用户名: 密码: 验证码:
基于拓扑优化的结构刚度和渗流多功能材料设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
设计具有优异性能的结构一直是工程师追求的目标。结构优化方法是寻找工程设计问题最优解的强大工具。相比于尺寸优化和形状优化,拓扑优化能够获得创新结构构型,得到了越来越广泛的应用。
     多孔介质中的流体输运具有广泛的应用背景,比如过滤器、由多孔材料制成的具有发汗冷却功能的火箭发动机推力室壁。为了设计更高效的结构,需要研究能够同时考虑结构的流体渗流性能和刚度性能的优化设计方法,通过设计材料的微结构实现宏观结构的渗流和刚度多功能设计。围绕这一材料/结构多功能多尺度优化设计问题,我们针对结构拓扑优化和材料微结构优化设计中现有算法的困难,改进和提出了多个有效算法,从多个角度提高了结构拓扑优化和材料微结构算法的效率和收敛性。
     SIMP (Solid Isotropic Material with Penalization)模型具有实现简单,适用范围广易于和现有有限元程序衔接的优点,是目前使用最为广泛的拓扑优化模型。通常采用正则化方法避免拓扑优化中的棋盘格式和网格相关性。线性密度过滤方法是一种有效的正则化方法,得到了广泛应用,其不足之处在于优化结果的材料边界处有灰色密度区域存在,增加了拓扑优化结果提取的难度。Heaviside非线性密度过滤函数能够消除材料边界的灰色区域,但是不能保证密度非线性变换前后材料体积守恒,优化迭代过程不稳定。本文提出了一种体积守恒非线性密度过滤函数,能够保证密度非线性变换前后材料体积守恒,优化迭代过程稳定,优化效率也得到了改进。
     对于三维结构拓扑优化,以单元(结点)密度为设计变量时,优化问题规模很大,难以求解。自适应有限元方法通过合理地分布有限元网格密度,显著减少有限元模型位移未知数的数量,既提高有限元计算精度,又兼顾了计算效率。本文将网格自适应技术应用到结构拓扑优化,优化初期采用稀疏网格得到材料大致分布趋势,根据材料分布结果对材料边界处的网格进行加密,达到用尽量少的设计变量描述结构拓扑的效果,提高了结构分析和优化的效率。
     材料设计是拓扑优化的一个重要应用领域。采用逆均匀化方法进行材料设计时,初始密度分布和优化控制参数对优化结果影响很大。初始密度的选取非常困难,往往依赖于设计者的经验。本文模拟人工培养晶体时为了加速晶体的生长引入籽晶的办法,提出了材料设计的晶核法。研究了晶核位置、密度幂指数、密度过滤影响域以及目标函数形式对晶核法的影响。采用晶核法设计了指定材料性能和极值材料性能相应的最优材料微结构形式。
     考虑结构刚度和渗流多功能设计时,作为探索性工作,我们考虑的宏观结构是由宏观均匀的、具有周期性微结构的材料组成。通过设计材料的微结构进行宏观结构性能优化。由具有周期性微结构的材料制成的结构的刚度和渗流性质,一般的说,两者之间没有简单的关系,它们分别取决于材料的宏观等效弹性性质和渗透系数,这两者都和材料的微结构形式有关。微观材料的微结构形式和宏观结构的刚度和渗流性能通过材料的等效弹性张量和渗透系数张量联系起来。同时考虑结构刚度和渗流性能,寻求组成结构的材料的最优微结构是一个多功能多尺度优化设计问题,在理论和应用两方面都富有挑战性。在本文中,所研究的宏观结构为由具有周期性微结构的宏观均匀材料制成的线弹性结构,其内部流体宏观流动服从Darcy方程。在宏观结构刚度和渗流性能驱动下,采用逆均匀化方法设计材料的微结构。采用伴随法推导了出口流量对等效渗透系数和等效渗透系数对单元密度的灵敏度。基于Darcy-Stokes模型,将晶核法和基于自适应网格的结构拓扑优化方法应用于材料单胞最优流体流道设计,用较小的计算规模,得到了精度较高的最大各向同性等效渗透系数和相应的最优材料微结构。构造了结构刚度和渗流性能的多目标优化模型和指定出口流量下的结构刚度优化模型,针对多组优化设计参数,得到了相应的最优三维材料微结构形式。指定出口流量下的结构刚度优化算例表明体积守恒非线性密度过滤函数对于满足指定出口流量要求,稳定优化迭代过程具有重要作用。
Engineers are always seeking for structural design with better performance. Structural op-timization provides them a powerful approach to find the optimal design of engineering prob-lem. In comparison with sizing and shape optimization, topology optimization is being used extensively to obtain a creative structural configuration at the conceptual design stage.
