用户名: 密码: 验证码:
ANAMMOX与反硝化协同反应器运行特性及处理垃圾渗滤液研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水体氮素污染日益严重,是成为引起水质恶化、生物多样性降低的主要因素之一,己成为人们关注的焦点。厌氧氨氧化(ANAMMOX)菌是一种化能自养专性厌氧菌,与传统的生物脱氮工艺相比,具有无需外加有机碳源,不产生二次污染、节省能耗等优点,具有广阔的应用前景。然而实际的含氮废水中往往存在有机物,会对厌氧氨氧化产生一定的抑制作用。同时在将ANAMMOX技术应用于实际工程的过程中,还面临着进水水质冲击条件下反应器稳定性低、出水硝氮含量高等问题。
     试验的第一部分:为有效的解决上述提到的问题,我们向一套3.2 L具有填料的上流式厌氧污泥床反应器装置中分别接种了含有反硝化菌以及ANAMMOX的混合污泥,在进水TN容积负荷为0.25 kg·(m~3·d)~(-1),进水氨氮与亚硝氮质量浓度比值为1︰1.32,进水有机物(葡萄糖)浓度与TN浓度的比值为1:1的情况下,用时35天成功地实现了二者的协同脱氮反应。与应用甲醇作为碳源启动反应器相比,前者在处理效果和启动时间方面优于后者。反应器(葡萄糖为碳源)对氨氮、亚硝氮、TN和COD的去除率分别高达95.4%、99.3%、94.3%和94.1%,出水硝氮的生成量为3.1 mg·L~(-1),三氮比即去除的氨氮︰去除的亚硝氮︰生成的硝氮=1︰1.33︰0.03。反应器(甲醇为碳源)对氨氮、亚硝氮、TN和COD的去除率分别为94.1%、97.2%、91.8%和89.4%,出水硝氮的生成量为4.35 mg·L~(-1),反应器的三氮比为1︰1.36︰0.04。较之传统的ANAMMOX反应三氮比1︰1.32︰0.26,ANAMMOX与反硝化的协同作用在进一步提高脱氮效果的同时,可以降低反应器出水中硝氮含量,对于进一步改善ANAMMOX工艺的出水水质及运用该工艺处理含氮有机废水均具有重要意义。
     试验的第二部分:通过对进水负荷4个阶段的控制调节,考察了其对协同反应器运行的影响。经试验发现,在低水力负荷条件下(0.77~1 L·(L·d)~(-1)),反应器运行良好,硝氮的生成量低。进一步调高水力负荷至1.11~1.67L·(L·d)~(-1),NH_4~+-N和NO_2~--N的去除率分别下降为70.4%和81.7%。COD的去除率也由之前的89%变为81%。当水力负荷增至最高的2~4L·(L·d)~(-1),氨氮、亚硝氮和COD的去除率分别只有54.2%,73.9%和76.6%,硝氮的生成量也增大到了9.97mg·L~(-1)。通过调低水力负荷至第一阶段,协同脱氮效果基本上能够恢复到之前的水平,表明反应器具备了一定的抗负荷冲击能力。同时瞬时低温会对反应器产生较大影响,使得其处理效果变差。但反应器内的菌群具备抵御低温并较快恢复的能力,保证了反应器在较短时间(30d)内二次启动的成功。
     试验的第三部分,将原人工配水中的氨氮与有机物由稀释过后的垃圾渗滤液组分代替,考察了协同反应器在处理实际含氮废水时的运行效果。研究表明:在稳定期,反应器对氨氮、亚硝氮、TN、COD的平均去除率分别为97.4%、96.4%、87.2%和74.8%。对TN和COD最大容积去除率为120.5和119.9 g·(m~3·d) ~(-1)。过高的负荷会对反应器启抑制作用,且抑制产生后协同作用难以恢复到原来水平。当厌氧氨氧化与反硝化建立起协同关系时,pH值与碱度均存在着一定的特征性变化。
Nitrogen pollution in aquatic bodies, which is considered as one of the main causes to the water quality deterioration and biodiversity shrinkage, has become an increasingly serious environmental issue and has been addressed worldwide. Anaerobic ammonium oxidation (ANAMMOX) is a anaerobic chemoautotroph microbes. Compared to the conventional biological nitrogen removal process, it is more promising due to its advantages of absence of additional carbon source and avoiding secondary pollution as well as saving energy. However, there is some organisms in nitrogenous wastewater,which have a certain effect on ANAMMOX. Meanwhile, in an attempt to put ANAMMOX into practical engineering application, many problems still remain unsolved, i.e, the instability issue caused by influent loading shock and the nitrate production in the ANAMMOX-treated effluent .
