ali L.H., Al-Ghannam K.A. and Al-Rawi J.M. Chemical structure of asphaltene in heavy crude oils investigated by n.m.r. Fuel, 1990, 69:519-521
    31. Ancheyta J., Centeno G. and Trejo F. et al. Extraction of characterization of asphaltenes from different crude oils and solvents. Energy & Fuels, 2002, 16:1121-1137
    32. Artok L, Su Y. and Hirose Y. et al., Structure and reactivity of petroleum-derived asphaltene, Energy & Fuels, 1999, 13:287-296
    33. Aske N., Kallevik H. and Johnsen E.E. et al. Asphaltene aggregation from crude oils and model systems studied by high-pressure NIR spectroscopy. Energy & Fuels, 2002, 16: 1287-1296
    34. Audino M., Grice K., and Alexander R et al. Unusual distribution of monomethylalkanes in Botryococcus braunii-rich samples. Geochimica et Cosmochimica Acta, 2001, 65:1995-2006
    35. Behar F, Pelet R and Roucache J. Geochemistry of asphaltenes. Organic Geochemistry, 1984, 6:587-595
    36. Behar F. and Pelet R. Pyrolysis similarities between kerogens and asphaltenes from related rock extracts and oils. Journal of analytical and applied pyrolysis, 1985, 8:173-187
    37. Behar F. and Pelet R. Characterization of asphaltenes by pyrolysis and chromatography. Journal of analytical and applied pyrolysis, 1984, 7:121-135
    38. Bjoroy M., Hall P.B. and Hustad E. et al. Variation in stable carbon isotope ratios of individual hydrocarbons as a function of artificial maturity. Organic Geochemistry, 1992, 19:89-105
    39. Blokker P.B. et al., The chemical structure of Gloeocapsoporpha prisca microfossils: implications for their origin, G.C.A, 2001, 65:885-90
    40. Boussafir M., Gelin F. and Lallier-Verges E et al. Electron microscopy and pyrolysis of kerogens from the Kimmeridge Clay Formation, UK. Geochimica et Cosmochimica Acta, 1995, 59:3731-3747
    41. Buckley J.S. Predicting the onset of asphaltene precipitation from refractive index measurements. Energy & Fuels, 1999, 13: 328-332
    
    
    42. Carbognani L. Dissolution of solid deposits and asphaltenes isolated from crude oil production facilities. Energy & Fuels, 2001,15:1013-1021
    43. Carnahan N.F., Salager J.L. and Anton R. et al. Properties of resins extracted from Boscan crude oil and their effect on the stability of asphaltenes in Boscan and Hamaca crude oils. Energy & Fuels, 1999, 13:309-314
    44. Cassani F. and Eglinton G. Organic geochemistry of Venezuelan extra-heavy oils 1. Pyrolysis of asphaltenes: A technique for the correlation and maturity evaluation of crude oils. Chemical Geology, 1986, 56:167-183
    45. Challinor J M. A pyrolysis-derivatisation-gas chromatography technique for the structural elucidation of some synthetic polymers. Journal of analytical and applied pyrolysis, 1989, 16:323~333;
    46. Challinor J.M. Structure determination of alkyd resins by simultaneous pyrolysis methylation. Journal of analytical and applied pyrolysis, 1991, 18:233-234
    47. Chouparova E. and Philp R.P. Geochemical monitoring of waxes and asphaltenes in oils produced during the transition from primary to secondary water flood recovery. Organic Geochemistry, 1998, 29:449-461