     Fluid transfer in porous media is a very universal phenomenon and has a strong background of applications such as filter and transpiration-cooled thrust chamber which are made of porous media. It is needed to develop an optimization method to design a high effective structural con-figuration considering the performances of seepage and stiffness simultaneously. Focusing on the material/structure multifunctional and multiscale optimization problem, we have improved and proposed some effective algorithms from multiple angles aiming at improving the efficiency and convergence of algorithms in structural topology optimization and material microstructure design.
     SIMP (Solid Isotropic Material with Penalization) model is currently the most widely used in many kinds of topology optimization problems because it is very easy to be implemented and fits for many kinds of optimization problems. Another very important advantage is that it can be linked with the general finite element packages very easily. Density filter is a very effective regularization scheme to deal with the numerical difficulty such as checkerboard and mesh dependency in topology optimization. However, when density filter is used, some grey el-ements often emerge along the material boundary which cause difficulty in extracting structural boundary from the optimal topology result. Heaviside nonlinear density filter can eliminate grey domain along material boundary, but it can not maintain the material volume which causes oscillation during optimization iteration. A new volume preserving nonlinear density filter has been proposed which can guaranty material volume preserving before and after nonlinear trans-formation of density field. With the volume preserving nonlinear density filter, the iterative process of optimization is very stable and the optimization efficiency is improved.
     For 3D (three dimensional) structural topology optimization with element or node density as the design variable, the optimization problem is very large in size and difficult to solve. AMR (Adaptive Mesh Refinement) finite element method reduces the number of displacement variables in finite element model remarkably and increases the accuracy and efficiency of finite element analysis. Following the idea of AMR finite element method, a AMR based topology optimization method was proposed to optimize the field of design variable for decreasing the amount of design variables in topology optimization. At the initial stage of optimization, the tendency of material distribution can be obtained with a very coarse mesh efficiently. Then, the mesh is remeshed with AMR rule based on the information of density field of topology optimization. The amount of mesh around material boundary is increased and that of mesh far away from material boundary is decreased. In comparison with the traditional topology optimization, AMR based topology optimization can obtain the optimal material distribution which having smooth material boundary with fewer design variables and higher efficiency.
     Material design is an important application field for topology optimization. The optimal result is influenced by both the type of initial density distribution and the value of optimiza-tion control parameters when designing material microstructure with inverse homogenization method. The type of initial density distribution which often depends on the experience of de-signer is very difficult to be determined. Crystallon is usually used to accelerate crystal's growth when making cultured crystal. Inspired from this physical process, a new method called Crys-tal Nucleus Method (CNM) was proposed to determine the initial density distribution. Some issues about this method were studied which including the position of crystal nucleus, the value of power exponent in SIMP model, the density filter domain and the type of object function. Optimal material microstructures with described and extreme performances were successfully obtained with this method.
     The microstructure of material is designed to optimize the multifunctional performances of stiffness and seepage of macrostructure which is made of porous media with periodic mi-crostructure. Generally speaking, there is no simple relationship between stiffness and seepage performances of structure made of material with periodic microstructure. The performances of stiffness and seepage are determined by the effective elastic property and permeability coeffi-cient which are both related to the microstructure of material. The microstructure of material and the stiffness and seepage performances of macro structure are connected through the ef-fective elastic tensor and permeability tensor of material. To design optimal microstructure for the stiffness and seepage performances of macrostructure is a multifunctional and multi-scale optimization problem. It is a challenging research topic in theory and application. For the present study, the macrostructure made of macro homogeneous material with periodic mi-crostructure is considered as linear elastic structure and the macro flow of fluid is governed by Darcy equation. Driven by the stiffness and seepage performances of macrostructure, the opti-mal mi crostructure was obtained with the method of inverse homogenization. Adjoint method was used to calculate the sensitivity of flow rate and effective permeability coefficient with re-spect to the element density. Based on the Darcy-Stokes model, optimal material microstructure for maximization of effective permeability under the given amount of solid material is obtained with reasonable precision by designing fluid channel in the domain of material cell by CNM and AMR based topology optimization. For multifunctional material design considering structural stiffness and seepage performance, two optimization models were proposed which were multi-objective design of structural stiffness and seepage performances and structural stiffness design under specified seepage flow rate. Optimal microstructures of 3D material were obtained with different design parameters. For the optimization of maximizing structural stiffness under the prescribed flow rate, the volume preserving nonlinear density filter can make the optimization process more stable.
