用户名: 密码: 验证码:
有机磷农药的联合毒性及其毒理学机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机磷农药是我国目前使用范围最广、用量最大的农药。与其他种类农药相比,具有杀虫谱广、残效期短、价格低廉及抗药性不显著等特点,被广泛用于家庭和农业的防虫抗害中。正因为如此,使得有机磷农药残留成为我国食物中农药残留最突出的问题。长期以来,对农药残留的风险评估都是一个个的进行,而实际上在食品和环境中残留几乎都是多种农药的残留,人群普遍同时或连续暴露在有机磷农药混合物中,其对健康产生的联合风险有待评估。本文研究了有机磷二元混合物的联合急性和亚慢性毒性,从联合神经毒性、对代谢酶的联合作用、联合雄性生殖毒性、对表征雄性生殖正常功能的标志物基因表达影响等几个方面,探讨了有机磷农药二元混合物对机体的损伤作用,阐明有机磷农药混和物的危害效应和毒作用机理,为完善有机磷农药混合物的风险评估提供理论依据。
     本研究选择食品中常见的有机磷农药残留品种,氧化乐果、毒死蜱、敌敌畏、辛硫磷、甲基对硫磷,采用霍恩氏法计算了各单剂的LD50,结果与文献记载的一致,分别为79.4、147、126、1260、14.7mg/kg.BW。按等毒比法制备混配农药,测定有机磷二元混合物的实际LD50。按照联合作用系数法计算其预测LD50,计算实际LD50与预测LD50的比值。根据Keplinger建议的评价标准:二元混合物能产生不同模式的联合急性毒性,氧化乐果和毒死蜱、氧化乐果和甲基对硫磷按等毒比混配后,实际LD50与预测LD50的比值均大于1.75,急性神经毒性联合作用表现为协同作用。敌敌畏和毒死蜱混合后,实际LD50与预测LD50的比值小于0.57,联合作用表现为拮抗;其余有机磷农药混和物实际LD50与预测LD50的比值在0.57~1.75表现为相加。在此基础上,选取氧化乐果和毒死蜱作为急性毒性机制和亚慢性毒性及机制的研究对象。
     化学物产生联合毒性的机制与代谢酶密切相关。本研究通过氧化乐果和毒死蜱对关键代谢酶活力的联合作用的研究,以期阐明产生协同急性神经毒性的机理。氧化乐果和毒死蜱混合物以各自1/2LD50mg/kg剂量混和后,对SD大鼠一次染毒后,采用2×3析因设计,研究染毒后4、8、24h时混合物对肝脏、血清中的羧酸酯酶和胆碱酯酶的联合影响。结果表明:在8h时能显著降低混合组脑组织中AchE的活力,联合作用呈协同作用,其较正常对照组降低了60%,表明产生了协同神经毒性。混合物能显著抑制肝脏和血清中CE活力,协同作用分别出现在染毒4h和8h后。对血清和肝脏CE活力的协同抑制可能是引起协同神经毒性的机理之一。氧化乐果和毒死蜱在染毒8h后对血清中ChE活力产生协同抑制作用,延长了农药在体内持续时间,而增强了急性神经毒性。
     本文研究了氧化乐果和毒死蜱单独染毒对SD大鼠的亚慢性生殖毒性,并得到亚慢性生殖毒性的未观察到有害作用剂量(NOAEL),为完善毒死蜱和氧化乐果的风险评估提供了数据支持,并为下一步联合毒性的研究提供了剂量依据。结果表明:氧化乐果和毒死蜱单剂均对大鼠产生雄性生殖毒性,能显著降低精子数、精子活动率和增加精子的畸形率;诱导雄性大鼠生精管损伤,各级生精细胞较少、变性、脱落、水肿,间质增宽。而产生生殖毒性的机制主要为:氧化乐果能使FSH上升和T含量下降,表明大鼠睾丸的支持细胞是氧化乐果作用的靶位点;毒死蜱能升高睾丸组织LH水平和减少T的含量,减少间质细胞的数量,表明大鼠睾丸间质细胞是毒死蜱作用的靶位点。氧化乐果和毒死蜱染毒的睾丸中标志酶LDH、ACP、AKP、γ-GT的活力都发生了变化,与对照组有显著差异,这与氧化乐果和毒死蜱诱导精子质量下降(精子数、精子活动率、精子畸形率)存在一定的关系。氧化乐果和毒死蜱染毒后,大鼠睾丸组织的抗氧化平衡受到破坏。打破了生精细胞凋亡维持精子发生过程的正常动态平衡,这可能是导致雄性大鼠生殖毒性的其中一个毒性机理。氧乐果对于SD雄性大鼠生殖毒性的最大无作用剂量NOAEL是0.44 mg/(kg.d),而毒死蜱的则是为0.82mg/(kg.d)。
     氧化乐果和毒死蜱混合物染毒SD大鼠后能产生雄性生殖毒性,表现为协同作用。混和物能显著增加附睾系数、降低精子数和精子活力,联合作用均表现为协同作用;通过电镜和光镜观察结果表明:混合物能引起曲细精管的萎缩,精子数量下降,支持细胞减少,精子从支持细胞上脱落,基底膜脱落。畸形精子增多,生精细胞坏死,胞浆溶解,线粒体空泡化,支持细胞坏死。其联合作用机制主要有:第一,氧化乐果和毒死蜱混合物染毒的睾丸标志酶LDH、ACP、AKP、γ-GT的活力都发生了变化,表现为显著下降,联合作用为协同作用。这与混合物诱导精子质量下降(精子数、精子活动率)存在一定的关系。第二,混合物对大鼠的FSH和T水平存在交互作用,表明混合物对支持细胞的影响存在交互作用,染毒后混合物对LH水平的影响表现为相加作用,则协同作用主要体现了氧化乐果对支持细胞的损伤作用。
     本研究还利用体外大鼠睾丸支持细胞培养模型,采用荧光半定量逆转录—聚合酶链式反应技术研究了氧乐果和毒死蜱混合物产生协同雄性生殖毒性的机理。混合物能显著减少支持细胞标志物雄激素结合蛋白(ABP)基因的表达量,联合作用表现为协同作用;混合物对ABP的协同作用表明了以下两点:一是氧化乐果和毒死蜱混合物能对睾丸内生精过程平衡产生强烈的破坏,其破坏程度强于氧化乐果和毒死蜱的两种单剂对生精过程的破坏作用的总和;二是氧化乐果和毒死蜱通过对ABP基因表达的协同降低,使支持细胞受损,而间接对生精过程产生协同损伤,从而产协同生雄性生殖毒性。
     有机磷农药混配后,能对大鼠产生协同的神经毒性和亚慢型雄性生殖毒性,毒性效应增强。人体暴露在有机磷农药混合物后对健康的风险增大,因此在制定有机磷农药在环境、农产品中的最大残留限量标准时,不能仅从单剂的剂量—效应关系出发,还需要考虑到混合有机磷农药的增毒作用,从而制定出合理的环境和食品标准,保障人群的健康安全。
Organophosphorus pesticides (OP) are widely used in the control of insects around the home and in agriculture practice in China. It has broad-spectrum in controlling insecticide, short residual period and low price, which are easy to be accepted by farmer. OP residue is the most outstanding issue in pesticide residue in food. Risk assessment of single OP in food was fully evaluated, but human exposure to OP, whether occupationally or environmentally, is rarely limited to a single OP. People are always sequential or concurrent exposure in OP pesticides, which health hazard to people was be appraised. According to the research progress at home and abroad, this project was studied deeply and systematically in the interactive action, acute neurotoxicity, effects on metabolic enzyme, male rats reproductive toxicity and relative gene expression so as to reveal damage to organism and provide scientific data for the risk assessment of mixtures of OP pesticides.