    48. Christopher J., Sarpal A.S. and Kapur G.S. et al. Chemical structure of bitumen-derived asphaltenes by nuclear magnetic resonance spectroscopy and X-ray diffractometry. Fuel, 1996, 75:999-1008
    49. Clifford D J, Carson D M, Mckinney D E, et al. A new rapid technique for the characterization of lignin in vascular plants: thermochemolysis with tetramethylammonium hydroxide (TMAH). Organic geochemistry, 1995, 23:169-175;
    50. Curiale J.A., Harrison W.E. and Smith G. Sterane distribution of solid bitumen pyrolyzates. Geochimica et Cosmochimica Acta, 1983, 47:517-523
    51. Cyr T.D. and Strausz O.P. Bound carboxylic acids in the Alberta oil sands. Organic Geochemistry, 1984, 7: 127-140
    52. de Leeuw J W. and Baas M. The behavior of esters in the presence of tetramethylammonium salts at elevated temperatures: flash pyrolysis or flash chemolysis? Journal of analytical and applied pyrolysis, 1993, 26:175-184;
    53. del Rio J C, Martin F, Gonzalez-Vila F J, et al. Chemical structure investigation of asphaltenes and kerogens by pyrolysis-methylation, Organic Geochemistry, 1995, 23:1009~1022;
    54. Derenne S, Largeau C and Hatcher P G. Structure of Chlorella fusca algaenan: relationship with ultralaminae in lacustrine; species- and environment-dependent variations in the composition of fossil ultralaminae. Organic Geochemistry, 1992, 18: 417~422;
    55. Derenne S, Largeau C, Casadevall E, et al. Characterization of Estonian Kukersite by spectroscopy and pyrolysis evidence for abundant alkyl phenolic moieties in an Ordovician marine, type Ⅱ/Ⅰ kerogens. Organic Geochemistry, 1990, 16: 873~888;
    56. di Primio R., Horsfield B. and Guzman-Vega M.A. Determination the temperature of petroleum formation from the kinetic properties of petroleum asphaltenes. Nature, 2000,406:173-176
    57. di Primio R. and Horsfield B. Predicting the generation of heavy oils in carbonate/evaporitic environments using pyrolysis methods. Organic Geochemistry, 1996,
    
    24:999-1016
    58. Dickie J.P. and Yen T.F. Macrostructures of the asphaltic fractions by various instrumental methods. Analytical Chemistry, 1967, 39:1847-1852
    59. Egliton T.I., Philp R.P. and Rowland S.J. Flash pyrolysis of artificially matured kerogens from the Kimmeddge Clay, U.K. Organic Chemistry, 1988, 12:33-41
    60. Ellis L. and Fincannon A.L. Analytical improvements in irm-GC/MS analyses: advanced techniques in tube furnace design and sample preparation. Organic Geochemistry, 1998, 29:1101-1117
    61. Fuhr B.J., Cathrea C. and Coates L. et al., Properties of asphaltenes from a waxy crude, Fuel, 1991, 70:1293-1297
    62. Fuhr B.J. and Holloway L.R. Analytical considerations related to asphaltenes and waxes in the same crudes. Energy & Fuels, 1999, 13:336-339
    63. Geng A. and Liao Z. Kinetic studies on the pyrolysis of asphaltenes from different types of kerogens. Chinese Science Bulletin, 2000, 45, Supplement: 53-59
    64. Gohring K E H, Schenck P A, Engelhardt E D. A new series of isoprenoid isoalkanes in crude oils and cretaceous bituminous shales. Nature, 1967, 215:503~505;
    65. Grag A.G. and Philp R.P. Pyrolysis-gas chromatography of asphaltenes/kerogens from source rocks of the Gandhar Basin, India. Organic Geochemistry, 1994, 21:383-392