引文
[1]Cheng G. Introduction to Structural Optimization:Theory, Methods and Solutions[M]. Technical University of Denmark,1992.
    [2]Maxwell J C. On Reciprocal Figures, Frames, and Diagrams of Force, Scientific Papers[M], volume 2. Cambridge University Press,1890:175-177.
    [3]Michell A, Melbourne M. The Limits of Economy of Material in Frame-structures[J]. Philosophical Magazine,1904, Sect.6,8(47):589-597.
    [4]Cheng G, Olhoff N. An Investigation Concerning Optimal Design of Solid Elastic Plates[J]. Interna-tional Journal of Solids and Structures,1981,17:305-323.
    [5]Bends(?)e M P, Kikuchi N. Generating Optimal Topologies in Structural Design Using a Homogeniza-tion Method[J]. Computer Methods in Applied Mechanics and Engineering,1988,71(2):197-224.
    [6]Bends(?)e M P. Optimal Shape Design as a Material Distribution Problem[J]. Structural and Multidis-ciplinary Optimization,1989,1(4):193-202.
    [7]Zhou M, Rozvany G. The COC Algorithm, Part Ⅱ:Topological, Geometrical and Generalized Shape Optimization[J]. Computer Methods in Applied Mechanics and Engineering,1991,89(1-3):309-336.
    [8]Mlejnek H P, Schirrmacher R. An Engineer's Approach to Optimal Material Distribution and Shape Finding[J]. Computer Methods in Applied Mechanics and Engineering,1993,106(1-2):1-26.
    [9]Wang Y, Wang X, Guo D. A Level Set Method for Structural Topology Optimization[J]. Computer Methods in Applied Mechanics and Engineering,2003,192:227-246.
    [10]Allaire G, Jouve F, Toader A. Structural Optimization Using Sensitivity Analysis and a Level-set Method[J]. Journal of Computational Physics,2004,194(1):363-393.
    [11]Xie Y, Steven G. A Simple Evolutionary Procedure for Structural Optimization[J]. Computers and Structures,1993,49(5):885-896.
    [12]Bends(?)e M, Sigmund O. Material Interpolation Schemes in Topology Optimization[J]. Archive of Applied Mechanics,1999,69:635-654.
    [13]Sigmund O. Morphology-based Black and White Filters for Topology Optimization[J]. Structural and Multidisciplinary Optimization,2007,33(4-5):401-424.
    [14]Guest J K, Prevost J H, Belytschko T. Achieving Minimum Length Scale in Topology Optimiza-tion Using Nodal Design Variables and Projection Functions[J]. International Journal for Numerical Methods in Engineering,2004,61(2):238-254.
    [15]Cheng G, Gu Y, Zhou Y. Accuracy of Semi-analytic Sensitivity Analysis[J]. Finite Elements in Analysis and Design,1989,6(2):113-128.
    [16]Barthelemy B, Haftka R. Accuracy Analysis of the Semi-analytical Method for Shape Sensitivity Calculation[J]. Mechanics of Structures & Machines,1990,18(3):407-432.
    [17]程耿东.工程结构优化设计基础[M].水利水电出版社,1984.
    [18]Svanberg K. The Method of Moving Asymptotes-A New Method for Structural Optimization[J]. International Journal for Numerical Methods in Engineering,1987,24(2):359-373.
    [19]Bruyneel M, Duysinx P, Fleury C. A Family of MMA Approximations for Structural Optimization[J]. Structural and Multidisciplinary Optimization,2004,24(4):263-276.
    [20]Diaz A R, Sigmund O. Checkerboard Patterns in Layout Optimization[J]. Structural and Multidisci-plinary Optimization,1995,10(1):40-45.
    [21]Jog C S, Haber R B. Stability of Finite Element Model for Distributed Parameters Optimization and Topology Design[J]. Computer Methods in Applied Mechanics and Engineering,1996,130(3-4):203-226.
    [22]Rohn R V, Strang G. Optimal Design and Relaxation of Variational Problems, Ⅱ, Ⅱ and Ⅲ[J]. Com-munications on Pure and Applied Mathematics,1986,39(2):113-137,139-182,353-377.
    [23]Murat F, Tartar L. Optimality Conditions and Homogenization[M]. In:Marino A, (eds.). Proceedings of Nonlinear Variational Problems, Boston:Pitman Advanced Publishing Program,1985.