     In part 1 of the test, in order to deal with the problems above effectively,we made sludge with denitrifying bacteria and ANAMMOX sludge mixed and then seeded them into a 3.2L USAB with biofilm. The ANAMMOX-Denitrification reactor was successfully started-up within 35 days in conditions of the influent nitrogen loading rate at 0.25 kg·m~3·d~(-1),an organic (glucose) loading to total nitrogen (TN) ratio of 1 and nitrite loading to ammonia loading of 1.32. Compare with the Start-up of ANAMMOX-Denitrification reactor with methanol , the former had more advantage in treatment effect and start-up time than the latter . The removal efficiencies of ammonia, nitrite, TN and COD in the reactor using glucose as carbon source were found high up to 95.3%, 99.1% , 94.0% and 93.2% respectively, and the nitrate production in effluent was 3.2mg·L~(-1). The removal efficiencies of ammonia, nitrite, TN and COD in the reactor using methanol as carbon source were found high up to 94.1%, 97.2% , 92.2% and 89.4% respectively, and the nitrate production in effluent was 4.35mg·L~(-1).The average ratio of removed ammonia, removed nitrite and generated nitrate was 1﹕1.36﹕0.02 in ANAMMOX-Denitrification reactor,Compare to the ratio of three kind of nitrogen(1︰1.32︰0.26) in traditional ANAMMOX reactor. The synergism between ANAMMOX and denitrification could enhance nitrogen and phosphorus removal effect, and reduced the nitrogen production, It is of importance to improve the quality of the effluent from the ANAMMOX reactor, and it is also essential for treating the nitrogenous organic wastewater.
     In part 2 of the test, Effect of hydraulic loading for ANAMMOX-Denitrification reactor was investigated by modulating the hydraulic loading of reactor in four sequential periods. It was found that at low hydraulic loading(0.77~1 L·(L·d)~(-1)), the reactor worked well, and the amount of nitrate production in effluent is small. Hydraulic loading was further raised to 1.11~1.67L·(L·d)~(-1), NH_4~+-N and NO_2~--N removal efficiencies decreased to 70.4% ,81.7%, and the removal efficiencies of COD was now 89% instead of 81% before. When hydraulic loading was rasied to 2~4L·(L·d)~(-1), the average removal rates of ammonia,nitrite and COD showed a marked drop,which were only 54.2%,73.9% and 81% respectively,and the nitrate production in effluent was 9.97mg·L~(-1). Through turning down the hydraulic loading again,the effect of ANAMMOX-Denitrification synergistic interaction could be recovered,which demonstrated that the reactor has a certain anti-force capability. Great influence was observed when running the reactor at low temperature,which reduced the treatment effect of reactor. However, the microbes in the reactor have capabilities of cold resisting and faster recovery,which would ensure the success in the second start-up of the reactor.
     In part 3 of the test, When ammonia and organism in synthetic water were from landfill leachate, practical performance of the synergetic reactor treating nitrogenous wastewater was investigated. The results obtained indicated that during the steady states, the average removal efficiencies of ammonium, nitrite, TN and COD in Reactor were 97.4%、96.4%、87.2%, 74.8%, respectively. The maximum volumetric loading conversion of TN and COD in Reactor were 120.5 and 119.9 g/(m~3·d), respectively. The synergism in the reactors was inhibited due to overload, and was hard to recover to the previous performance once overload taken place. When the synergism was builded, characteristic changes were presented in the pH value and alkalinity.
引文
[1]叶建锋.废水脱氮处理技术[M].北京:化学工业出版社,2006:1-206.
    [2] GB 18918-2002,城镇污水处理厂污染物排放标准[S].北京:中国标准出版社, 2002.