    66. Grass G. van. Biomarker distributions in asphaltenes and kerogen analysed by flash pyrolysis-gas chromatography-mass spectrometry. Organic Geochemistry, 1986, 10: 1127-1135
    67. Grasset L, Guignard C, Ambles A. Free and esterified aliphatic carboxylic in humin and humic acids from a peat sample as revealed by pyrolysis with tetramethylammonium hydroxide or tetramethylammonium acetate. Organic Geochemistry, 2002, 33:181~188;
    68. Greenwood P.F., Arouri K.R. and George S.C. Tricyclic terpenoid composition of Tasmanites kerogen as determined by pyrolysis GC-MS. Geochimica et Cosmochimica Acta, 2000, 64:1249-1263
    69. Groenzin H. and Mullins O.P. Molecular size and structure of asphaltene from various sources. Energy & Fuels, 2000, 14:677-684
    70. Gurgey K. Geochemical effects of asphaltenes separation procedures: Changes in sterane, terpane, and methylalkane distribution in maltenes and asphaltene co-precipitates. Organic Geochemistry, 1998, 29:1139-1147
    71. Hammami A., Phelps C.H. and Monger-McChure T. et al. Asphaltene precipitation from live oil: An experimental investigation of onset conditions and reversibility. Energy & Fuels, 2000, 14:14-18
    72. Hanson A.D., Zhang S.C. and Moldowan J.M. Molecular organic geochemistry of the Tarim basin, Northwest China. AAPG bulletin, 2000, 84:1109-1128
    73. Hartgers W.A., Sinninghe Damste J.S. and de Leeuw J.W. Identification of C2-C4 alkylated benzenes in flash pyrolysates of kerogens, coals and kerogens. Journal of Chromatography A, 1992, 606:211-220
    74. Hartgers W.A., Sinninghe Damste J.S. and De Leeuw J.W. Geochemical significance of alkylbenzene distribution in flash pyrolysates of kerogens, coals, and asphaltenes. Geochimica et Cosmochimica Acta, 1994, 58:1759-1775
    75. Hartgers W.A., Sinninghe Damste J.S. and Requejo A.G. Evidence for only minor
    
    contributions from bacteria to sedimentary organic carbon. Nature, 1994, 369;224-227
    76. Hatcher P.G. and Clifford D.J. Flash pyrolysis and in situ methylation of humic acids from soils. Organic Geochemistry, 1994, 21:1091-1092
    77. Hoffmann C.F. et al., Hydrocarbon biomarkers from Ordovician sedimentary and the fossil alga Gloeocapsomorpha prisca Zalessky 1917, G.C.A., 1987,51:2681-2697
    78. Hofmann I.C., Hutchison J. and Robson J.N. Evidence of sulphide links in a crude oil asphaltene and kerogen from reductive cleavage by lithium in ethylamine. Organic Geochemistry, 1992, 19:371-387
    79. Hold I.M., Schouten S. and van der Gaast S.J. Origin of prist -1-ene and prist -2-erie in kerogen pyrolysates. Chemical Geology, 2001, 172:201-212
    80. Ignasiak T., Kemp-Jones A.V and Strausz O.P. The molecular structure of Athabasca asphaltene. Cleavage of the carbon-sulfur bonds by radical ion electron transfer reactions. Journal of Organic Chemistry, 1977, 42:312-320
    81. Ignasiak T.M., Kotlyar L. and Samman N. et al., Preparative gel permeation chromatography of Athabasca asphaltene and the relative polymer-forming propensity of the fractions, Fuel, 1983, 62:363-369
    82. Johns R B, Belsky T, McCarthy E D, et al. The organic geochemistry of ancient sediments-Part Ⅱ. Geochimica et Cosmochimica Acta, 1966, 30:1191~1222.