    [24]Olhoff N, Lurie K A, Cherkaev A V, et al. Sliding Regimes and Anisotropy in Optimal Design of Vi-brating Axisymmetric Plates[J]. International Journal of Solids and Structures,1981,17(10):931-948.
    [25]Rozvany G, Olhoff N, Bends(?)e M, et al. Least-weight Design of Perforrated Elastic Plates,I,II[J]. International Journal of Solids and Structures,1985,23(4):521-536,537-550.
    [26]Ong T, Rozvany G, Szeto W. Least-weight Design of Perforated Elastic Plates for Given Compli-ance:Non-zero Poisson's Ratio[J]. Computer Methods in Applied Mechanics and Engineering,1988, 66(3):301-322.
    [27]Allaire G, Kohn R V. Topology Optimization and Optimal Shape Design Using Homogenization[M]. In:Bends(?)e M, Mota C S, (eds.). Proceedings of Topology Design of Structures, Dordrecht:Kluwer, 1993.207-218.
    [28]Haber R, Bends(?)e M, Jog C. A New Approach to Variable Topology Shape Design Using a Constraint on the Perimeter[J]. Structural and Muldisciplianry Optimization,1996,11(1-2):1-12.
    [29]Sigmund O. Design of Material Structures Using Topology Optimization[D]. Technical University of Denmark,1994.
    [30]Sigmund O. On the Design of Compliant Mechanisms Using Topology Optimization[J]. Mech. Struct. & Mach.,1997,25(4):493-524.
    [31]Sigmund O, Petersson J. Numerical Instabilities in Topology Optimization:A Survey on Procedures Dealing with Checkerboards, Mesh-dependencies and Local Minima[J]. Structural and Multidisci-plinary Optimization,1998,16(1):68-75.
    [32]Burns T E, Tortorelli D A. Topology Optimization of Non-linear Elastic Structures and Compli-ant Mechanisms[J]. Computer Methods in Applied Mechanics and Engineering,2001,190(26-27):3443-3459.
    [33]Bourdin B. Filters in Topology Optimization[J]. International Journal for Numerical Methods in Engineering,2001,50(9):2143-2158.
    [34]Ambrosio L, Buttazzo G. An Optimal Design Problem with Perimeter Penalization[J]. Calculus of Variations and Partial Differential Equations,1993,1(1):55-69.
    [35]Bends(?)e M. Optimization of Structural Topology Shape and Material[M]. Berlin Heidelberg New York:Springer,1995.
    [36]Borrvall T. Topology Optimization of Elastic Continua Using Restriction[J]. Archives of Computa-tional Methods in Engineering,2001,8(4):351-385.
    [37]Niordson F. Optimal Design of Plates with a Constraint on the Slope of the Thickness Function[J]. International Journal of Solids and Structures,1983,19(2):141-151.
    [38]Petersson J, Sigmund O. Slope Constrained Topology Optimization[J]. International Journal for Numerical Methods in Engineering,1998,41(8):1417-1434.
    [39]Zhou M, Shyy Y K, Thomas H L. Checkerboard and Minimum Member Size Control in Topology Optimization [J]. Structural and Multidisciplinary Optimization,2001,21(2):152-158.
    [40]Borrvall T, Petersson J. Topology Optimization Using Regularized Intermediate Density Control[J]. Computer Methods in Applied Mechanics and Engineering,2001,190(37-38):4911-4928.
    [41]Poulsen T. A New Scheme for Imposing a Minimum Length Scale in Topology Optimization[J]. International Journal for Numerical Methods in Engineering,2003,57(6):741-760.
    [42]Kim Y Y, Yoon G H. Multi-resolution Multi-scale Topology Optimization —a New Paradigm[J]. International Journal of Solids and Structures,2000,37(39):5529-5559.
    [43]Poulsen T. Topology Optimization in Wavelet Space[J]. International Journal for Numerical Methods in Engineering,2002,53(3):567-582.
    [44]Wang M, Zhou S. Phase Field:A Variational Method for Structural Topology Optimization[J]. Com-puter Modeling in Engineering & Sciences,2004,6(6):547-566.
    [45]Sigmund O, Jensen J. Systematic Design of Phononic Band-gap Materials and Structures by Topol-ogy Optimization[J]. Philosophical Transactions of the Royal Society London, Series A,2003, 361(1806):1001-1019.
    [46]Jensen J, Sigmund O. Systematic Design of Photonic Crystal Structures Using Topology Optimization: Low-loss Waveguide Bends[J]. Applied Physics Letters,2004,84(12):2022-2024.