     The acute oral toxicity (LD50) of two OP pesticides was evaluated by Horns method on equal toxicity doses. The mixtures of two OP pesticides omethoate plus phoxim, omethoate plus dichlorovos, dichlorvos plus phoxim, and dichlorovos plus methyl parathion showed additive effects; dichlorovos plus chlorpyrifos and omethoate plus methyl patathion showed synergistic effects; dichlorovos plus chlorpyrifos showed antagonistic effects. On the basis of the results, the mixture of omethoate and chlorpyrifos were used to launch the following research.
     The interactive toxicity of chemical mixture is closely related to metabolic enzyme. The interactive effect on critical metabolism enzyme was studied so as to elucidate the mechanism of synergistic acute neurotoxicity. Omehoate and chlorpyrifos were mixed with 1/2 LD50 dose, and lavage mixture to SD rats .The interactive effects on carboxylesterase (CE) and cholinesterase activity (ChE) in liver and blood serum was evaluated by the means of both concomitant treatments using 2×3 factorial design .Results indicated that the AchE activity of brain tissue was significantly decreased by 60% comparing with control group after exposure to the mixture. The neurotoxicity occurred. The mixture can be decrease significantly CE activity of liver and blood serum After exposure for 4 and 8 hours, the synergistic effect showed up. The decrease of CE activity was one of the possible mechanisms that resulted in synergistic neurotoxicity.
     The effects of chlorpyrifs and omehoate on the reproductive function in male SD rats were studied and got the no obserber adverse effect level (NOAEL) of the two OP pesticides that providing scientific supports for those risk assessment. The Results showed: chlorpyrifs and omehoate can induce male reproductive toxicity, and had a significant fall in the total sperm count, the percentage of sperm mobility and increase 0f the sperm abnormality; and lead to injury of testicular follicle. The amount of spermatogenic cell decreased,and it was occure with degeneration, defluxion, dropsy. The mechanism of produceing male toxicity goes as follows. Firstly, Omethoate can significantly increase FSH and T in testicular tissue, decrease the amount of sertolic cells which revealed SC as the target site of omethoate; chlorpyrifs can increase LH, decrease T and amount of cell of leydig which signed the leydig’s cell as the target cell of chlorpyrifs. Secondly, the activites of lactate dehydrogenase (LDH), alkaline phosphatase (AKP), acid phosphatas (ACP) andγ-glutamyltransferase (γ-GT) were changed after exposure to omethoate or chlorpyrifs, which had correlations with the decrease of sperm quality. At last, the antioxygen balance was broken down, which destroyed the normal dynamic equilibrium of apoptosis of spermatogenic cell to sustain spermatogenesis process. There was another possible mechanism to cause male reproductive toxicity. The NOAEL of omehoate is 0.44mg/kg, and one of chlorpyrifs is 0.82mg/kg.
     The mixture of omethoate and chlorpyrifs can produce male reproductive toxicity, which interactive toxicity showed synergistic effect. Mixture can significantly increase the epididymal viscera coefficients and decrease total sperm count, the percentage of sperm mobility, which has synergistic effect. By the electron microscope and light microscope, the following can be observed: atrophia of the contorted seminiferous tubules, decrease of sperm and SC amount, sperm shedding from SC, decrease of sperms’abnormity, necrosisi of sperm and SC. The mechanism of producing interactive male toxicity is following. Firstly, the activites of lactate dehydrogenase (LDH), alkaline phosphatase (AKP), acid phosphatas (ACP) andγ-glutamyltransferase (γ-GT) were changed after exposure to mixtures, which show synergistic effects. There was joint action in FSH and T after exposure to omthoate and chlorpyrifs, which the effect of sertolic cell has synergistic effect. As the effect on LH of mixture is additive, the synergistic effect mainly showed damage to SC.
     In this project, the SC culture mold was used to study mechanism of male reproductive toxicity after exposure to omehoate and chlorpyrifs. The fluorescence semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) technique was utilized to explore effects of insecticide mixtures on the expression of androgen binding protein (ABP), inhibin B mRNA in testis SC of SD rats. The expression of ABP mRNA in SC dropped significantly, which showed synergistic effects. It is rectified that mixture can strongly destroy the balance of spermatogenesis process, and the extent are more extensive than the total toxicity of individual insecticide separately; One of the mechanisms resulting in synergistic male reproductive is that mixture synergistically decreased the expression of ABP mRNA .
     OP pesticides can produce synergistic acute neurotoxicity and subchronic male reproductive, which has more powerful toxicity than the add one of single OP pesticides. The risk to people’s health increased after being exposed to phosphate mixtures, so it’s necessary to consider the increase of toxicity after mixing pesticides when formulate the maximum residue limit that is proper and reasonable to protect people’s health.
引文
1. .陈炳卿, 孙长颢. 食品污染与健康.北京: 化学工业出版社, 2002, 112~114
    2. 陈德富, 陈喜文. 现代分子生物学实验原理与技术. 北京: 科技出版社, 2006:103~106.