    83. Jones D.M., Douglas A.G. and Connan J. Hydrous pyrolysis of asphaltenes and polar fractions of biodegraded oils. Organic Geochemistry, 1988, 13:981-993
    84. Kohnen M.E.L., Sinninghe Damste J.S. and Kock-Van Dalen A.C. et al. Di- or polysulphide-bound biomarkers in sulphur-rich geomacromolecules as revealed by selective chemolysis. Geochimica et Cosmochimica Acta, 1991, 55:1375-1394
    85. Koopmans M.P., Irene W. and Rijpastra I.C. et al. A thermal and chemical degradation approach to decipher pristine and phytane in sedimentary organic matter. Organic Geochemistry, 1999, 30:1089-1104
    86. Koots J.A. and Speight J.G. Relations of petroleum resins to asphaltenes. Fuel, 1975, 54:179-184
    87. Kowalewsi I., Vandenbroucke M. and Huc A.Y. et al. Preliminary results on molecular modeling of asphaltenes using structure elucidation programs in conjunction with molecular simulation programs. Energy & Fuels, 1996, 10:97-107
    88. Kralert P G, Alexander R, Kagi R I. An investigation of polar constituents in kerogens and coal using pyrolysis-gas chromatography-mass spectrometry with in situ methylation. Organic Geochemistry, 1995, 23: 627~639;
    89. Larter S R, Soli H, Douglas A G, et al. Occurrence and significance of Prist-1-ene in kerogens pyrolysates. Nature, 1979, 279:405~408;
    90. Larter S R and Senftle J T. Improved kerogens typing for petroleum source rock analysis. Nature, 1985, 318:277~280;
    91. Leon O., Rogel E. and Espidel J. et al. Asphaltenes: Structral characterization self-association, and stability behavior. Energy & Fuels, 2000, 14:6-10
    92. Leon O., Contreras E. and Rogel E. et al. The influcence of the adsorption of amhiphiles and resins in controlling asphaltene flocculation. Energy & Fuels, 2001, 15:1028-1032
    93. Lu Xiuxiang, Zhang Yiwei and Jin Zhijun, Genesis of the Silurian asphalt sandstones in Tazhong uplift of Tarim basin, NW China. Scientia Geologica Sinica, 1997, 6:449-455
    
    
    94. Mansuy L., Bourezgui Y. and Garnier-Zarli E et al. Characterization of humic substances in highly polluted river sediments by pyrolysis methylation-gas chromatrography-mass spectrometry. Organic Geochemistry, 2001, 32:223-231
    95. Martin F., Gonzalez-Vila F.J. and del Dio J.C. et al. Pyrolysis dedvatization of humic substances. Journal of analytical and applied pyrolysis, 1994, 28:71-80
    96. Mohamed R,S and Ramos A.C.S. Aggregation behavior of two asphaltenic fractions in aromatic solvents. Energy & Fuels, 1999, 13:323-327
    97. Mojelsky T.W., Ignasiak T.M. and Frakman Z. et al. Structural features of Alberta oil sand bitumen and heavy oil asphaltenes. Energy & Fuels, 1992, 6:83-96
    98. Murgich J. and Abanero J.A. Molecular recognition in aggreagates formed by asphaltene and resin molecules from the Athabasca oil sand. Energy & Fuels, 1999, 13:278-286
    99. Mycke B., Hall K. and Leplat P. Carbon isotopic composition of individual hydrocarbons and associated gases evolved from micro-scale sealed vessel(MSSV) pyrolysis of high molecular weight organic material. Organic Geochemistry, 1994, 21:787-800
    100. Myhr M.B. Schou L. and Skjetne T et al. Characterization of asphaltenes and co-precipitated material from a Californian crude oil. Organic Geochemistry, 1990, 16: 931-941
    101. Nali M., Caccialanza G. and Ghiselli C. et al. Tmax of asphaltenes: a parameter for oil maturity assessment. Organic Geochemistry, 2000, 31:1325-1332
    102. Odden W., Barth T. and Talbot M.R. Compound-specific carbon isotope analysis of natural and artificially generated hydrocarbons in source rocks and petroleum fluids from offshore Mid-Norway. Organic Geochemistry, 2002, 33:47-65
    103. Orr W.L. Kerogen/asphaltene/sulphur relationships in sulfur-rich Monterey oils. Organic Geochemistry, 1986, 10:499-516
