用户名: 密码: 验证码:
多跳无线局域网络中的服务质量支持
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在过去的十年里,无线局域网(WLANs)在家庭、工作以及公共热点地区以一种历史上从来没有过的速度得到广泛的应用。与此同时,日趋流行的多媒体应用,以及各种服务从有线网络到WLANs的逐渐转移,增加了保障WLANS中的服务质量(QoS)的必要性。然而,由于恶劣的传输环境和有限的频率资源,为无线网络提供QoS比在有线网络中要更加复杂困难。再加上缺少中央控制器,而使用分布网络控制,这又增加了提供QoS的复杂性。
     协议栈中的MAC层对网络应用和服务性能有很重要的影响。因为MAC层的主要功能是提供使用数据的传输机制,共享媒介的公平访问控制和保护已发送的数据。因此,MAC协议在数据通信协议栈中占有很关键的地位。再加上近些年来实时通信需求的快速激增,迫切需要能提供优良QoS的MAC协议。因此,本课题研究的目的在于提出一个优先化的MAC协议,这个MAC协议能提供多种服务支持,能确保服务的QoS需求,还能提供对WLANs信道的最好利用。本文的主要研究工作和取得的成果如下:
     (1)改进了针对Q路由(Q-routing)问题的PSO算法。基于智能的Q路由算法提出了对每个受约束链接的确定性状态,而应用于合适路径的选择。本文研究的是包交换计算机网络,采用有向图模型。该仿真模型基于一种网络表示方法,借助启发态匹配每一个网络的配置,从而通过过滤不恰当的路径后选择合适的路由来在任何节点对之间建立路径。仿真的结果验证了所提出的算法改善了QoS需求。
     (2)提出了一种新的依赖于网络中中继器数量和位置的协同网络的框架。通过考虑能量优化,研究了中继器数量和位置的作用。首先在一系列可选的中继器中选择最佳的中继器,然后使用这个“最佳的”中继器在源和宿之间协作。基于仿真的性能分析证实了这个协同的中继框架拥有多方面增益的优势,从而改善了比特差错率性能。仿真的结果验证了所提出的协同中继节点选择算法可以通过获得协同增益来改善性能。
     (3)提出了一种复合的PSO,以解决在无线ad-hoc网络中的最小功率组播(MPM)问题。通过使用复合PSO,将MPM问题变为一个受限的数学优化问题。考虑到集中式算法需要一个全局性的网络信息,这在大型的无线网络下不切实际,于是对集中式算法采用分布式的方法并假设在有限的频带下可以获得多跳邻节点信息。对所提出的方法进行的多种模拟分析结果表明,本算法性能优于现有的技术。
     (4)基于智能算法实现了多播路由服务质量,构建多路广播树优化了与约束性能相关(最短路径,延迟,包丢失)的多目标函数。该算法分为两个步骤:第一,基于最短路径多播树选择算法;第二,找到具有两个或多个QoS参数的传播路由。仿真结果表明,所提出的算法是解决移动ad-hoc网络中受多个QoS约束的多播路由选择问题的有效方法。
In the past decade, Wireless Local Area Networks (WLANs) have gained popularity at an unprecedented rate, at home, at work and in public hot spot locations. Meanwhile, the increasing popularity of multimedia applications along with the gradual migration of applications from wired-networks to WLANs has increased the necessity of quality-of-service (QoS) support in WLANs. However, QoS provisioning in wireless networks is much more complex and difficult than in its wired counterpart, due to the hostile transmission environment and limited radio resources,. Moreover, due to the lack of central controller in the networks, distributed network control is required, which adds more complexity to QoS provisioning.
     As is known, the MAC layer of the protocol stack significantly affects the performance of network applications and services, with the major functions of providing a delivery mechanism for user data, fair access control to the shared medium, and protecting the delivered data. Accordingly, the MAC protocol is a very crucial part in the data communication protocol stack. Moreover, since the demand for the transmission of real-time traffic has been growing significantly in recent years, a MAC protocol which can provide good QoS is urgently required. Therefore, this research is aimed at proposing a prioritized MAC which supports multi-class services, to precisely guarantee the QoS requirements of services, and to provide excellent channel utilization in WLANs. The main contents of the paper and research contributions are briefly summarized as below:
     (1) Routing algorithm was enhanced by a PSO algorithm approach to the Q-routing problem. The Q-routing algorithm developed by adding intelligent represents determined state for each link to serve as constraint and contributes in choosing the appropriate path. The computer networks considered were packet switching networks, modeled as directed graphs where nodes represent servers, hosts or switches, while bi-directional and symmetric arcs represent full duplex communication links. The simulation model was based on a network representation enabling to match each network configuration with a heuristic state in order to find the path between any node pair by filtering inappropriate path then choosing the appropriate path through remaining path. Simulation results demonstrated that the proposed algorithm improve the Quality of Service request.