    3. 陈署旸,王鸿飞.生产性混配农药中毒的特点.中华劳动卫生职业病杂志, 2001, 19(3):219~220
    4. 陈晓琴. 有机磷农药中毒及机理研究. 广西医学, 2004, 26(6) :773~775.
    5. Curitis D. Klaassen. 毒理学:毒物的基础科学. 人民卫生出版社, 2004:605
    6. 丁训城主编. 男性生殖毒理学. 北京:中国人口出版社, 1997,113~125
    7. 童建, 冯致英. 环境化学物的联合毒作用. 上海:上海科学技术文献出版社, 1994, 1~3.
    8. 董玉瑛, 雷炳莉, 柏丽杰. 环境化合物联合作用及其研究方法.大连民族学院学报,2006,5: 39~48
    9. 甘文奇, 陶炳根, 文保元. 混配农药中毒的流行病学研究. 中华预防医学杂志, 2001,35(1):13~15
    10. 高艳卫. 农药残留及其环境污染分析研究与对策. 安徽农学通报, 2007, 13(4): 130~131
    11. 葛晓光, 张智敏. 绿色蔬菜生产. 北京:中国农业出版社,1997,54.
    12. 顾宝根. 农药要害和中毒问题不容忽视. 农药科学与管理,1997, 18(2) : 31
    13. .GB 15193.1-2003. 食品安全性毒理学程序评价程序和方法. 中国标准出版社, 2004,20~23
    14. 顾晓军, 田素芬, 李少南. 农药相互作用研究进展. 福建农业大学学报. 2000,29(3): 351~355
    15. 顾祖维.现代毒理学概论.北京:化学工业出版社,2005,30~31
    16. 韩晓冬, 汪旭莹, 沈苏南. 壬基酚对体外培养大鼠睾丸支持细胞凋亡影响的研究. 中国预防医学杂志, 2004, 5(4): 244~246
    17. 何风生, 陈署旸.混配农药中毒的防治研究.中华医学信息导报, 2002, (11):16~17
    18. 何凤生. 加强对混配农药中毒的防治研究. 中华预防医学杂志, 1997, 31(4):197~198
    19. 黄炳荣, 程光文, 宋世震. 毒物联合作用 Logistic 剂量—反应关系的研究. 中华劳动卫生职业病杂志, 1995,13(3): 151~154
    20. 黄伯俊, 黄毓磷.农药毒理学.人民军医学版社, 2005, 45~47
    21. 黄金详.切实抓好我国急性毒性农药中毒的防治工作. 中华劳动卫生职业病杂志,2002, 20(6): 401~402)
    22. 黄勤, 黄幸纾. 工业品六六六对小鼠精子影响的研究. 浙江医科大学学报, 1987, 16(1): 9~12
    23. 胡燕青编译. 有机磷杀虫剂的安全性究竟如何?农药译丛,1999, 21(3): 44~47
    24. 纪云晶, 裴淑, 季永平. 氧化乐果的毒理学研究及车间卫生标准的探讨,卫生毒理学杂志, 1990, 4(4):213~215
    25. 姜允申. 化学物联合作用的新进展. 化工劳动保护, 2001, 22(10): 362~365.
    26. 江泉观,于永强. 雄(男)性生殖毒理学:理论与方法.北京:北京医科大学、中国协和医科大学联合出版社,1994: 135~136
    27. 冷欣夫, 唐振华, 王荫长. 杀虫剂分子毒理学及昆虫抗药性. 中国农业出版社, 1996, 118~132
    28. 李红莉, 孙宗光, 宫正宇. 水中重点有机磷农药的毛细管气色谱测定.化学分析计量, 2001, 10(1): 15~17
    29. 李劲彤, 杜先林. 有机磷杀虫剂的体内活化与解毒.中国工业医学杂志, 1999,12(1): 53~55
    30. 李巧玲. 有机磷农药中毒 160 例观察及护理. 基础医学论坛, 2007, 11(8): 757~758
    31. 李钦云, 赵玲玲. 有机磷农药对食品的污染及防治. 工业卫生与职业病, 2005, 31(4): 260~263.
    32. 李文兰, 季宇彬, 杨玉楠. 邻苯二甲酸丁基卞酯的生殖毒性及其作用机制. 环境科学, 2004, 25(1): 1~5
    33. 林志芬, 孔德洋, 殷克东. 腈醛混合化合物对发光菌联合毒性的 QSAR 研究, 环境化学, 2005,24 (3):296~301
    34. 刘宁, 沈明浩. 食品毒理学, 中国轻工业出版社. 2006, 41~44
    35. 刘守庆,石增宝. 临沂市某农药厂环境污染与新生儿出生缺陷的流行病学调查研究.预防医学文献信息, 2002, 8(3): 273~274
    36. 刘铣, 刘毓谷. 毒理学. 北京医科大学、中国协和医科大学联合出版社, 1997, 439~441
    37. 刘志平, 许小珊. 羧酸酯酶在梭曼及其他有机磷酸酯中毒中的作用. 国外医学军事医学分册, 1998, 5:263~266.
    38. 卢敏, 牟莉. 环境污染对食品的危害与对策研究. 食品科学, 2007, 28(8):593~596
    39. 陆如山, 胡世平. WHO 关注空气污染对人类健康的影响. 国外医学情报, 2001, 22 (2): 2~6
    40. 罗永有.我国出生缺陷干预现状与发展趋势.实用预防医学,2005, 12(2): 458~461
    41. 马兴元, 谭建华, 朱平. 有机磷类神经毒剂及其抗毒剂研究进展. 动物医学进展, 2003, 24(1):37~40
    42. N.F.Izmerov. 乐果的残留、代谢及毒性. 农药译丛, 1983, 5(4) : 36~39
    43. 农业部农药检定所.农药电子手册.北京:农业部农业检定所, 2005
    44. 彭芳. 细胞色素 P450 在有机磷农药研究中的作用. 中国公共卫生杂志, 1993,1~127
    45. 秦涛, 赵立新, 徐晓白. 环境致癌物风险评级和生物标记物研究, 1997, 9(1): 22~35
    46. 石建莉, 徐晨. 支持细胞与其周围细胞之间的相互作用. 生殖与避孕, 2003, 1(22): 42~45
    47. 司徒镇强, 吴军正. 细胞培养. 北京:世界图书出版公司, 2007, 198~199.