    [47]Eschenauer H A, Olhoff N. Topology Optimization of Continuum Structures:A Review[J]. Applied Mechanics Reviews,2001,54(4):331-390.
    [48]Martin P B, Ole S. Topology Optimization Theory, Methods, and Applications[M]. Springer,2003.
    [49]Cheng G, Guo X. e-relaxed Approach in Structural Topology Optimization[J]. Structural and Multi-disciplinary Optimization,1997,13(4):258-266.
    [50]Duysinx P, Bends(?)e M. Topology Optimization of Continuum Structures with Local Stress Con-straints[J]. International Journal for Numerical Methods in Engineering,1998,43(8):1453-1478.
    [51]程耿东,张东旭.受应力约束的平面弹性体的拓扑优化[J].大连理工大学学报,1995,35(1):1-9.
    [52]Neves M, Rodrigues H, Guedes J. Generalized Topology Design of Structures with a Buckling Load Criterion[J]. Structural and Multidisciplinary Optimization,1995,10(2):71-78.
    [53]Cheng G, Mei Y, Wang X. A Feature-based Structural Topology Optimization Method[M]. Pro-ceedings of IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials, Copenhagen:Springer,2005.
    [54]Buhl T. Simultaneous Topology Optimization of Structure and Supports[J]. Structural and Multidis-ciplinary Optimization,2002,23(5):336-346.
    [55]乔赫廷,刘书田.结构构型与结构间连接方式协同优化设计[J].力学学报,2009,41(2):222-228.
    [56]亢战,张池.考虑回转性能的三维结构拓扑优化设计[J].应用力学学报,2008,25(1):11-15.
    [57]Pedersen C.Crashworthiness Design of Transient Frame Structures Using Topology Optimization[J]. Computer Methods in Applied Mechanics and Engineering,2004,193(6-8):653-678.
    [58]Borrvall T, Peterson J. Topology Optimization of Fluids in Stokes Flow[J]. International Journal for Numerical Methods in Fluids,2003,41(1):77-107.
    [59]左孔天,钱勤,赵雨东,等.热固耦合结构的拓扑优化设计研究[J].固体力学学报,2005,26(4):447-452.
    [60]Sigmund O. Materials with Prescribed Constitutive Parameters:An Inverse Homogenization Prob-lem[J]. International Journal of Solids and Structures,1994,31(17):2313-2329.
    [61]Sigmund O. Tailoring Materials with Prescribed Elastic Properties[J]. Mechanics of Materials,1995, 20(4):351-368.
    [62]Larsen U, Sigmund O, Bouwstra S. Design and Fabrication of Compliant Mechanisms and Mate-rial Structures with Negative Poisson's Ratio[J]. Journal of Microelectromechanical Systems,1997, 6(2):99-106.
    [63]张卫红,汪雷,孙士平.基于导热性能的复合材料微结构拓扑优化设计[J].航空学报,2006,27(6):1229-1233.
    [64]Guest J K. Design of Maximum Permeability Material Structures[J]. Computer Methods in Applied Mechanics and Engineering,2007,196(26):1006-1017.
    [65]刘书田,曹宪凡.零膨胀材料设计与模拟验证[J].复合材料学报,2005,22(1):126-132.
    [66]Bends(?)e M, Diaz A. Shape Optimization of Structures for Multiple Loading Conditions Using a Homogenization Method[J]. Structural and Multidisciplinary Optimization,1992,4(1):17-22.
    [67]Ma Z, Cheng H, Kikuchi N. Structural Design for Obtaining Desired Eigenfrequencies by Using the Topology and Shape Optimization Method[J]. Computing Systems in Engineering,1994,5(1):77-89.
    [68]Soto C, Diaz A. On the Modelling of Ribbed Plates for Shape Optimization[J]. Structural and Multi-disciplinary Optimization,1993,6(3):175.
    [69]隋允康,杨德庆,王备.多工况应力和位移约束下连续体结构拓扑优化[J].力学学报,2000,32(2):171-179.
    [70]http://www.ansys.com.
    [71]http://www.mscsoftware.com.
    [72]http://www.altair.com.
    [73]http://www.vrand.com.
    [74]http://www.fe-design.de/en/home.html.
    [75]http://www.quint.co.jp.
    [76]Maute K, Ramm E. Adaptive Topology Optimization[J]. Structural and Multidisciplinary Optimiza-tion,1995,10(2):100-112.
    [77]Maute K, Ramm E. Adaptive Topology Optimization of Shell Structures[J]. AIAA JOURNAL,1997, 35(11):1767-1773.