     (2) A novel scheme of cooperative networks was proposed depending on the number and locations of relays in the network. The effect of relay number and locations were investigated by considering energy optimization. First selected the optimal relay from a set of available relays and then used this "optimal" relay for cooperation between the source and the destination. The simulation-based performance analysis confirmed that the cooperative relaying scheme had an advantage of diversity gain thus improving the bit error ratio performance. The simulation results demonstrated that the proposed cooperative relay node selection algorithm could improve performances by achieving the cooperative gain.
     (3) A novel hybrid PSO was proposed for solving the minimum power multicast (MPM) problem in wireless ad-hoc networks. The MPM problem had been mathematically formulated to a constrained optimization problem by using Hybrid PSO. Considering that the centralized algorithm requiring a global knowledge of the networks was impractical in large wireless networks, the distributed version of the centralized algorithm was employed, which required multihop neighborhood information under the assumption that limited frequency band was available. A variety of simulations had been conducted to examine the performance of the proposed approach and the results showed that our algorithm consistently outperforms existing techniques.
     (4) Quality of services multicast routing was presented by using intelligent Algorithm with its main objective to construct a multicast tree that optimized a multi objective function with respect to performance-related constraints (Short path, delay, packet loss). The proposed algorithm was divided in two steps:firstly, the multicast tree selection algorithm was based on shortest path; secondly, to find routes with two or more QoS parameters. The simulation results showed that the proposed algorithm was an effective approach to multicast routing decision with multiple QoS constrains for mobile ad-hoc networks.
引文
[1]Andrea Goldsmith. Wireless Communications. Cambridge University Press,2005.
    [2]C. K. Toh. Ad Hoc Mobile Wireless Networks:Protocols and Systems. Prentice Hall PTR,2001.
    [3]R. Bruno, M. Conti, and E. Gregori. Mesh networks:commodity multihop adhoc networks. IEEE Commun. Mag.,43(3):123-134, Mar.2005.
    [4]F. Akyildiz, X. Wang, and W Wang. Wireless mesh networks:a survey. Computer Networks,47(4):445-487, Mar.2005.
    [5]F. Tobagi, and L. Kleinrock. Packet Switching in Radio Channels:Part Ⅲ-Polling and (Dynamic) Split-Channel Reservation Multiple Access. IEEE Transactions on Communications,24(8):832-845, Aug 1976.
    [6]T. K. Paul, and T. Ogunfunmi. Wireless LAN Comes of Age:Understanding the IEEE 802.11n Amendment. IEEE Circuits and Systems Magazine,8(1):28-54, First Quarter 2008.
    [7]Azzedine Boukerche. Handbook of Algorithms for Wireless Networking and Mobile Computing. Chapman and Hall/CRC,2005.
    [8]T. You, C.-H. Yeh, and H. Hassanein. CSMA/IC:A new class of collision-free MAC protocols for ad hoc wireless Networks. In Proc. IEEE ISCC, pages 843-848, June 2003.
    [9]K. Chandran, S. Raghunathan, S. Venkatesan, and R. Prakash. A Feedback-Based Scheme for Improving TCP Performance in Ad Hoc Wireless Networks. IEEE Personal Communication, pages 34-39, Feb.2001.
    [10]J. Liu and S. Singh. ATCP:TCP for Mobile Ad Hoc Networks. IEEE Journal on Selected Area in Communication,19:1300-1315, July 2001.
    [11]T. S. Rappaport. Wireless Communications:Principles and Practice. Printice Hall,1999.
    [12]G. L. Stuber. Principles of Mobile Communications. Kluwer Academic Press,1997.
    [13]C. V. Gummalla and J. O. Limb. Wireless Medium Access Control Protocols. IEEE Communications-Surveys and Tutorials,3(2):2-15,2000.
    [14]M. Borgo, A. Zannella, P. Bisaglia, and S. Merlin. Analysis of Hidden Terminal Effect in Multi-rate IEEE 802.11b Networks, In Proc. WPMC'2004, September 2004.
    [15]Q. Ni, L. Romdhani, and T. Turletti. A survey of QoS enhancements for IEEE 802.11 wireless LAN. Wireless Communications and Mobile Computing,4(5):547-566, Aug. 2004.
    [16]S. Mangold, S. Choi, P. May, O. Klein, G. Hiertz, and L. Stibor. IEEE 802.11e wireless LAN for quality of service. In Proc. European Wireless Conf., volume 18, pages 32-39, Feb.2002.