    48. 沈向红, 张晶, 管健. 浙江省部分食品中农药残留水平研究. 中国卫生检验杂志, 2007, 17(8): 1347~1349
    49. 孙金秀, 陈波, 姚佩佩. 农药混剂联合毒性评价, 2000, 29(2):65-68
    50. 孙平辉, 李青松. 2×2 析因试验设计在两种药物联合作用中的应用. 白求恩医科学学报, 1996, 22(1) : 25~27
    51. 唐景荣, 孙曼霁.人梭酸酯酶的研究进展.生物化学与生物物理进展, 1996, 23(2):113~117
    52. 汤亚飞, 王焰新, 蔡鹤生. 有机磷农药的使用与污染. 武汉化工学院学报, 2004, 26(1):11~15
    53. 魏子昌. 湖北省水资源开发利用现状及保护问题浅论. 水资源保护, 1988, 4: 96 ~101.
    54. 王斌, 周霞清, 李立群. 谷胱甘肽代谢及其在肝脏疾病中的作用, 国外医学临床生物化学与检验学分册, 1997,18(2): 82~84
    55. 王海涛, 杨祥良, 徐辉碧. 活性氧的信号分子的作用. 生命的化学, 2001, 21(1):39~41
    56. 王捷, 朱宏宇, 胡翠清.农药生殖毒性的回顾.农药, 2005, 44(11):489~505
    57. 王肖娟, 谢惠琴. 杀虫剂增效作用及其作用机理研究进展. 安徽农业科学, 2007, 35(13):3902~3904
    58. 王心如主编. 毒理学基础,第四版,人民卫生出版社,2003,25
    59. 汪雅谷, 张四荣. 无污染蔬菜生产的理论与实践. 北京:中国农业出版社, 2001,13.
    60. 吴荣, 王江, 王辛. 2004年~2006年陕西省蔬菜中有机磷农药残留状况调查. 中国卫生检验杂志, 2007, 17(8):1488~1490
    61. 伍一军, 孙英健, 鲍凯瑞.有机磷类杀虫剂对脑突触体烟碱型自主受体功能的影响 .中华劳动卫生职业病杂志, 2003(21):188-190
    62. 吴永宁. 现代食品安全科学. 化学工业出版社,2003,92~94
    63. 肖颖. 欧洲食物全—食物和膳食中化学物的危险性评估. 北京医科大学出版社, 2005,32
    64. 徐 培 渝 , 吴 德 生 . 有 机 磷 农 药 毒 性 研 究 新 进 展 , 预 防 医 学 情 报 杂 志 , 2004,20(4):389~341.
    65. 徐端正. 药物联合作用评价. 生理科学进展, 1992, 23(3):218~221
    66. 徐炜. 高效液相色谱法测定环境水体中8种农药残留量. 环境与健康杂志, 2000, 17 (6) : 362~363
    67. 徐海滨, 贺锡文, 谢佐平.氧化乐果对烟碱样乙酰胆碱受体离子通道的阻断作用.中国药学和毒理学, 1997, 11(4): 286-290
    68. 姚欣, 钱元恕. 肝外药物代谢酶的研究进展, 国外医学药学分册, 2003, 20(2):97~102
    69. 杨东仁, 何凤生, 付桂平. 我国农药使用品种现状分析. 中华劳动卫生职业病杂志, 1998, 16(6):348~350
    70. 杨江龙, 刘拉平, 李岚. 蔬菜中有机磷农药残留研究及对策. 环境污染与防治, 2003, 25(6):370~372
    71. 杨军. 我国食物中有机磷农药残留现状及干预措施. 中国公共卫生, 2000, 16(8):755~758
    72. 扬明学, 刘毓谷. 六种大鼠肝微粒体细胞色素 P450 重组酶系对 33 种外来化合物的代谢. 中国药理学和毒理学杂志. 1992, 6(3): 172 ~175
    73. 杨向黎, 林爱军, 王军. 我国农药混剂的开发与应用现状. 山东农业大学学报, 2001, 32(4):544~588
    74. 尹明泉. 农药对地下水污染评价方法的探讨. 山东地质情报, 1992, 4: 19~23.
    75. 应翔宇, 魏淑香等. 体外不同动物及人血浆中梭酸酷酶与梭曼结合特点比较. 国药理学与毒理学杂志, 2002, 16(1):56~59.
    76. 余舜武,刘鸿艳,罗利军. 利用不同实时定量 PCR 方法分析相对基因表达差异. 作物学报, 2007, 33(7):1214~1218
    77. 詹宁育, 王沭沂, 王心如. 辛硫磷对大鼠精子生成量和精子运动能力的影响. 卫生研究, 2000, 29(1):4~6
    78. 詹宁育,王心如,王沭沂. 辛硫磷与氰戊菊酯对大鼠睾丸的联合毒性作用. 中华劳动卫生职业病杂志,2001, 19(4): 261~265.
    79. 张波, 李鹏.食品中有机磷杀虫剂残留对人体健康的损害作用.中国食品学报, 2004, 4(4): 98~101
    80. 张波, 朱萌萌. 氧化乐果对小鼠睾丸细胞 DNA 的损伤. 环境与健康杂志, 2005, 22(6): 468~450
    81. 张东普. 职业卫生与职业病危害控制. 北京:化学工业出版社, 2004, 129~131
    82. 张军, 潘发明.甲胺磷对小鼠精子质量的影响.中国工业医学杂志, 2002, 15(4):208~210
    83. 张桥. 卫生毒理学基础. 北京: 人民卫生出版社, 2001, 104~112
    84. 张桥.毒理学基础. 人民卫生出版社, 2005,101
    85. 张荣全, 李彦. 我国蔬菜中农药残留污染的现状、原因及对策. 蔬菜, 2001, 6:4~5
    86. 张霜红, 王锦珍, 王治明. 职业性农药接触对女工生殖功能的影响.现代预防医学, 2004, 31(5): 664~665
    87. 张侠, 周晓, 刘世杰. 联合作用剂量反应关系评价研究—广义三阶多相式回归模型. 中国卫生统计, 1996, 13(4):55~57
    88. 赵龙坡, 徐铮, 张梅. 枸杞、黄芪对大鼠睾丸支持细胞功能的影响. 中华男科学杂志, 2007, 13(1):83~85.