    [78]Maute K, Schwarz S, Ramm E. Adaptive Topology Optimization of Elastoplastic Structures [J]. Struc-tural and Multidisciplinary Optimization,1998,15(2):81-91.
    [79]Lin C, Chou J. A Two-stage Approach for Structural Topology Optimization[J]. Advances in Engi-neering Software,1999,30(4):261-271.
    [80]Kim I, Week O. Variable Chromosome Length Genetic Algorithm for Progresive Refinement in Topol-ogy Optimization[J]. Structural and Multidisciplinary Optimization,2005,29(6):445-456.
    [81]Kim I Y, Kwak B M. Design Space Optimization Using a Numerical Design Continuation Method[J]. International Journal for Numerical Methods in Engineering,2002,53(8):1979-2002.
    [82]Jang I G, Kwak B M. Evolutionary Topology Optimization Using Design Space Adjustment Based on Fixed Grid[J]. International Journal for Numerical Methods in Engineering,2006,66(11):1817-1840.
    [83]Jang I G, Kwak B M. Design Space Optimization Using Design Space Adjustment and Refinement[J]. Structural and Multidisciplianry Optimization,2008,35(1):41-54.
    [84]Arantes Costa J C, Alves M K. Layout Optimization with h-adaptivity of Structures [J]. International Journal for Numerical Methods in Engineering,2003,58(1):83-102.
    [85]Stainko R. An Adaptive Multilevel Approach to the Minimal Compliance Problem in Topology Op-timization[J]. Communications in Numerical Methods in Engineering,2006,,22(2):109-118.
    [86]Guest J K. Reducing Dimensionality of the Design Variable Sapce in Topology Optimization[M]. Proceedings of 7th World Congress on Structural and Multidisciplinary Optimization. BMD Co., Ltd., 2007.
    [87]Borrvall T, Petersson J. Large-scale Topology Optimization in 3D Using Parallel Computing[J]. Com-puter Methods in Applied Mechanics and Engineering,2001,190(46-47):6201-6229.
    [88]Kim T S, Kim J E, Kim Y Y. Parallized Structural Topology Optimization for Eigenvalue Problems[J]. International Journal of Solids and Structures,2004,41(9-10):2623-2641.
    [89]Pironneau O. On Optimum Profiles in Stokes Flow[J]. Journal of Fluid Mechanics,1973, 59(1):117-128.
    [90]Evgrafov A. The Limits of Porous Materials in the Topology Optimization of Stokes Flows[J]. Applied Mathematics and Optimization,2005,52(3):263-277.
    [91]Guest J K, Prevost J H. Topology Optimization of Creeping Fluid Flows Using a Darcy-Stokes Finite Element[J]. International Journal for Numerical Methods in Engineering,2006,66(3):461-484.
    [92]Wiker N, Klarbring A, Borrvall T. Topology Optimization of Regions of Darcy and Stokes Flow[J]. International Journal for Numerical Methods in Engineering,2007,69(7):1374-1404.
    [93]Gersborg-Hansen A, Sigmund O, Haber R. Topology Optimization of Channel Flow Problems[J]. Structural and Multidisciplinary Optimization,2005,30(3):181-192.
    [94]Olesen L H, Okkels F, Bruus H. A High-level Programming-language Implementation of Topology Optimization Applied to Steady-state Navier-Stokes Flow[J].International Journal for Numerical Methods in Engineering,2006,65(7):975-1001.
    [95]Evgrafov A. Topology Optimization of Slightly Compressible Fluids[J]. Z. Angew. Math. Mech., 2006,86(1):46-62.
    [96]Thellner M. Multi-parameter Topology Optimization in Continuum Mechanics[D]. Linkoping Uni-versity,2005.
    [97]Gersborg-Hansen A. Topology Optimization of Flow Problems[D]. Technical University of Denmark, 2007.
    [98]Okkels F, Bruus H. Scaling Behavior of Optimally Structured Catalytic Microfluidic Reactors[J]. Physical Review E,2007,75(1):016301.1-016301.4.
    [99]Pingen G, Evgrafov A, Maute K. Topology Optimization of Flow Domains Using the Lattice Boltz-mann Method[J]. Structural and Multidisciplinary Optimization,2007,34(6):507-524.
    [100]Evgrafov A, Pingen G, Maute K. Topology Optimization of Fluid Domains:Kinetic Theory Ap-proach[J]. Z. Angew. Mech.,2008,88(2):129-141.
    [101]Aage N, Poulsen T H, Gersborg-Hansen A, et al. Topology Optimization of Large Scale Stokes Flow Problems[J]. Structural and Multidisciplinary Optimization,2008,35(2):175-180.