    [17]IEEE Standard for Information technology-Telecommunications and information exchange between systems-Local and metropolitan area networks-Specific requirements-Part 11:Wireless Medium Access Control (MAC) and Physical Layer (PHY) specifications:Amendment 7:Medium Access Control(MAC) Quality of Service (QoS) Enhancements. IEEE 802.11 WG, IEEE 802.11e/D11. Oct.2004.
    [18]S. Garg and M. Kappes. An experimental study of throughput for UDP and VoIP traffic in IEEE 802.11b networks. In Proc. IEEE WCNC, pages 1748-1753, Mar.2003.
    [19]W. Wang, S. C. Liew, and V.O.K. Li. Solutions to performance problems in VoIP over a 802.11 wireless LAN. IEEE Trans. Veh. Technol.,54(1):366-384, Jan.2005.
    [20]D. P. Hole and F. A. Tobagi. Capacity of an IEEE 802.11b wireless LAN supporting VoIP. In Proc. IEEE ICC, pages 196-201, June 2004.
    [21]L. Cai, X. Shen, J. W. Mark, L. Cai, and Y. Xiao. Voice capacity analysis of WLAN with unbalanced traffic. IEEE Trans. Veh. Technol.,55(3):752-761, May 2006.
    [22]Tiantong You. Novel Paradigms for Medium Access Control in Local and Ad Hoc Wireless Networks. PhD thesis, Queen's University, April 2006.
    [23]X. Yang and N.H. Vaidya. Priority scheduling in wireless ad hoc networks. In Proc. ACM/IEEE MOBICOM, pages 71-79, June 2002.
    [24]J. W. Robinson and T. S. Randhawa. Saturation throughput analysis of IEEE 802.11e enhanced distributed coordination function. IEEE J. Select. Areas Commun., 22(5):917-928, June 2004.
    [25]E. Ziouva and T. Antonakopoulos. A dynamically adaptable polling scheme for voice support in IEEE802.11 networks. Computer Communications,26(2):129-142, Feb.2003.
    [26]Y. Xiao, H. Li, and S. Choi. Protection and guarantee for voice and video traffic in IEEE 802.11e wireless LANs. In Proc. IEEE INFOCOM, pages 2152-2162, Mar.2004.
    [27]H. Kim and J. C. Hou. Improving protocol capacity for UDP/TCP traffic with model-based frame scheduling in IEEE 802.11-operated WLANs. IEEE J. Select. Areas Commun.,22(10):1987-2003, Dec.2004.
    [28]R. O. Bladwin, N. J. Davis IV, S. F. Midkiff, and R. A. Raines. Packetized voice transmission using RT-MAC, a wireless real-time medium access control protocol. Mobile Computing and Communications Review,5(3):11-25, Jul.2001.
    [29]T. Hiraguri, T. Ichikawa, M. Iizuka, and M. Morikura. Novel multiple access protocol for voice over IP in wireless LAN. In Proc. IEEE ISCC, pages 517-523, Jul.2002.
    [30]W. F. Fan, D.H.K. Tsang, and B. Bensaou. Admission control for variable bit rate traffic using variable service interval in IEEE 802.11e WLANs. In Proc. IEEE ICCCN, pages 447-453, Oct.2004.
    [31]Y. L. Kuo, C. H. Lu, E.H.K. Wu, and G. H. Chen. An admission control strategy for differentiated services in IEEE 802.11. In Proc. IEEE GLOBECOM, pages 707-712, Dec. 2003.
    [32]S. Garg and M. Kappes. Admission control for VoIP traffic in IEEE 802.11 networks. In Proc. IEEE GLOBECOM, pages 3514-3518, Dec.2003.
    [33]D. Pong and T. Moors. Call admission control for IEEE 802.11 contention access mechanism. In Proc. IEEE GLOBECOM, pages 174-178, Dec.2003.
    [34]M. Schwartz. Broadband Integrated Networks. Prentice-Hall International, Inc,1996.
    [35]D. Chen, S. Garg, M. Kappes, and K. Trivedi. Supporting VBR VoIP traffic in IEEE 802.11 WLAN in PCF mode. Avaya Laboratories, Tech. Rep. ALR-2002-026,2002.
    [36]M. Veeraraghavan, N. Cocker, and T. Moors. Support of voice services in IEEE 802.11 wireless LANs. In Proc. IEEE INFOCOM, pages 488-497, Apr.2001.
    [37]Aad and C. Castelluccia. Differentiation mechanisms for IEEE 802.11. In Proc. IEEE INFOCOM, volume 1, pages 209-218, Apr.2001.