    89. 郑光, 周志俊. 毒死蜱的毒理学研究进展. 中国公共卫生, 2002, 18(4):496~498
    90. 郑嘉生. 不育男性内分泌激素测定与精子密度相关研究. 男科学报, 1999, 5(1): 26~28
    91. 郑捷, 孙运光, 郑光. 人血清羧酸酯酶活性测定方法的建立. 环境与职业医学, 2004, 4,21(2): 127~130
    92. 中国标准出版社第二编辑室. 农药管理与使用标准汇编.中国标准出版社, 2002, 282~285
    93. 周宏灏. 遗传药理学. 北京:科学出版社, 2001, 40 ~60
    94. 周延冲. 药理学进展数学药理分册. 北京: 人民卫生出版社, 1982, 44~56
    95. 邹黎明, Carry Pope. 有机磷杀虫剂对 M2 受体磷酸化的影响. 中国公共卫生, 2005, 21(11):1326-1329
    96. 朱国栋. 联合作用的机理. 工业卫生与职业病分册, 1985, 1:40~44
    97. 朱国栋. 联合作用的机理. 化工劳动保护, 1985,1,40~43
    98. 朱培元. 支持细胞功能和分化的激素调控,.中华男科学.,2001, 7(1): 48~50
    99. 朱心强, 黄幸妤, 钱军程. 两种农药联合毒性评价方法的比较. 卫生毒理学杂志, 1993, 7(1): 60~61.
    100. 朱心强, 黄幸纾. 生精过程受损伤研究进展. 卫生毒理学杂志, 1997,11(4): 248~252
    101. 朱心强, 郑一凡. 一种混配农药的联合毒性及性别差异. 中国职业医学, 1997
    102. Akbarsha MA , Latha PN, Murgaian P. Retention of cytoplasmic droplet by ratcauda epididymal spermatozoa after treatment with cytotoxic and xwnobiotic agents. J Reprod Fertil, 2000, 120(2): 385~390
    103. Akbarsha MA, Sibasamy P. Male reproductive toxicity of phosphamidon: histopathological changes in epididymis. Indian J Exp Biol, 1998, 36(1):34~38
    104. Albro PW. The biochemical toxicology of di-(2-ethyl-hexyl) and related phthalates: Testicular atrophy and hepatocarcinogenesis. Rev Biochem Toxicol, 1987, 8:73~118.
    105. Altenburger R, Bodeker W, Faust M. Regulation for combined effects of pollutants: consequences from risk assessment in aquatic toxicology. Food Chem Toxicol, 1996,34:1155~1157
    106. Altenburger R, Walter H, Grote M.. What contributes to the combined effect of a complex mixture? Environmental Science Technology, 2004, 38(23): 53~62
    107. Amitai, G., Moorad, D., Adani, R.. Inhibition of acetylcholinesterase and butyrylcholinesterase by chlorpyrifos-oxon. Biochem. Pharmacol, 1998, 56: 2937~299.
    108. Anderson ,M. E., Gargas, M.L. Quantitative evaluation of the metabolic interaction between trichloroethylene and 1,1-dichloroethylene in vivo using gas uptake methods. Toxicol. Appl. Pharmacol, 1987, 89:149~157
    109. Anderson ,P. D., Weber ,L.J..The toxicity to aquatic populations of mixtures containing certain heavy metals. Proceedings of the international conference on heavy metals in the environment. Toronto, Canada, 1975, 2(part2):933~953
    110. Anderson RA, Wallau FM, Groome NP. Physiological relationships between inhibin B, follicle stimulating horme secretion and spermatogenesis in normal man and response to gonadotrophin suppression by exogenous testosterone. Hum Reprod, 1997, 12(4): 746~751.
    111. Anway MD, Folmer J, Wright WW. Isolation of Sertoli cells from adult rat testes: An approach to ex-vivo studies of setroli cell function. Biol of Reprod, 2003,68:996~1002
    112. Archows Arch Pathol Anat Histopathol, 1990,417:145~150
    113. ATSDR. Toxicological profile for chlorpyrifos. U. S. Departemeng of Health and Human Services, 2001, 1~15
    114. Audegond L. Catez D, Foulhoux P. Potentiation of deltamethrin toxicity by organophosphorus insecticides. J Toxicol Clin Exp, 1989, 9(3); 163~176
    115. Bagchi D, Bagchi M, Hassoum EA. Invitro and invivo generation of reactive oxygen species Selected pesticides. Toxicology, 1995,104(1~3):129~140
    116. Baisch H, Kloppel G, Reinke B. DNA ploidy and cell-cycle analysis in pancreatic and ampullary carcinoma: flow cytometric study offormalin-fixed paraff in embedded tissure. Virchows
    117. Bakke JE, Feil VJ, Ptice CE. Rat urinary metabolites from diethyl-3,5,6-trochloro -2-pyridyl phosphorothtoate. J Environ Sci Health, 1976,(3): 225~230
    118. Banerjee BD, Seth V, Bharracharya A. Biochemical effects of some pesticides on lipid peroxidation and free radical scavengers. Toxicol Lett, 1999,107(1~3): 33~47
    119. Barron M.G., Woodburn, K.B..Ecotoxicology of chlorpyrifos . Rev. Environ . Contam. Toxicol. ,1995, 144: 1~76
    120. Bilinaka B. Interaction between Leydig and Sertoli cells in vitro. Cytobios. 1989, 60: 115~119
    121. Billiard SM, Bols NC, Hodson PV.In vitro and in vivo comparisons of fish-specific CYP1A induction relative potency factors for selected polycyclic aromatic hydrocarbons.Ecotoxicol Environ Safe, 2004, 59 (3) :292~299
    122. Birnbaum LS, Devita MJ. Use of toxic equivalency factors for risk assessment for dioxin and related compounds. Toxicology, 1995, 105: 391~401
    123. Blair A, Zahm SH. Agricultural exposures and cancer. Environ. Health Perspect,1995,(103):205~208
    124. Bliss C I. The toxicity of posions applied jointly. Annual Applied Biology, 1939, 26 :585~615
    125. Breslin WJ, Liberacki AB, Ditternber DA. Evaluation of the development and reproductive toxicity of chlorpyrifos in the rat. Fundarn Appl Toxicol, 1996, 29:119~130.
    126. Broderius S J, kahi M D, Hoglund M D. Use of joint toxic response to define the primary mode of toxic action for diverse industrial organic chemicals. Environ Toxicol Chemistry, 1995, 14(9); 1591~1605
    127. Burke DM, Thomson S, Weaver RJ. Cytochrome P450 specifities of alkoxyresorufin O-deelkxylation in human and rat liver. Biochem Phamacol, 1994,48(5) :923~936
    128. Buzzard JJ, Wreford NG, Morrison JR. Marked extension of proliferation of rat Sertoli cells in culture using recombinant human FSH. Reprod, 2002, 124(5):633~641.