    104. Payzant J.D., Lown E.M. and Strausz O.P. Structural units of Athabasca asphaltene: The aromnatics with a linear carbon framework. Energy & Fuels, 1991,5:445-453
    105. Pelet R., Behar F. and Monin J.C. Resins and asphaltenes in the generation of petroleum. Organic Geochemistry, 1986, 10:481-498
    106. Peng P., Morales-Izquierdo A. and Hogg A. et al. Molecular strcucture of Athabasca asphaltene: sulfide, ether and ester linkages. Energy & Fuels, 1997, 11:1171-1187
    107. Peng P., Morales-Izquierdo A. and Lown E.W. et al. Chemical structure and biomarker content of Jinghan asphaltenes and kerogens. Energy & Fuels, 1999, 11:248-265
    108. Peng P., Fu J. and Sheng G. et al. Ruthenium-ions-catalyzed oxidation of an immature asphaltene: structural features and biomarker distribution. Energy & Fuels, 1999,13:266~277
    109. Pernyeszi T., Patzko A. and Berkesi O et al. Asphaltenes adsorption on clays and crude oil reservoir rocks. Colloids and Surfaces A, 1998, 137:373-384
    110. Perters K.E. and Moldowan J.M. Effects of source, thermal maturity, and biodegradation on the distribution and isomerization of homohopanes n petroleum. Organic Chemistry, 1991, 17:47-61
    111. Philp R.P., Bakel A. and Galvez-Sinibaldi A. et al. A comparison of organosulphur compounds produced by pyrolysis of asphaltenes and those present in related crude oils tar sands. Organic Geochemistry, 1988, 13:915-926
    112. Philp R.P. and Gilbert T.D. Source rock and asphaltene biomarker characterization by
    
    pyrolysis-gas chromatography-mass spectrometry-multiple ion detection. Geochimica et Cosmochimica Acta, 1985, 49:1421-1432
    113. Premovic P.I., Jovanovic L.S. and Nikolic G.S. Thermal stability of the asphaltene/kerogen vandyl porphyrins. Organic Geochemistry, 1996, 24:801-814
    114. Putschew A., Schaeffer P. and Schaeffer-Reiss C et al. Carbon isotope characteristics of the diaromatic carotenoid, isorenieratene and a novel isomer in sediments. Organic Geochemistry, 1998, 29:1849-1856
    115. Rassamdana H., Farhani M. and Dabir B. et al. Asphalt flocculation and deposition. Ⅴ. Phase behavior in miscible and immiscible injections. Energy & Fuels, 1999,13:176-187
    116. Regtop R.A., Crisp P.T. and Ellis J. et al. 1-Pristene as a precursor for 2-pristene in pyrolysates of oil shale from Condor, Australia. Organic Chemistry, 1986, 9:233-236
    117. Requejo A.G., Creaney A.S. and Gray C.N. et al. Aryl isoprenoids and diaromatic carotenoids in Paleozoic source rocks and oils from the Western Canada and Williston basins. Organic Geochemistry, 1992, 19:245-264
    118. Richnow H.H., Jensch A. and Michaels W. Structural investigation of sulphur-rich macromolecular oil fractions and a kerogen by sequential chemical degradation. Organic Geochemistry, 1992, 19:351-370
    119. Richnow H.H., Jensch A. and Michaels W. The chemical structure of macromolecular fractions of a sulfur-rich oil. Geochimica et Cosmochimica Acta, 1993, 57:2767-2780
    120. Rogel E., Leon O. and Torres G. Aggregation of asphaltenes in organic solvents using surface tension measurements. Fuel, 2000, 79: 1389-1394
    121. Rooney M.A., Vuletich A.K. and Griffith C.E. Compound-spcific isotope analysis as a tool for characterizing mixed oils: an example from the west of Shetlands area. Organic Geochemistry, 1998, 29: 241-254;
    122. Rubinstein I, Spyckerelle C and Strausz O P. Pyrolysis of asphalternes: a source of geochemical information. Geochimica et Cosmochimica Acta, 1979, 43:1-6.
    123. Rubinstein I. and Strausz O. P. Thermal treatment of the Athabasca oil sand bitumen and its component part. Geochemica et Cosmochemica Acta, 1979, 41:1887-1893.