    [3] GB 16889-2008,生活垃圾填埋场污染控制标准[S].北京:中国标准出版社, 2008.
    [4]李俊然,陈利顶,郭旭东,等.土地利用结构对非点源污染的影响[J].中国环境科学, 2000,(06):506-510.
    [5]黄海波,高扬,曹洁君,等.都市农业村域地下水非点源氮污染及其风险评估[J].水土保持学报, 2010,(03):201-206.
    [6]李海鹏,张俊飚.中国农业面源污染的区域分异研究[J].中国农业资源与区划, 2009,(02) :311-317.
    [7]郑兴灿.城市污水处理技术决策与典型案例[M].北京:中国建筑工业出版社,2007:1-469.
    [8]过龙根.大型浅水富营养湖泊—巢湖的渔业生态学研究[D].北京:中国科学院研究生院(水生生物研究所), 2005 .
    [9]赵庆良,李巍.废水脱氮工艺的原理、特征与应用[J].黑龙江大学自然科学学报,2005, 22(5): 580-587.
    [10]刘国文.有色金属冶炼氨氮废水处理方法研究[J].湖南有色金属,2004,20(3): 37-40.
    [11]夏素兰,周勇,曹丽淑,朱家骅.城市垃圾渗滤液氨氮吹脱研究[J].环境科学与技术, 2000,(03):233-240.
    [12]马敬环,刘家祺,王洪军,战佩英.离子交换与微滤膜技术在过氧化氢净化中的应用[J].离子交换与吸附, 2002,(04):333-340.
    [13] Hurd S, Kennedy K J, Droste R L. Low-pressure reverse osmosis treatment of landfill leachate[J]. Waste Technology and Management, 2001, 27(1): 1-14.
    [14]袁维芳,王国生,汤克敏.反渗透法处理城市垃圾填埋场渗沥液[J].水处理技术, 1997, 23(6): 333-336.
    [15] Chan G Y S, Chang J, Kurniawan T A, et al. Removal of non-biodegradable compounds from stabilized leachate using VSEPRO membrane filtration[J]. Desalination, 2007, 202:310-317.
    [16] Ye R W, Thomas S M. Microbial nitrogen cycles: physiology, genomics and applications[J]. Current Opinion in Microbiology, 2001, 4(3): 307-312.
    [17]周少奇.环境生物技术[M].北京:科学出版社, 2003:1-342.
    [18]杜兵,孙艳玲,刘寅,等.新型亚硝化工艺开发研究[J].给水排水, 2006, 32(9): 17-20.
    [19] Qi R, Yang K, Yu Z X. Treatment of coke plant wastewater by SND fixed biofilm hybrid system[J]. Journal of Environmental Sciences, 2007, 19(2): 153-159.
    [20]熊红权,李文彬. CASS工艺在国内的应用现状[J].中国给水排水, 2003,(02): 211-217.
    [21]孙锦宜.含氮废水处理技术与应用环境科学[M].北京:化学工业出版社,2003: 1-333.
    [22]陈际达,陈志胜,张光辉,唐昌敏.含氮废水亚硝化型硝化的研究[J].重庆大学学报(自然科学版), 2000,(03):122-127.
    [23] Voets J, Vanstanen H L, Verstraete W L. Removal of nitrogen from highly nitrogenous wastewater[J]. Journal of Water Pollution Control Federation, 1975(47): 394-398.
    [24] Sutherson S, Ganczarczyk J J. Inhibition of nitrite oxidation during nitrification: some observation[J]. Wat. Pollu. J. Can., 1986, 21: 257-266.
    [25] Abeling U, Seyfried C F. Anaerobic-aerobic treatment of high strength ammonium wastewater-nitrogen removal via nitrite[J]. Wat. Sci. Tech., 1992, 26: 1007-1015.
    [26] He S B, Xue G, Wang B Z. Factors affecting simultaneous nitrification and denitrification (SND) and its kinetics model in membrane bioreactor[J]. J. Haz. Mat., 2009, 168(2-3): 704-710.
    [27] Weissenbacher N, Loderer C, Lenz K, et al. NOx monitoring of a simultaneous nitrifying–denitrifying (SND) activated sludge plant at different oxidation reduction potentials[J]. Wat. Res., 2007, 41(2): 397-405.