    129. Carcia SJ, Ahu-Qare A W, Meeker-O’ Connell WA. Methyl parathion: a review of health effects. J Toxicol Environ Health B Crit Rev ,2003, 6(2): 185~210
    130. Carlsen E , Giwercman A, Keiding N. Declining semen quality and increasing incidence of testicular cancer, is there a common cause? Environ health Perspect, 1995, 103(suppl.7) :137~139
    131. Carlson K, Jortner BS, Ehrich M. Organophosphorus compound induced apoptosisd in SH-SY5Y human neuroblastona cells. J. Toxicol Appl Pharmacol ,2000, 168(2); 102~113.
    132. Cavieres MF, Jaeger J, Porter W. Developmental toxicity of a commercial herbicide mixture in mice: I. Effects onembryo implantation and litter size. Environ Health Perspectives, 2002, 110:1081~1085.
    133. Chen JJ ,Chen YJ, Rice GE. Using dose addition to estimate cumulative risks from exposure to multiple chemicals. Regul Toxicol Pharmacol, 2001, 34(1): 35~41)
    134. Conolly RB. Biologically motivated quantitative models and the mixture toxicity problem. Toxicol Sci, 2001, 63(1): 125~131
    135. Conteras HR, Badilla J, Bustos E. Morphofunctional disturbance of human sperm after incubation while organophosphorate pesticides . Biocell, 1999, 23(2): 135~141
    136. C.Timchalk, T.S. Poet. Pharmacokinetic and pharmacodynamic interaction for a binary mixture of chlorpyrifos and diazinon in the rat. Toxicology and applied pharmacology, 2005, (205):31~42
    137. Cynthia V Rider, Gerald A.Leblanc. An integrated addition and interaction model for assessing toxicity of chemical mixture. Toxicological sciences, 2005,87(2):520~528
    138. Dalvi RR, Howell CD. Interaction of patathion and malathion with hepatic cytochrome P450 from rats treated with Phenobarbital and carbon disulfide. Drug Chem Toxicol. 1978, 1(2): 191~202
    139. Danzo BJ. The effects of environmental hormones on reproduction . Cell Mol Life Sci. 1998, 54(11) :1249~1264
    140. Doeling CR, Risbridger GP. The role of inhibins and activins in prostate cancer pathogenesis. Endocr Relat Cancer . 2000,7(4): 243~256
    141. Domenitti C, Paola D, Vitali A. Glutathione depletion induces apoptosis of rat hepatocytes through activation of protein kinase C novel isoforms and dependent increase in AF-1 nuclear binding.
    142. Dowling CR, Risbridger GP. The role of inhibins and activins in prostate cancer pathogenesis. Endocr Relat Cancer. 2000, 7(4): 243~256.
    143. Eckardstein SV, Simoni M, Bergmmann M. Serum inhibin B in combination with serum follicle stimulating hormone is a more sensitive marker than serum FSH alone for impaired spermatogenesis in men , but can not predict the predict the presence of sperm in testicular tissue sample. J Clin Endo Metab, 1999, 84(7): 2496 ~2501
    144. Ecobichon, D. J. Pesticides use in developing countries. Toxicoloty, 2001, 160, 27~33
    145. Emily Monosson. Chemical mixtures: considering the evolution of toxicology and chemical assessment. Environ Health Perspectives, 2005,113: 383~390.
    146. Finny D J. Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge: Cambridge University Press, 1947,256
    147. Fukuoka M, Kobayashi T, Zhou Y. Mechanism of testicular atrophy induced by di-n-butyl phthalate in rats. Part 4. Changes in the activity of succinate dehydro-genase and the levels of transferring in the Sertoli and germ cells. J Appl Toxicol, 1993,13(4) :241~246.
    148. Gonzales GF. Function of seminal vesicles and their role on male fetility. Asian J Androl, 2001, 3(4):251~258
    149. Groten JP, Feron VJ, Suhnel J. Toxicology of simple and comples mixtures. Trends Pharmacol Sci, 2001, 22(6): 316~322
    150. Guitton N, Touzalin AM, Sharpe RM. Regulatory influence of germ cells on sertoli cell function in the prepubertal rat after acute irradiation of the testis. Int J Androl, 2000, 23(6): 332~339
    151. Hankin,L. and H.M. Pylypiw. Pesticides in orange juice sold in Connecticut. J.Food Protect,1994,54(4):310~311.
    152. Harris FA, Chambers HW. Interaction of insecticidal mixtures in Tobacco Budworm. J Econ Entomol, 1973, 66(2): 517~518
    153. Haw G M, Wasscrman C R, O'Malley C D, et al. Maternal pesticide exposure from multiple sources and congenital anomalies. Epidemiology, 1999, 10(1):60-62
    154. Heindel JJ, Powell CJ. Phthalate esters effects on rat sertoli cells function in vitro: effects of phthalate side chain and age of animal. Toxicol Appl Pharamacol. 1992, 115(1): 116~123
    155. Howard. M. D. , Pope, C.N., In vitro effects of chlorpyrifos, parathion, methyl parathion and their oxons on cardiac muscarinic receptor binding in neonatal and adult rats. Toxicology, 2002, 170, 1~10
    156. Hugh Hansen, Christopher T. De Rosa, Hana Pohl. Public health challenges posed by chemical mixtures. Environmental Health Perspectives, 1998,106(supl6):1271~1275.
    157. Inda H, Maehara K, Doiguchi m. Bisphenol A-induced apoptosis of cultured rat Sertoli cells. Reprod Toxicol, 2003,17:457~464
    158. Ivey, MC and JS Palmer. Chlorpyrifos and 3,5,6-trichloro-2-pyridinol:Residues in the body tissues of sheep treated with chlorpyrifos for sheep treated with chlorprrifos for sheep ked control.J.Econ, Emtomol.1979,72:837~838.
    159. Jack E Barbash, Elizabeth A. Pesticides in Ground Water. Chelsea, M ich igan: A nn A rbor Press, Inc. , 1996.
    160. Jason R, Richardson. Analysis of the Additivity of in vitro inhibition of Cholinesterase by Mixtures of Chlorpyrifos-oxon and Azinphos-methyl-oxon. Toxicology and Applied Pharmacology, 2001, (172)128~139
    161. Raveh L, Grunwald J, Marcus D. Human butyrycholinesterase as a general prophylactic antidote for nerve agent toxicity .Biochemical Pharmacology, 1993, 45 (12):2465~2474.