    [38]D.-J. Deng and R.-S. Chang. A priority scheme for IEEE 802.11 DCF access method. IEICE Trans. Commun., E82-B(1):96-102, Jan.1999.
    [39]M. Barry, A. T. Campbell, and A. Veres. Distributed control algorithms for service differentiation in wireless packet networks. In Proc. IEEE INFOCOM, volume 1, pages 582-590, Apr.2001.
    [40]C. E. Koksal, H. Kassab, and H. Balakrishnan. An analysis of short-term fairness in wireless media access protocols. In Proc. ACM SIGMETRICS, pages 118-119, June 2000.
    [41]R. Jurdak, C. V. Lopes, and P. Baldi. A survey, classification and comparative analysis of medium access control protocols for ad hoc networks. IEEE Communications Surveys and Tutorials,6(1):2-16, First Quarter 2004.
    [42]P. Karn. MACA - a new channel access method for packet radio. In Proc. ARRL/CRRL Amateur Radio 9th Computer Networking Conference, volume 37, pages 134-140, Apr. 1990.
    [43]V. Bharghavan, A. Demers, S. Shenker, and L. Zhang. MACAW:A media access protocol for wireless LAN's. In Proc. ACM SIGCOMM, pages 212-225, Aug.1994.
    [44]Wireless LAN Medium Access Control (MAC) and Physical Layer(PHY) Specifications, IEEE 802.11 standard.1999.
    [45]Y. Wang and J. J. Garcia-Luna-Aceves. Collision avoidance in multi-hop ad hoc networks. In Proc. IEEE MASCOTS, pages 145-154, Oct.2002.
    [46]F. A. Tobagi and L. Kleinrock. Packet switching in radio channels:Part II.The hidden terminal problem in carrier sense multiple-access and the busy-tone solution. IEEE Trans. Commun.,23(12):1417-1433, Dec.1975.
    [47]Z. J. Haas and J. Deng. Dual busy tone multiple access (DBTMA)-a multiple access control scheme for ad hoc networks. IEEE Trans. Commun.,50(6):975-985, June 2002.
    [48]H. Zhai, J. Wang, Y. Fang, and D. Wu. A dual-channel MAC protocol for mobile ad hoc networks. In Proc. IEEE GLOBECOM, pages 27-32, Dec.2004.
    [49]S. Jiang, J. Rao, D. He, X. Ling, and C. Ko. A simple distributed PRMA for MANETs. IEEE Trans. Veh. Technol.,51(2):293-305, Mar.2002.
    [50]C. R. Lin and M. Geria. Asynchronous multimedia multihop wireless network. In Proc. IEEE INFOCOM, volume 1, pages 118-125, Apr.1997.
    [51]J.W. Mark and W. Zhuang. Wireless Communications and Networking. Prentice Hall, ISBNO-13-040905-7,2003.
    [52]V. Gambiroza, B. Sadeghi, and E.W. Knightly. End-to-end performance and fairness in multihop wireless backhaul networks. In Proc. ACM/IEEE MOBICOM, pages 287-301, Sept.-Oct.2004.
    [53]X. L. Huang and B. Bensaou. On max-min fairness and scheduling in wireless ad-hoc networks:analytical framework and implementation. In Proc. ACM MOBIHOC, pages 221-231, Oct.2001.
    [54]H. Luo, J. Cheng, and S. Lu. Self-coordinating localized fair queueing in wireless ad hoc networks. IEEE Trans. Mobile Comput.,3(1):86-98, Jan.-Feb.2004.
    [55]J. Eshet and B. Liang. Randomly Ranked Mini Slots for Fair and Efficient Medium Access Control in Ad Hoc Networks. IEEE Trans. Mobile Comput.,6(5):481-493,2007.
    [56]J. Eshet and B. Liang. The RRMS Protocol:Fair Medium Access in Ad Hoc Networks. In Proc. of the 22nd Biennial Symposium on Communications, pages 162-164,2004.
    [57]H. T. Cheng, H. Jiang, and W. Zhuang. Distributed medium access control for wireless mesh networks. Wireless Communications and Mobile Computing,6(6):845-864, Sept. 2006.
    [58]E. Carlson, C. Prehofer, C. Bettstetter, H. Karl, and A. Wolisz. A distributed end-to-end reservation protocol for IEEE 802.11-based wireless mesh networks. IEEE J. Select. Areas Commun.,24(11):2018-2027, Nov.2006.
    [59]R. Zhao and B. Walke. Decentrally controlled wireless multi-hop mesh networks for high quality multi-media communications. In Proc. ACM MSWiM, pages 200-208, Oct.2005.