    [28] Broda E. Two kinds of lithotrophs missing in nature[J]. Z. Allg. Microbiol., 1977, 17: 491-493.
    [29] Mulder A, Van de Graaf A A, Robertson L A, et al. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor[J]. FEMS microbiol. Ecol., 1995, 16(3): 177-183.
    [30] Schmid M, Maas B, Dapena A. Biomarkers for in situ detection of anaerobic ammonium-oxidizing (ANAMMOX) bacteria[J]. Appl. Environ. Microbiol., 2005, 71: 1677-1684.
    [31] Jetten S M M, Wagner M, Fuerst J, et al. Microbiology and application of the anaerobic ammonium oxidation(Anammox) process[J]. Current Opinion in Biotechnology, 2001, 12: 283-288.
    [32] Ghosh W,Mandal S,Roy P. Paracoccus bengalensis sp.nov.a novel sulfur-oxidizing chemolithoautotroph from the rhizospheric soil of an Indian tropical leguminous plant .Systematic and Applied Microbiology, 2006, 29 (5) :396-403 .
    [33]秦玉洁,周少奇,朱明石.厌氧氨氧化反应器微生态的研究[J].环境科学, 2008, 29(6): 1638-1643.
    [34] Penton, C. R., Devol, A. H., Tiedje, J. M. Molecular Evidence for the Broad Distribution of Anaerobic Ammonium-Oxidizing Bacteria in Freshwater and Marine Sediments. Appl. Environ. Microbiol. 2006, 72(3): 829-832.
    [35] Schalk J, Oustad H, Kuenen J G, et al. The anaerobic oxidation of hydrazine: a novel reaction in microbial nitrogen metabolism[J]. FEMS Microbiology Letters, 1998, 158: 61-67.
    [36] Strous M, Heijnen J J, Kuenen J G, et al. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium oxidizing microorganisms[J]. Appl. Microbiol. Biotechnol., 1998, 50(27): 589-596.
    [37]周少奇.厌氧氨氧化与反硝化协同作用化学计量学分析[J].华南理工大学学报(自然科学版),2006, 34(5): 1-4.
    [38] Van de Graaf A A, de bruijn P, Robertson L A, et al. Metabolic Pathway of anaerobic ammonium oxidation on the basis of 15N studies in a fluidized bed reactor[J]. Microbiol., 1997, 143(7): 2415-2421.
    [39] Fdz-Polanco F, Fdz-Polanco M, Fernandez N, et al. New process for simultaneous removal of nitrogen and sulphur under anaerobic conditions[J]. Wat. Res., 2001, 35(4): 1111-1114.
    [40] Schmid M, Schmitz-Esser S, Jetten M, et al. 16S-23S rDNA intergenic spacer and 23S rDNA of anaerobic ammonium-oxidizig bacteria: implications for phylogeny and in situ detection[J]. Environ. Microbiol., 2001, 3(7): 450-459.
    [41]周少奇,姚俊芹. UASB厌氧氨氧化反应器启动研究[J].食品与生物技术学报, 2005, 24(6): 1-5.
    [42]周少奇.氨氮厌氧氧化的微生物反应机理[J].华南理工大学学报(自然科学版), 2000, 28(11): 16-19. [43 ] Jetten MSM, Strous M, Van de Pas-Schoonen KT, et al. The anaerobic oxidation of ammonium .FEMS Microbiology Reviews, 1999, 22 (5) :421-437 .
    [44] Tal Y, Watts J E M,Schreier H J. Anaerobic ammonia-oxidizingbacteria and related activity in Baltimore inner harbor sediment[J].Appl.Environ.Microbiol,2005, 71 :1816-1821 .
    [45] Ingo Schmidt, E.Bock. Anaerobic ammonia oxidation with nitrogen dioxide by Nitrosomonas eutropha[J]. Archives of Microbiology, 1997,167(2-3) .
    [46] Siegrist H, Reithaar S, Lais P. Nitrogen loss in a nitrifying rotaTNg contactor treaTNg ammonium rich leachate without organic carbon[J]. Wat. Sci. Tech., 1998, 37(4-5): 589-591.