    162. JL Daniels, AF olshan, DA Savitz. Pesticides and childhood cancers. Environ Health Perspect ,1997,105(10):1068~1077
    163. John E. Casida , Gary B.Quistad. Organophosphate toxicology:safety aspects of nonacetylcholinesterase secondary targets. Chemical Reasearch Toxicology, 2004, (17):984~993
    164. J.E. Chambers , R. L. Carr, J.S. Boone. The metabolism of organophosphorus insecticides. In: R. Krieger, Editor, Handbook of Pesticide Toxicology (2nd edition),Academic Press, San Diego(2001), pp. 919~927
    165. John E. Casida , Gary B.Quistad. Organophosphate toxicology:safety aspects of nonacetylcholinesterase secondary targets. Chemical Reasearch Toxicology, 2004, (17):984~993
    166. John H Richburg. The relevance of spontaneous and chemically induced alterations in testicular germ cell apoptosis to toxicology. Toxicol Let, 2000, 112-113:79~86
    167. Jun Tang, Yan cao, Randy L. Metabolism of chlorpyrifos by human cytochrome P450 isoforms and human, mouse ,and rat liver microsomes. Drug metabolism and disposition, 2001, 29(9): 1201~1209
    168. Karanth,S.,Olivier Liu,J.Interactive toxicity of the organophosphorus insecticides chlorpyrifos and methyl patathion in adult rats. Toxicol. Appl. Pharmacol, 2004, (196):183~190
    169. Katz EJ, Cortes VI, Eldefrawi ME. Chlorpyrifos , parathion and their oxons bind to and desensitize a nicotinic acetylcholine receptor :Relevance to their toxicities .Toxicol Appl Pharmacol ,1997,146:227-236
    170. Keplinger ML. Acute toxicity of combinations of pesticides Toxicol Appl Pharmacol ,1967 ,10: 586~595
    171. Krisch K. Reaction of a microsomal esterase from hog-liver with diethyl P-nitrophenyl phosphate. Biochimica et Biophysica Acta, 1965, 122:265~280
    172. Lei ZM, Mishra S, Zou W. Targeted disruption of luteinizing hormone/ human chorionic gonadotropin receptor gene. Mol Endocrinol. 2001, 15(1): 184~200
    173. Levine BS, Murphy SD. Esterase inhibition and reactivation in relation to piperonyl butoxide-phosphorothionate interactions. Toxicol Appl Pharmacol, 1977, 40(3): 379~391
    174. Liu,J., and Pope, C.N. Compatative presynaptic neurochemical changes in rat striatum following exposure to chlorpyrifos and parathion. J. Toxicol. Environ Health, 1998, (53):101~104
    175. Liu,J., Wang,G., and Pope,C.N. Differential effects of organophosphates on acetylcholine release and muscarinic autoreceptors. Toxicol .Sci, 2001, (60):242~244
    176. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CT method. Methods 2001, 25:402~408
    177. Lucier, G. W. and Menzer, R. E. Nature of oxidative metabolites of dimethoate formed in rats, liver microsomes, and bean plants. J.Agr. Food Chem., 1970 ,18: 698~704
    178. Mansour NA, Eldefrawi ME. Potentiation and antagonism of organophosphorus and carbamate insecticides. J Econ Entomol, 1966, 59: 307~311
    179. Michael C.R. Alavanja, Jane A, Hoppin, , Freya Kamel. Health effects of chronic pesticide exposure: cancer and neuotoxicity . Annual Review of Public Health,2004, 25: 155~197
    180. M.A. Gallo and N.J. Lawryk. Organic phosphorus pesticides. Handbook of pesticides toxicology, classess of pesticides. 1991, 2, 917~1123
    181. Miguel A. Sogorb, Eugenio Vilanova. Enzymes involved in the detoxification of organophosphor -u s , carbamate and pyrethroid insecticides through hydrolysis. Toxicol Lett, 2002, 128:215~228
    182. Milan J , Melita K. Interaction of organophophorus compounds with carboxylesterases with in the rat. Arch Toxico1, 1996,70:444~2450.
    183. Mileson, B. E., Chambers, J.E., Chen. Common mechanism of toxicity: a case study of organophosphorus pesticides. Toxicol. Sci. , 1998, 41: 8~20
    184. Mosmann T. Rapid colorimetric assay for cell growth and survival: application to proliferation and cytotoxicity assays. Immunol Methods, 1983, 65:55~63.
    185. Mumtaz MM, Durkin PR. A weight of evidence scheme for assessing interactions in chemical mixtures. Toxicol Ind Health, 1992, 8:377~406
    186. Mylchreest ,E. Cattley, R.C. Forster . Male reproductive tract malformations in rats following gestational and lactational exposure to di(n-butyl) phthalate: an antiandrogenic mechanism? Toxicol Sci,1998,43:47~60
    187. Newton SC, Murphy LL, Bartke A. In vitro effects of psychoactive and non-psychoactive cannabinoids on immature rat sertoli cell function. Life Science, 1993,53:1429~1437
    188. Jonker D, Woutersen RA, Feron VJ. Toxicity of mixtures of nephrotoxicants with similar of dissimilar mode of action. Food Chem Toxicol, 1996,34(11-12): 1075~1082.
    189. Padungtod C, Lasley BL, Christian DC, et al. Reproductive hormone profile among pesticide factory workers. J Occup Enviro Med, 1998, 40(12):1038~1047
    190. Petry T, Schmid P, Schlatter C. The use of toxic equivalency factors in assessing occupational and environmental health risk associated with exposure to airborne mixtures of polycyclic aromatic hydrocarbons. Chemosphere, 2003,53:183~197
    191. Pierik FH, Vreeburg JT, Stijnern T. Serum inhibin B as a marker of spermatogenesis. J Clin Endo Metab, 1998, 83(9): 3110 ~3114
    192. Plummer J L, Cmielewski, P L, Gourlay, GK. Antinociceptive and motor effects of intrathecal morphine combined with intrathecal clonidine, noradrenaline, carbachol or midaz- olam in rats. Pain, 1992, 49(1): 145~152
    193. Pond AL, Chambers HW, Chambers J E. Organophosphate detoxication potential of various rat tissues via a esteras and aliesterase activities. Toxicol Lett ,1995,78:245~252
    194. Pope, C.N.. Organophosphorus pesticides : do they all have have the same mechanism of toxicity? J. Toxicol. Environ. Health, 1999, Part B 2, 101~121
    195. Quandt.S.A., Arcury, T.A., Rao.P. Agricultural and residential pesticides in wipe samples from farmworkers family residences in North Carolina and Virginia. Environ. Health Perspect, 2004, 112(3), 382~387
    196. Rachoudhury SS, Blake CA, Millette CF. Toxic effects of octylohenol on cultured rat spermatogenic cells and Sertoli cells. Toxicology and Applied Pharmacology, 1999,157:192~202.