    [102]Guest J K, Prevost J H. Optimizing Multifunctional Materials:Design of Microstructures for Maxi-mized Stiffness and Fluid Permeability [J]. International Journal of Solids and Structures,2006,43(22-23):7028-7047.
    [103]Othmer C. A Continuous Adjoint Formulation for the Computation of Topological and Surface Sensitivities of Ducted Flows[J]. International Journal for Numerical Methods in Fluids,2008, 58(8):861-877.
    [104]Duan X B, Ma Y C, Zhang R. Shape-topology Optimization for Navier-Stokes Problem Us-ing Variational Level Set Method[J]. Journal of Computational and Applied Mathematics,2008, 222(2):487-499.
    [105]Duan X, Ma Y, Zhang R. Shape-topology Optimization of Stokes Flow via Variational Level Set Method[J]. Applied Mathematics and Computation,2008,202(1):200-209.
    [106]Duan X, Ma Y, Zhang R. Optimal Shape Control ofFluid Flow Using Variational Level Set Method[J]. Physics Letters A,2008,372(9):1374-1379.
    [107]Zhou S, Li Q. A Variational Level Set Method for the Topology Optimization of Steady-state Navier-Stokes Flow[J]. Journal of Computational Physics,2008,227(24):10178-10195.
    [108]Challis V J, Guest J K. Level Set Topology Optimization of Fluid in Stokes Flow[J]. International Journal for Numerical Methods in Engineering,2009,79(10):1284-1308.
    [109]Pingen G, Waidmann M, Evgrafov A, et al. A Parametric Level-set Approach for Topology Op-timization of Flow Domains[J]. Structural and Multidisciplinary Optimization,2009, Online:DOI: 10.1007/s00158-009-0405-1.
    [110]Ashby M. Materials and Shape[J]. Acta Metallurgica et Materialia,1991,39(6):1025-1039.
    [111]Lakes R. Material with Structural Hierarchy[J]. Nature; 1993,361:511-515.
    [112]Bends(?)e M P, Diaz A R, Lipton R, et al. Optimal Design of Material Properties and Material Distribu-tion for Multiple Loading Conditions [J]. International Journal for Numerical Methods in Engineering, 1995,38(7):1149-1170.
    [113]Ringertz U. On Finding the Optimal Distribution of Material Properties[J]. Structural and Multidis-ciplinary Optimization,1993,5(4):265-267.
    [114]Guest J K. Design of Optimal Porous Material Structures for Maximized Stiffness and Permeability Using Topology Optimization and Finite Element Methods[D]. Princeton University,2005.
    [115]Gibson L J, Ashby M F. Cellular Solids:Structure and Properties[M].2 ed., Cambridge:Cambridge University Press,1997.
    [116]卢天健,何德平,陈常青,等.超轻多孔金属材料的多功能特性及应用[J].力学进展,2006,36(4):517-535.
    [117]卢天健,刘涛,邓子辰.多孔金属材料多功能优化设计的若干进展[J].力学与实践,2008,30(1):1-9.
    [118]Evans A, Hutchinson J, Fleck N, et al. The Topological Design of Multifunctional Cellular Metals[J]. Progress in Materials Science,2001,46(3-4):307-327.
    [119]Bensoussan A, Lions J, Papanicolaou G. Asymptotic Analysis for Periodic Structures [M]. North-Holland, Amsterdam,1978.
    [120]Silva E C N, Fonseca J S O, Kikuchi N. Optimal Design of Piezoelectric Microstructures[J]. Compu-tational Mechanics,1997,19(5):397-410.
    [121]Silva E, Fonseca J, Kikuchi N. Optimal Design of Piezocomposite Materials Using Topology Opti-mization Techniques and Homogenization Theory[M]. Proceedings of IEEE ULTRASONICS SYM-POSIUM,1997.
    [122]Sigmund O, Torquato S. Design of Materials with Extreme Thermal Expansion Using a Three-phase Topology Optimization Method[J]. J. Mech. Phys. Solids,1997,45(6):1037-1067.
    [123]Steeves C A, Lucato S L, He M, et al. Concepts for Structurally Robust Materials that Combine Low Thermal Expansion with High Stiffness[J]. Journal of the Mechanics and Physics of Solids,2007, 55(9):1803-1822.
    [124]Kruijf N, Zhou S, Li Q, et al. Topological Design of Structures and Composite Materials with Multi-objectives[J]. International Journal of Solids and Structures,2007,44(22-23):7092-7109.