    [47] Thamdrup B, Dalsgaard T. Production of N-2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments[J]. Appl. Environ. Microbiol.,2002, 68(3): 1312-1318.
    [48] Dalsgaard T, Canfield D E, Petersen J, et al. N2 production by the ANAMMOX reaction i n the anoxic water column of Golfo Dulce Costa Riea[J]. Nature, 2003, 422(6932): 606-608.
    [49] Dapena-Moraa, J. L. Camposa, A. Mosquera-Corrala, et al. Stability of the ANAMMOX process in a gas-lift reactor and a SBR [J]. Journal of Biotechnology, 2004, 5(2): 159-170.
    [50] Strous M, Van Gerven E, Kuenen J G, et al. Effects of aerobic and microaerobic conditions on anaerobic ammonium-oxidizing (ANAMMOX) sludge[J]. Appl. Environ. Microbiol., 1997, 63(6): 2446-2448.
    [51]孙艳波,周少奇,李伙生,杨志泉.氮素负荷及高温冲击对UASB-ANAMMOX反应器的运行影响研究[J].化工进展, 2009,28(9): 1672-1676.
    [52] Schmid M, Walsh K, Webb R, et al. Candidatu“sScalindua brodae”, sp. Nov., Candidatus“Scalindua wagneri”, sp. nov., two new species of anaerobic ammonium oxidizing bacteria[J]. Syst. Appl. Microibiol., 2003, 26(4): 529-538.
    [53] Van de Graaf, de Brujin P, Robertson L A, et al. Autotrophic growth of anaerobic ammonium-oxidizing microorganisms in a fluidized bed reactor[J]. Microbiology, 1996, 142: 2187-2196.
    [54]郑平,胡宝兰.厌氧氨氧化菌混培物生长及代谢动力学研究[J].生物工程学报, 2001, 17(2): 193-198.
    [55] Van Dongen U, Jetten M S M, Van Loosdrecht M C M. The SHARON-Anammox process for treatment of ammonium rich wastewater[J]. Wat. Sei. Teeh., 2001, 44(l): 153-160.
    [56] Gable J E. Anaerobic ammonium oxidation during soil aquifer treatment[D]. Arizona: Arizona state university, 2002.
    [57] Thamdrup B, Dalsgaard T. Production of N-2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments[J]. Appl. Environ. Microbiol.,2002, 68(3): 1312-1318.
    [58]魏琛,陆天友,钟仁超,王萍. HRT及氮素负荷对厌氧氨氧化系统的影响[J].环境科学学报, 2010,15(4): 1044-1051.
    [59]朱明石,周少奇,曾武. UASB反应器厌氧氨氧化菌的脱氮特性研究[J].环境工程学报, 2008,(01):567-572.
    [60]郑平,吴明生,金仁村.有机物对ANAMMOX反应器运行性能的影响[J].环境科学学报, 2006, 26(7): 1087-1092.
    [61] Marc Strous,J. Gijs Kuenen,John A. Fuerst,M. Wagner,Mike S.M. Jetten. The anammox case– A new experimental manifesto for microbiological eco-physiology[J]. Antonie van Leeuwenhoek, 2002,81(1-4) .
    [62]姚俊芹,周少奇.厌氧氨氧化生物脱氮研究进展[J].化工学报,2005, 56(10):1826-1831.
    [63] Toh S K, Ashbolt N J. Adaptation of anaerobic ammonium-oxidizing consortium to synthetic coke-ovens wastewater[J]. Appl. Microbiol. Biotechnol., 2002, 59(2-3): 344-352.
    [64] Hellinga C, Schellen AAJC, Mulder JW, et al. The SHARON process: an innovative method for nitrogen removal from ammonium-rich waste water .Water Science and Technology, 1998, 37 (9) :135-142 .
    [65]操家顺,蔡娟.新型生物脱氮工艺——CANON工艺[J].中国给水排水,2005, 21(08):26-29.
    [66] Kuai L, Verstraete W. Ammonium Removal by the Oxygen Limited Autotrophic Nitrification-Denitrification System[J]. Appl. Env. Microbiol., 1998, 64: 4500-4506.