    [60]H. Jiang, P. Wang, and W. Zhuang. A distributed channel access scheme with guaranteed priority and enhanced fairness. IEEE Trans. Wireless Commun.,6(6):2114-2125, June 2007.
    [61]R.L. Freeman, Telecommunication System Engineering, John Wiley & Sons, Inc,2004.
    [62]L.L. Peterson, B.S. Davie, Computer Networks:A Systems Approach, Morgan Kaufmann Publishers,2000.
    [63]R.S. David, Computer Networks:Efficient Computation, Nov 2002
    [64]M. Weiser, The world is not a desktop, Interactions 1 (1) (1994) 7-8.
    [65]Chang Wook Ahn, R. S. Ramakrishna," A Genetic Algorithm for Shortest Path Routing Problem and the Sizing of Populations", IEEE Transactions On Evolutionary Computation, Vol.6, No.6, December 2002.
    [66]J. L. Fernandez Martinez and E. Garcia Gonzalo, "The Generalized PSO:A New Door to PSO Evolution" Journal of Artificial Evolution and Applications Vol.2008, Article ID 861275,15 pages.
    [67]Ammar W. Mohemmed and Nirod Chandra Sahoo "Efficient Computation of Shortest Paths in Networks Using Particle Swarm Optimization and Noising Metaheuristics", Discrete Dynamics in Nature and Society Vol.2007, Article ID 27383,25 pages.
    [68]F.B. Zahn, C.E. Noon, Shortest path algorithms:An evaluation using real road networks, Transport. Sci.32 (1998) 65-73.
    [69]Moy, J.,1994. Open Shortest Path First Version 2. RFQ 1583, Internet Engineering Task Force. http://www.ietf.org.
    [70]G. Desaulniers, F. Soumis, An efficient algorithm to find a shortest path for a car-like robot, IEEE Trans. Robot. Automat.11 (6) (1995) 819-828.
    [71]E.L. Lawler, Combinatorial Optimization:Networks and Matroids, Holt, Rinehart, and Winston, New York,1976, pp.59-108.
    [72]M.K. Ali, F. Kamoun, Neural networks for shortest path computation and routing in computer networks, IEEE Trans. Neural Netw.4 (1993) 941-954.
    [73]J.Wang, A recurrent neural network for solving the shortest path problem, in:Proceedings of the IEEE International Symposium on Circuits and Systems,1994, pp.319-322.
    [74]F. Araujo, B. Ribeiro, L. Rodrigues, A neural network for shortest path computation, IEEE Trans. Neural Netw.12 (5) (2001) 1067-1073.
    [75]M. Munemoto, Y. Takai, Y. Sato, A migration scheme for the genetic adaptive routing algorithm, in:Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics,1998, pp.2774-2779.
    [76]J. Inagaki, M. Haseyama, H. Kitajima, A genetic algorithm for determining multiple routes and its applications, in:Proceedings of the IEEE International Symposium on Circuits and Systems,1999, pp.137-140.
    [77]C.W. Ahn, R.S. Ramakrishna, A genetic algorithm for shortest path routing problemand the sizing of populations, IEEE Trans. Evol. Comput.6 (6) (2002) 566-579.
    [78]M. Gen, R. Cheng, D.Wang, Genetic Algorithms for solving shortest path problems, in: Proceedings of the IEEE International Conference on Evolutionary Computation,1997, pp. 401-406.
    [79]G. Raidl, A weighted coding in a genetic algorithm for the degree-constrained minimum spanning tree problem., in:Proceedings of the ACM Symposium on Applied Computing, 2000, pp.440-445.
    [80]Z. Fu, A. Kurnia, A. Lim, B. Rodrigues, Shortest path problem with cache dependent path lengths, in:Proceedings of the Congress on Evolutionary Computation,2003, pp. 2756-2761.
    [81]J. Kuri, N. Puech, M. Gagnaire, E. Dotaro, Routing foreseeable light path demands using a tabu search meta-heuristic, in:Proceedings of the IEEE Global Telecommunication Conference,2003, pp.2803-2807.
    [82]J. Kennedy, R.C. Eberhart, Particle swarm optimization, in:Proceedings of the IEEE International Conference on Neural Networks,1995, pp.1942-1948.
    [83]R. Hassan, B. Cohanim, O.L. DeWeck, G Venter, A comparison of particle swarm optimization and the genetic algorithm, in:Proceeedings of the First AIAA Multidisciplinary Design Optimization Specialist Conference,2005,18-21.
    [84]E. Elbeltagi, T. Hegazy, D. Grierson, Comparison among five evolution-ary-based optimization algorithms, Adv. Eng. Inform.19 (1) (2005) 43-53.