    197. Rajapakse N, Silva E, Kortenkamp A.. Combining xenoestrogens at levels below individual no -observed effect concentrations dramatically enhances steroid hormone action. Environ Health Perspectivies, 2002, 110:917~921.
    198. Rao, A. V, Shaha, C. Role of glutathione S-transferase in oxicative stess induced male germ cell apot- osis. Free Radic Biol Med, 2002, 29(10):1015~1027.
    199. Raychoudhury SS, Kubinski D. Polycyclic Aromatic Hydrocarbon-Induced cytotoxicity in cultured rat sertoli cells involves differential apoptotic response. Environ Health Perspect, 2003,111(1):33~38.
    200. Recio N, NellV,TompsonML,et al. Organosphorous pesticide exposure increases the frequency of sperm sex null a- neuploidy. Enviromental Health Perspective, 2001,109: 1237~1240.
    201. Richburg J H. The relevance of spontaneous- and chemically- induced alterations in testicular germ cell apoptosis to toxicology. Toxicol Lett, 2000, 15(112-113):79~86
    202. Rothman W. Present at the environmental risk assessment conference, Alexandria V A, September 21, 1988)
    203. Roy E. Albert, Joellen Lewtas,Stephen Nesnow. Comparative potency method for cancer risk assessment: application to diesel particulate emissions. Risk Analysis, 1983, 3: 101~107.
    204. Russell LD, Griswold MD. Sertoli cell. Clearwater: Cache River Press, 1993, 551~575.
    205. Saito K, Tomigahara Y, Ohe N. Lack of significant estrogenic or antiestrogenic activity of pyrethroid insecticides in three in vitro assays based on classic estrogen receptor alpha-mediated mechanisms. Toxicol Sci, 2000:57(1);54~60
    206. Seed J, Brown RP , Olin SS. Chemical mixtures: current risk assessment methodologies and future directions. Regul Toxicol Pharmacol, 1995,22(1) :76~94
    207. Sharpe RM, Mckinnell C, Kivlin C. Proliferation and functional maturation of sertoli cells, and their relebance to disorders of testis function in adulthood. Reproduction ,2003, 125:769~784
    208. Sharpe RM, Fisher JS, Millar MM. Gestational and lactationl exposure of rats to xenoestrogens results in reduced testicular size and sperm production. Environ Health Percept, 1995, 103(12): 1136~1142.
    209. Simmons JE, Yang RS, Svendsgaard DJ. Toxicology studies of a chemical mixture of 25 groundwater contaminants: hepatic and renal assessment ,reponse to carbon tetrachloride challe- nge, and influence of treatment-induced water restriction. J Toxicol Environ Health, 1994,43(3):305~325.
    210. Sinha N, Narayan R, Saxena DK. Effect of endosulfan on the testis of growing rats. Bull Environ Contam . Toxicol, 1997, 58(1) ;79~86.
    211. Skinner MK, Schlitz SM, Anthony CA. Regulation of Sertoli cell differentiated function: Testicular transferring and androgen-binding protein expression. Endocrinology, 1989, 124: 3015~3024
    212. Henry F.Smyth, Jr., Carrol S.Weil, Jean S.West.. An exploration of joint toxic action: Twenty-seven industrial chemicals intubated in rats in all possible pairs. Toxicol Appl Pharmacol, 1969, 14: 340~347)
    213. Subramanya Karanth , Kenneth Olivier, Jr., Jing Liu. In vivo interaction between Chlorpyrifos and parathion in adult rats: sequences of administration can markedly influence toxic outcome. Toxicology and Applied Pharmacology, 2001(177):247~255
    214. Sultatos L G. Metabolic activation of the organophosphorus insecticides chlorpyrifos and feritrothion by perfused rat liver. Toxicology, 1991, 68:1~9.
    215. Tallarida R J, Porreca F, Cowan A. Statistical analysis of drug-drug and site-siteinteractions with isobolograms. Life Science , 1989,45(11):947~961.
    216. Tetsuo Satoh, Masakiyo Hosokawa. The mammalian carboxyleaterases: from molecules to functions. Annu Rev. Pharmacol. Toxicol, 1998, 38:257~288.
    217. US.EPA.Guidelines for health risk assessment of chemical mixtures.Federal Register,1986,51:34014~34205
    218. Walash LP, Webster DR, Stocco DM. Dimethoate inhibits steroidogenesis by disrupting transcription of the steroidogenic acute regulatory (StAR) gene. J Endocrinol , 2000, 167(2) :253~262
    219. Ward TR, Mundy MR. Organophosphorys compounds preferentially affect second messenger systems coupled to M2/M4 receptors in rat frontal corex.. Brain Res Bull ,1996,39:49-55
    220. Wang QD, Chen HQ, Li FZ. Distribution of the scabenger esterases againt organophosphorus compounds in human tissues. Chin J Pharmacol and Toxicol, 1998,12(2): 91~93
    221. Wiston GW. Oxidations and antioxidants in aquatic animals. Comp Biochem Physilo, 1991,100(1~2):173~176
    222. Welshons W, Thayer KA. Large effects from small exposures. I. Mechanisms for endocrine –disrupting chemicals with estrogenic activity. Environ Health Perspectives, 2003,111:994~ 1006.
    223. WHO. Combination effect in chemical carcinogenesis. New York: VCH publishers, 1998,5~20.
    224. WHO. Technical report series, 1981,662: 8~9
    225. Wilkinson CF. Insecticide biochemistry and physiology, Plenum Press, New York, 1978, 278.
    226. Yamano T, Morita S. Hepatotoxicity of trichlorfon and dichlorvos in isolated rat hepatocytes . Toxicology, 1992, 76:69~77
    227. Young JG, Eskenazi B, Gladstone EA. Association between in utero organophosphate pesticide exposure and abnormoal reflexes in neonates .neurotoxiciology, 2005, 26(2):199~209

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700