    124. Saiz-Jimenez C. Reactivity of the aliphatic humic moiety in analytical pyrolysis, Organic Geochemistry, 1995, 23:955~961;
    125. Samman N., Ignasiak T. and Chen C.J. et al. Squalene in petroleum asphaltenes. Science, 1981, 213:1381-1383
    126. Schaeffer-Reiss C., Schaeffep P. and Putschew A et al. Stepwise chemical degradation of immature S-rich kerogens from Vena del Gesso(Italy). Organic Geochemistry, 1998, 29:1857-1873;
    127. Schhouten S., Pavlove D. and Sinninghe Damste J.S. et al. Nickel boride: an improved desulphurizing agent for sulphur-rich geomacromolecules in polar and asphaltene fractions. Organic Geochemistry, 1993, 20:901-909
    128. Seifert W.K. and Moldowan J.M. Paleoreconstruction by biological markers. Geochimica et Cosmochimica Acta, 1981, 45:783-794
    129. Seifert W.K. Steranes and terpanes in kerogen pyrolysis for correlation of oils and source rocks. Geochimica et Cosmochimica Acta, 1978, 42:473-484
    130. Sheu E.Y., DeTar M.M. and Storm D.A. et al. Aggregation and kinetics of asphaltenes in organic solvents, Fuel, 1992, 71: 299-302
    
    
    131. Sheu E.Y. and Storm D.A., Reply to S.E. Taylor from E.Y. Sheu and D.A. Storm, Fuel, 1994, 73:1368
    132. Sheu E.Y. Petroleum Asphaltene-Properties, Characterization, and Issues. Energy & Fuels, 2002, 16:74-82
    133. Sinninghe, J. S., De Las Hers, F. X. C., van Bergen, P. F. et al., Characterization of Tertiary Catalan lacustrine oil shales: Discovery of extremely organic sulphur-rich type Ⅰ kerogens. Geochimica et Cosmochimica Acta, 1993, 57:389~415
    134. Sinninghe Damste J.S., Dalen A.C. and De Leeuw J.W. et al. Identification of homologous series of alkylated thiophenes, thianes and benzothiophenes present in pyrolysates of sulphur-rich kerogens. Journal of Chromatrography, 1989, 53:873-889
    135. Sinninghe Damste J.S. and de Leeuw J.W. Analysis, structure and geochemical significance of organically-bound sulphur in the geosphere: State of the art and future research. Organic Geochemistry, 1990, 16:1077-1101
    136. Solli H. and Leplat P. Pyrolysis-gas chromatography of asphaltenes and kerogens from source rocks and coals-A comparative structural study. Organic Geochemistry. 1986, 10:313-329
    137. Stachowiak Ch., Grolier J.P.E. and Randzio S.L. Transitiomertric investigation of asphaltenic fluids under in-wel pressure and temperature conditions. Energy & Fuels, 2001, 15:1033-1037
    138. Sternberg H.W., Raymond R. and Schweighardt F.K. Acid-base structure of coal-derived asphaltenes. Sciences, 1975,188:49-51
    139. Storm D.A., Sheu E.Y. and DeTar M.M. Macrostructure of asphaltenes in vacuum residue by small-angle X-ray scattering. Fuel, 1993, 72:977-981
    140. Storm D.A., DeCanino S.J. and DeTar M.M. et al. Upper bound on number average molecular weight of asphaltenes. Fuel, 1990,69:735-738
    141. Storm D.A. and Sheu E.Y. Characterization of colloidal asphaltertic particles in heavy oil. Fuel, 1995, 74:1140-1145
    142. Strausz O.P., Mojelsky T.W. and Lown E.M. The molecular structure of asphaltene: an unfolding story. Fuel, 1992, 71:1355-1363
    143. Strausz O.P., Peng P. and Murgich J. About the colloidal nature of Asphaltene and the MW of covalent monomeric units. Energy & Fuels, 2002,16:809-822
    144. Strausz O.P., Mojelsky T.W. and Faraji F. et al. Additional structural details on Atheabasca asphaltene and their ramifications. Energy & Fuels, 1999, 13:207-227
    145. Strausz O.P., Mojelsky T.W. and Lown E.M. et al. Structural features of Bosean and Dud asphaltenes. Energy & Fuels, 1999, 11:228-247
    146. Strausz O.P. Preface of Advances in the Chemistry of Asphaltenes and Related Substances. Energy & Fuels, 1999, 13:205-206
    147. Su Y., Artok L. and Murata S. Structural analysis of the asphaltene fraction of an Arabian mixture by a ruthenium-ion-catalyzed oxidation reaction. Energy & Fuels, 1998, 12:1265-1271
    148. Summons R E and Powell T G. Chlorobiaceae in Paleozoic seas revealed by biological markers, isotopes and geology. Nature, 1986, 319:763~765.