    [85]C.R. Mouser, S.A. Dunn, Comparing genetic algorithms and particle swarm optimization for an inverse problem exercise., Aust. N. Z. Ind. Appl. Math. (ANZIAM) J.46(E) (2005) C89-C101.
    [86]R.C. Eberhart, Y. Shi, Comparison between genetic algorithms and particle swarm optimization. In Proceedings of the seventh annual conference on Evolutionary Programming (Springer-Verlag),1998, pp.611-616.
    [87]D.W. Boeringer, D.H. Werner, Particle swarm optimization versus genetic algorithms for phased array synthesis, IEEE Trans. Antennas Propagat.52 (3) (2004) 771-779.
    [88]J. N. Laneman and G. W. Wornell, "Energy-efficient antenna sharing and relaying for wireless networks," in Proc. of WCNC, vol.1,2000, pp.7-12
    [89]So and B. Liang, "An efficient algorithm for the optimal placement of wireless extension points in rectilineal wireless local area networks," in Proc. QShine'05, pp.25-33, Orlando, Florida, Aug.2005.
    [90]Y. T. Hou, Y. Shi, H. D. Sherali and S. F. Midkiff, "On energy provisioning and relay node placement for wireless sensor networks," IEEE Trans. on Wireless Commu., vol.4, no.5, pp.2579-2590, Sep.2005.
    [91]R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, "Network Information Flow," IEEE Trans. Inform. Theory, vol.46, no.4, pp.1204-1216,Apr.2000.
    [92]S. Katti, S. Gollakota, and D. Katabi, "Embracing Wireless Interference:Analog Network Coding," in ACM SIGCOMM, Kyoto, Aug.2007.
    [93]S. Zhang, S. C. Liew, and P. P. Lam, "Hot Topic:Physical-Layer Network Coding," in Proc. ACM MobiCom, Los Angeles,2006.
    [94]B. S. Mergen, A. Scaglione, and G. Mergen, "Asymptotic analysis of multi-stage cooperative broadcast in wireless networks," IEEE Trans. Inform. Theory, vol.52, pp. 2531-2550, June 2006.
    [95]R. U. Nabar, H. B"olcskei, and F.W. Kneubuhler, "Fading relay channels:Performance limits and spacetime signal design," IEEE J. Select. Areas Commun., vol.22, pp. 1099-1109, Aug.2004.
    [96]L. Sankaranarayanan, G. Kramer, and N. B. Mandayam, "Hierarchical sensor networks: capacity bounds and cooperative strategies using the multiple-access relay channel model," in Proc. IEEE SECON, pp.191-199, Oct.2004.
    [97]T. M. Cover and A. A. Elgamal, "Capacity theorems for the relay channel," IEEE Trans. Inform. Theory, vol.25, pp.572-574, Sept.1979.
    [98]M. Gastpar and M. Vetterli, "The capacity of large Gaussian relay networks," IEEE Trans. Inform. Theory, vol.51, pp.765-779, Mar.2005.
    [99]R. Cao and L. Yang, "Practical issues in resource optimization of relay networks," in Proc. of CISS,2008.
    [100]W. Cho, R. Cao, and L. Yang, "Optimum resource allocation for amplify and-forward relay networks with differential modulation," IEEE Trans. on Signal Processing, vol.56, no.11, pp.5680-5691, Nov.2008.
    [101]W. Cho and L. Yang, "Optimum resource allocation for relay networks with differential modulation," IEEE Trans. on Communications, vol.56, no.4, pp.531-534, Apr.2008.
    [102]L. B. Le, E. Hossain, and A. S. Alfa, "Delay statistics and throughput performance for multi-rate wireless networks under multiuser diversity,"IEEE Trans. Wireless Commun., vol.5, no.11, pp.3234-3243, Nov.2006.
    [103]F. Akyildiz and X. Wang, "A survey on wireless mesh networks" IEEE Commun. Mag., vol.43, no.9, pp.23-30, Sept.2005.
    [104]Host-Madsen and J. Zhang, "Capacity bounds and power allocation for wireless relay channel," IEEE Trans, on Inf. Theory, vol.51, no.6, pp. 2020-2040, June 2005.
    [105]L.-L. Xie and P. R. Kumar, "An achievable rate for the multiple-level relay channel," IEEE Trans, on Inf. Theory, vol.51, no.4, pp.1348-1358, Apr.2005.
    [106]R. Bose, "A smart technique for base-station locations in an urban environment," IEEE Trans, on Vehi. Tech., vol.50, no.1, pp.43-47, Jan.2001.