    [125]Seepersad C C, Allen J K, McDowell D L. Multifunctional Topology Design of Cellular Material Structures[J]. Journal of Mechanical Design,2008,130(3):031404.1-031404.13.
    [126]Rodrigues H, Guedes J, Bends(?)e M. Hierarchical Optimization of Material and Structure[J]. Structural and Multidisciplinary Optimization,2002,24(1):1-10.
    [127]Coelho P, Fernandes P, Guedes J, et al. A Hierarchical Model for Concurrent Material and Topol-ogy Optimization of Three-dimensional Structures[J]. Structural and Multidisciplinary Optimization, 2008,35(2):107-115.
    [128]Coelho P,Fernandes F, Rodrigues H, et al. Numerical Modeling of Bone Tissue Adaptation-A Hier-archical Approach for Bone Apparent Density and Trabecular Structure[J]. Journal of Biomechanics, 2009,42(7):830-837.
    [129]刘岭,阎军,程耿东.考虑均一微结构的结构/材料两级协同优化[J].计算力学学报,2008,25(1):29-34.
    [130]阎军,程耿东,刘岭.基于均匀材料微结构模型的热弹性结构与材料并发优化[J].计算力学学报,2009,26(1):1-7.
    [131]Niu B, Yan J, Cheng G. Optimum Structure with Homogeneous Optimum Cellular Material for Maximum Fundamental Frequency [J]. Structural and Multidisciplinary Optimization,2009, 39(2):115-132.
    [132]Wang B, Cheng G. Design of Cellular Structures for Optimum Efficiency of Heat Dissipation[J]. Structural and Multidisciplinary Optimization,2005,30(6):447-458.
    [133]Zhang W, Sun S. Scale-related Topology Optimization of Cellular Materials and Structures[J]. Inter-national Journal for Numerical Methods in Engineering,2006,68(9):993-1011.
    [134]Rovati M, Veber D. Optimal Topologies for Micropolar Solids[J]. Structural and Multidisciplinary Optimization,2007,33(1):47-59.
    [135]Liu S, Su W. Topology Optimization of Couple-stress Material Structures[J]. Structural and Multi-disciplinary Optimization,2010,40(1-6):319-327.
    [136]Guest J K. Imposing Maximum Length Scale in Topology Optimization[J]. Structural and Multidis-ciplinary Optimization,2009,37(5):463-473.
    [137]Kirk B S, Peterson J W, Stogner R H, et al. libMesh:a C++ Library for Parallel Adaptive Mesh Refinement/Coarsening Simulations[J]. Engineering with Computers,2006,22(3-4):237-254.
    [138]Svanberg K. A Class of Globally Convergent Optimization Methods Based on Conservative Convex Separable Approximations [J]. SIAM Journal of Optimization,2002,12(2):555-573.
    [139]邱广宇,李兴斯.利用D-函数设计特定弹性性能复合材料[J].固体力学学报,2008,29(3):250-255.
    [140]Hassani B,Hinton E. A Review of Homogenization and Topology Optimization Ⅱ-Analytical and Nu-merical Solution of Homogenization Equations[J]. Computers and Structures,1998,69(6):719-738.
    [141]孙士平,张卫红.热弹性结构的拓扑优化设计[J].力学学报,2009,41(6):878-887.
    [142]Liu S, Cheng G. Mapping Method for Sensitivity Analysis of Composite Material Property [J]. Struc-tural and Multidisciplinary Optimization,2002,24(3):212-217.
    [143]Hashin Z, Shtrikman S. A Variational Approach to the Theory of the Elastic Behaviour of Multiphase Materials[J]. Journal of the Mechanics and Physics of Solids,1963,11(2):127-140.
    [144]Sanchez-Palencia E. Non-Homogeneous Media and Vibration Theory[J]. Lecture Notes in Physics, 1980,127.
    [145]Rubinstein J, Torquato S. Flow in Random Porous Media:Mathematical Formulation, Variational Principles, and Rigorous Bounds[J]. J. Fluid Mech.,1989,206:25-46.
    [146]Torquato S. Random Heterogeneous Materials:Microstructure and Macroscopic Properties[M]. New York:Springer,2002.
    [147]Wang J, Leung C, Chow Y. Numerical Solutions for Flow in Porous Media[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2003,27(7):565-583.
    [148]Reddy J, Gartling D:The Finite Element Method in Heat Transfer and Fluid Dynamics[M]. Second ed., CRC Press,2000.
    [149]Donea J, Huerat A. Finite Element Methods for Flow Problems[M]. WILEY,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700