    149. Summons R E and Powell T G. Identification of aryl isoprenoids in source rocks and crude oils: Biological markers for the green sulphur bacteria. Geochimica et
    
    Cosmoehimica Acta, 1987, 51:557~566
    150. Sun Y., Xu S. Lu H. et al. Source facies of the palezoic petroleum systems in the Tabei uplift, Tarim basin, NW China. Organic Geochemistry, 2003, 34:629-634
    151. Talyor S.E, Use of surface tension measurements to evaluate aggregation of asphaltenes in organic solvents, Fuel, 1992, 71:1338-1339
    152. Tanaka R., Hunt J.E. and Winans R.E. et al. Aggregates structure analysis of petroleum asphaltenes with small-angle neutron scattering. Energy & Fuels, 2003, 17:127-134
    153. Tannenbaum E., Ruth E. and Huizinga B.J. Biological marker distribution in coexisting kerogen, bitumen and asphaltenes in Monterey Formation diatomite, California. Organic Geochemistry, 1986, 10:531-536
    154. Thanh N.X., Hsieh M. and Philp R.P. Waxes and asphaltenes in crude oils. Organic Geochemistry, 1999, 30:119-132
    155. Tissot B.P. and Welte D.H. Petroleum formation and occurrence. Berlin: Springer-Verlag, 1984. P403-408
    156. Tissot B.P. Recent advances in petroleum geochemistry applied to hydrocarbon exploration. AAPG bulliten, 1984, 68:545-563
    157. van Grass G, De Leeuw J W, Schenck P A. Kerogen of Toarcian shales of the Paris Basin. A study of its maturation by flash pyrolysis techniques. Geochimiea et Cosmochimica Acta, 1981, 45:2465~2474;
    158. Wang J.X. and Buekley J.S. A two-component solubility model of the onset of asphaltene flocculation in crude oils. Energy & Fuels, 2001, 15: 1001-1012
    159. Wilhelms A., Larter S.R. and Hall K. A comparative study of the stable carbon isotopic composition of crude oil alkanes and associated crude oil asphaltene pyrolysate alkanes. Organic Geochemistry, 1994, 21: 751-759;
    160. Wilson M A, Philp R P, Gillam A H, et al. Comparison of structures of humic substances from aquatic and terrestrial sources by pyrolysis gas chromatography-mass spectrometry. Geochimica et Cosmochimica Acta, 1983, 47: 497~502;
    161. Xiao X, Liu D, Fu J. Multiple phases of hydrocarbon generation and migration in the Tazhong petroleum system of the Tarim basin, People's Republic of China. Organic Geochemistry, 1996, 25: 191~197;
    162. Xiao X., Wilkins R.W.T. and Liu Z. et al. A preliminary investigation of the optical properties of asphaltene and their application to source rock evaluation. Organic Geochemistry, 1998, 28:669-676
    163. Xiong Y.Q. and Geng A.S. Carbon isotopic composition of individual n-alkane in asphaltene pyrolysates of biodegraded crude oils from the Liaohe Basin,China. Organic Geochemistry, 2000, 31:1441-1449;
    164. Xu Yingnian, Koga Y. and Strausz O.P. Characterization of Athabasca asphaltenes by small-angle X-ray scattering. Fuel, 1995, 74:960-964
    165. Yen T.F., Erdman J.G. and Pollack S.S. Investigation of the structure of petroleum asphaltene by X-ray diffraction. Analytical Chemistry, 1961,33:1587-1594
    166. Zhang S., Hanson A.D. and Moldowan J.M. et al. Paleozoic oil-source rock correlations in the Tarim basin, NW China. Organic Geochemistry, 2000, 31: 273-286

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700