    [107]Ian F. Akyildiz, Xudong Wang, and Weilin Wang. Wireless mesh networks:a survey.2004 Elsevier B.V.
    [108]M. Cagalj, J-P Hubaux, and C. Enz. Minimum-energy broadcast in allwireless networks: NP-completeness and distribution issues. Proc. Of MobiCom'02, ACM,2002.
    [109]J. Wieselthier, G. Nguyen, and A. Ephremides. On the construction of energy-efficient broadcast and multicast trees in wireless networks. In Proceedings of the IEEE Infocom 2000 Conference, Tel-Aviv, Israel, March 26-30, pp.585-594,2000.
    [110]R. Draves, J. Padhye, and B. Zill. Routing in multi-radio, multi-hop wireless mesh networks. In Mobicom, pages 114-128,2004.
    [111]Ashish Raniwala, Kartik Gopalan, and Tzi cker Chiueh. Centralized channel assignment and routing algorithms for multi-channel wireless mesh networks. Sigmobile Mob. Comput. Commun. Rev.,8(2):50-65,2004.
    [112]S. Pettie, and V. Ramachandran, "An optimal minimum spanning tree algorithm", Journal of ACM, Vol.49, no.l, pp.16-34, Jan.2002.
    [113]L. M. Feeney and M. Nilson, "Investigating the energy consumption of a wireless network interface in an ad hoc networking environment," in Proc.20th IEEE INFOCOM,2001, pp. 1548-1557.
    [114]R.J. Marks II, A.K. Das, M. El-Sharkawi, P. Arabshahi, and A. Gray. Minimum power broadcast trees for wireless networks:optimizing using the viability lemma. In Proceedings of the IEEE International Symphosium on Circuits & Systems, Scottsdale, AZ, May 26-29,2002.
    [115]A.K. Das, R.J. Marks, M. El-Sharkawi, P. Arabshahi, and A. Gray. r-shrink:A heuristic for improving minimum power broadcast trees in wireless networks. In Proceedings of the IEEE Globecom 2003 Conference, San Francisco, CA, December 1-5,2003.
    [116]Changbing Li1'2, Changxiu Caol,Yinguo Li2 and Yibin Yu," Hybrid of Genetic Algorithm and Particle Swarm Optimization for Multicast QoS Routing", IEEE International Conference on Control and Automation Guangzhou, CHINA-May 30 to June 1,2007.
    [117]S. Guo and O. Yang, "A dynamic multicast tree reconstruction algorithm for minimum-energy multicasting in wireless ad hoc networks," in Proceedings of IPCCC 2004-Proceedings of the 23 rd International Performance Computing and Communications Conference. IEEE press,2004, pp.637-642.
    [118]Junaid Qadir, Chun Tung Chou, Archan Misra, "Exploiting Rate Diversity for Multicasting in Multi-Radio Wireless Mesh Networks",1-4244-0419-3/06/$20.00 (?)2006 IEEE.
    [119]Q. Li, J. Aslam, and D. Rus. Online power-aware routing in wireless ad hoc networks. Proc. ACM SIGMobile'01, ACM, pp.97-107,2001.
    [120][120] W. Liang and Y. Yang. Maximizing battery life routing in wireless ad hoc networks. Proc. of 37th Hawaii Int'l Conf on System Sciences, IEEE Computer Society, January, 2004.
    [121]J-H Chang and L. Tassiulas. Fast approximate algorithms for maximum lifetime routing in wireless ad-hoc networks. IFIP-TC6/European Commission Int'l Conf., LNCS, Vol.1815, pp.702-713, Springer,2000.
    [122]J-H Chang and L. Tassiulas. Energy Conserving routing in wireless ad hoc networks. Proc. of INFOCOM'00, IEEE,2000.
    [123]W. Liang. Constructing minimum-energy broadcast trees in wireless ad hoc networks. Proc. of MOBIHOC'02, ACM, pp.112-122,2002.
    [124]J. Cartigny, D. Simplot, and I. Stojmenovic. Localized minimum-energy broadcasting in ad hoc networks. Proc. of INFOCOM'03, IEEE,2003.
    [125]Kang and R. Poovendran. maximizing static network lifetime of wireless broadcast adhoc networks. Proc. of ICC'03., IEEE,2003.
    [126]C.-K Toh. Maximum battery life routing to support ubiquitous mobile computing in wireless as hoc networks. IEEE Commun, Vol.39, pp.138-147,2001.
    [127]Chen Niansheng, Li Layuan,Dong Wushi. "A Multicast Routing Algorithm of Multiple QoS Based on Widest-Bandwidth". Journal of Systems Engineering and Electronics,17(3),pp.642-647,2006.