    [67]叶建峰,徐祖信,薄国柱.新型生物脱氮工艺——OLAND工艺[J].中国给水排水, 2006, 22(04): 6-8.
    [68] Van Dongen U, Jetten M S M, Van Loosdrecht M C M. The SHARON-Anammox process for treatment of ammonium rich wastewater[J]. Wat. Sei. Teeh., 2001, 44(l): 153-160.
    [69] Van Kempen R, Mulder J W, Uijterllnde C A, et al. Overview: full scale experience of the SHARON process for treatment of rejection water of digested sludge dewatering[J]. Wat. Sei. Teeh., 2001, 44(1): 145-152.
    [70] Szatkowska B, Cema G, Plaza E, et al. One-stage system with partial nitrification and ANAMMOX processes in moving-bed biofilm reactor[A]. In: Proceedings of the International conference on biofilm systems VI, Amsterdam, 2006: 49-58.
    [71] Rosenwinkel K H, Cornelius A. Deammonification in the moving-bed process for the treatment of wastewater with high ammonia content[J]. Chem. Eng. Tech., 2005, 28: 49-52.
    [72]杜兵,司亚安,孙艳玲,刘寅.推流固定化生物反应器培养ANAMMOX菌[J].中国给水排水, 2003, 19(07): 62-65.
    [73]《水和废水监测分析方法》编委会.水和废水监测分析方法[M].第4版.北京:中国环境科学出版社, 2002.
    [74]杨洋,左剑恶,沈平,等.温度、pH值和有机物对厌氧氨氧化污泥活性的影响[J].环境科学, 2006, 27(4): 691-695.
    [75]李伙生,周少奇,孙艳波,彭华平.ANAMMOX与反硝化协同脱氮反应器的启动特性研究[J].中国给水排水, 2009, 25(21): 29-32.
    [76]孙艳波,周少奇,李伙生,覃芳慧. ANAMMOX与反硝化协同脱氮反应器启动及有机负荷对其运行性能的影响[J].化工进展, 2009, 60(10): 2596-2602.
    [77]田智勇,李冬,杨宏,等.上向流厌氧氨氧化生物滤池的启动与脱氮性能[J].北京工业大学学报, 2009, 35(4): 509-515.
    [78]陈胜,孙德智,遇光禄.填充床快速启动厌氧氨氧化反应器及其脱氮性能研究[J].环境科学, 2010, 31(3): 691-696.
    [79] Van der Star W R L, Abma W R, Blommers D, et al. Startup of reactors for anoxic ammonium oxidation: Experience from the first full-scale ANAMMOX reactor in Rotterdam[J]. Wat. Res., 2007, 41(18): 4149-4163.
    [80]张仲玲.反硝化脱氮外加碳源的选择[D].哈尔滨:哈尔滨工业大学,2010.
    [81]蔡碧婧.反硝化脱氮补充碳源选择与研究[D].上海:同济大学, 2008 .
    [82]胡永春,周少奇,钟红春.水力负荷对厌氧氨氧化反应器运行影响的研究[J].环境污染与防治, 2008, 30(1): 37-40.
    [83] Dosta J, Fernandez I, Vazquez-P J R, et al. Short and long-term effects of temperature on the Anammox process[J]. J. Haz. Mat., 2007, 63(6): 2446-2448.
    [84]郑平,徐向阳,胡宝兰,等.新型生物脱氮理论与技术[M].北京:科学出版社, 2004.
    [85]钟红春,周少奇,胡永春.垃圾渗滤液配水对UASB-ANAMMOX反应器进行二次启动的研究[J].环境科学, 2007, 28(11): 2473-2477.
    [86] Mosquera-Corral A, González F, Campos J L. Partial nitrification in a SHARON reactor in the presence of salts and organic carbon compounds[J]. Process Biochemistry, 2005, 40(9): 3109-3118.
    [87]叶建锋,薄国柱.低碳源条件下厌氧氨氧化影响因素的研究[J].水处理技术,2006,32(9): 30-33.
    [88] K. A. Bolton,L. J. Evans. Elemental composition and speciation of some landfill leachates with particular reference to cadmium[J]. Water, Air, and Soil Pollution, 1991,60(1-2) .

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700