    [128]Chen Niansheng, Li Layuan,Chen Chuanhui. "QoS Multicast Routing Algorithm based on Layered Structure". In Proceedings of the 2006 International Symposium on Distributed Computing and Applications to Business Engineering and Science, pp.1135-1139,2006.
    [129]LI La-Yuan,LI Chun-Lin. A Multicast Routing Protocol with Multiple QoS Constraints. Journal of Software,15(2),pp.286-291,2004.
    [130]Ravikumar C P, Bajpai R. "Source based delay bouded multicasting in multimedia networks". Computer.
    [131]Yang H S, Maier M, Reisslein M and Carlyle W M. A Genetic Algorithm based Methodology for Optimizing Multi-Service Convergence in a Metro WDM Network. IEEE/OSA Journal of Lightwave Technology,21(5), pp.1114-1133,2003.
    [132]Glover F, Kelly J, L aguna M. Genetic algorithms and tabu search:Hybrids for optimizations[J]. Computer Ops Res,22(1), pp.111-134,1995.
    [133]G. Xue. Minimum-Cost QoS multicast and unicast routing in communication networks. IEEE Transactions on Communications,51(5), pp.817-824,2003.
    [134]Bernard M. Waxman. Routing of multipoint connections. IEEE Journal on Selected Areas in Communications,6(9), pp.1617-1622,1988.
    [135]M. Charikar, J. Naor and B. Schieber. Resource optimization in QoS multicast routing of real-time multimedia. IEEE/ACM Transactions onNetworking,12(2), pp.340-348, April 2004.
    [136]Z. Wang and J. Crowcroft. Quality-of-Service Routing for Supporting Multimedia Applications. IEEE Journal on Selected Areas in Communications,14(7), pp.1228-1234, September 1996.
    [137]K. Kawano, T. Masuda, K. Kinoshita and K. Murakami:"An Efficient Method to Search for the Location of Network Services with Multiple QoSs Guarantee", Transaction of IEICE, Vol.J84-B, No.3, pp.443-451,2001.
    [138]B. Wang and J. C. Hou, "Multicast routing and its QoS extension:Problems, algorithms, and protocols," IEEE Netw., vol.14, no.1, pp.22-36,2000.
    [139]P. Winter, "Steiner problem in networks:A survey," Networks, vol.17, no.2, pp.129-167,1987.
    [140]H. Lin, Z. Yu-Lin, and R. Yong-Hong, "Two multiconstrained multicast QoS routing algorithms," in Proc.8th ACIS Int. Conf. SNPD, Jul.30,2007-Aug.1,2007, vol.3, pp. 495-500.
    [141]H. F. Salama, D. S. Reeves, and Y. Viniotis, "A distributed algorithm for delay-constrained unicast routing," in Proc. IEEE INFOCOM,1997, pp.84-91.
    [142]G. Xue, "Primal-dual algorithms for computing weight-constrained shortest paths and weight-constrained minimum spanning trees," in Proc. IEEE IPCCC'00, Feb.2000, pp. 271-277.
    [143]Juttner, B. Szviatovszki, I. Mecs, and Z. Rajko, "Lagrange relaxation based method for the QoS routing problem," in Proc. IEEE INFOCOM,2001, pp.859-868.
    [144]Xiang F,Junzhou L,Jieyi W,Guanqun G. An Optimizing on Multiple Constraints QoS Multicast Routing based on Genetic Algorithms [J]. Computer Engineering and Application,2003,30, pp.1-3.
    [145]Li Dawei, Wang Mengguang. An Improved hybrid Genetic Algorithm. Information and Control,1997,26(6), pp.449-454.
    [146]Charikar M, Naor J and Schieber B. Resource optimization in QoS multicast routing of real-time multimedia, In:Proc of IEEE INFOCOM,2000, pp.1518-1527.
    [147]Roch A G and Orda A. QoS routing in networks with inaccurate information:Theory and algorithms. IEEE/ACM. Trans. On Networking,1999,3(7), pp.350-363.
    [148]Liu Ying, Wu Jianping. A Delay-Constrained Multicast Routing Algorithm Based on Heuristic Genetic Algorithm. Journal of Computer Research and Development,2003, 40(3), pp.381-386.
    [149]Wang Bin and Hou J C. Multicast routing and its QoS extension:Problems, algorithms, and protocols. IEEE Network, Jan/Feb,2000,(1,2), pp.22-36.
    [150]T. Korkmaz and M. Krunz, "Multi-constrained optimal path selection," in Proc. IEEE INFOCOM,2001, pp.834-843.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700