用户名: 密码: 验证码:
中尺度地形对陕南暴雨的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我们在实际天气预报业务中,常常为报准西北地区东部、华北地区的暴雨大伤脑筋,这其中重要原因之一可能就是中尺度地形及与地形有关的下垫面对暴雨的影响问题。因此,本论文就是从2002年6月8-9日(简称“02.6”)西北地区东部强降水(尤其陕南地区大暴雨过程)个例出发(中央气象台虽然文字预报服务材料对陕西南部和中部持续出现的强降雨过程做出了较准确的预报,但强降雨落区具体位置预报与实况相比还有一定的偏差,强度预报偏弱),采用多种常规和非常规资料,通过观测分析、数值模拟、诊断分析等手段对该大暴雨过程,特别是对其中的β中尺度系统和中尺度地形作用做了较全面、深入的研究。作为对比,本文还对2002年6月24-25日发生在北京地区的强地形雨进行了分析,并讨论陕南、北京地区两地暴雨的异同点以及地形作用的共性和个性,为两地暴雨预报提供有益的参考,得出了一些很有意义的结果:
     1 大尺度环流背景分析表明:(1)“02.6”强降水与6月上旬越赤道气流和季风爆发密切相关,携带大量水汽的偏南气流与冷空气于6月8日交汇在西北地区东部,导致了这次强降水的发生;(2)200hPa的副热带西风急流、500hPa副高以及850hPa的低空急流的配置非常有利于本文分析之陕西强降水的发展与维持。大尺度形势分析表明,东高西低形势场、低空急流的建立和高低空形势的配置决定了这场降雨出现在西北地区东部。与暴雨区相联系,存在一支横越低空急流的经向垂直环流,暴雨区处于该垂直环流的上升支;(3)偏南和偏东气流水汽通道在西北地区东部交汇,水汽的辐合积聚主要在对流层低层和行星边界层内完成;(4)整层的视热源高值区在暴雨区附近呈东北-西南向分布,与切变线走向非常一致,降水产生的凝结潜热释放是强降水区大气的主要热源。同时,在大尺度上升运动区中低层存在一个条件对称不稳定建立的机制,使得在暴雨区,既存在深厚的对流不稳定机制,又存在水汽输入机制和对流不稳定的触发机制,从而形成强暴雨。
     2 β中尺度系统及降水成因分析:除了以上有利的大尺度背景场外,陕南强降水过程对应的中尺度系统是非常明显的,且无论对流层低层还是高层的流场和高度场都有很好的配置。β中尺度的天气系统的发生发展是直接造成强降水的原因。这种系统的发生发展具有很强的局地性和突发性,主要取决于当地的地形条件及大尺度背景场,其中,地形和对流不稳定是重要的原因之一。中尺度结构分析表明,本次暴雨具有明显的中尺度特征,是由三支气流共同作用的结果,分析发现(1)地面东南风和地形在这次大暴雨过程起主要作用;(2)东路冷空气主要是通过中低层侵入陕南地区的,并与地面冷式锢囚锋的形成密不可分;(3)夜
    
    博士论文:中尺度地形对陕南暴雨的影响研究
    间垂直次级环流发展加强可能有两个原因,一个是由于地形山谷风的作用,另一
    个是降水的潜热释放激发了上升运动:(4)位势不稳定层结的形成与低层暖湿平
    流的发展有很好的对应关系;(5)本次暴雨的水汽主要靠偏南风急流将孟加拉湾
    和中国南海的水汽输送至西北地区东部,为暴雨的发生提供了必要热力条件。位
    涡分析结果表明低层正值位涡扰动的存在是暴雨发生发展的重要条件,而凝结潜
    热释放和地面潜热输送是位涡扰动的主要原因。东路冷空气对陕南强降水的影响
    尤为重要。同时,由于冷空气是从中层侵入西北地区东部,这样就形成了较强的
    对流不稳定层结,有利于对流降水的发生。
    3地形热力作用的影响主要表现在:(1)地面感热、潜热通量和温度的区域性
    分布与高原东部特殊的地形分布有关,地表通量和温度的等值线与地形等高线大
    致平行,平原低洼地区和山脉所在地特征明显,从而可以说明地形热力状况在陕
    西强降水中发挥重要作用;(2)不考虑地面潜热通量的作用时,模式对降水的模
    拟与实况偏差较大,700hPa的中尺度低压和850hPa的背风气旋不能形成,从而
    导致由中尺度背风气旋所引起的陕南大暴雨也不能模拟出来。同时,散度垂直剖
    面图也表明,除去地表潜热的作用后,没有出现低层的强辐合和高层的强辐散,
    低层辐合只出现在秦岭北坡和渭河河谷,秦岭南坡和汉江河谷被辐散气流所控
    制;(3)地表感热使山脊降水减少,使平原、山谷降水增加,这与夜间的山谷风
    环流密不可分。
     4地形动力作用的影响表明:(l)大巴山的各部分对降水的影响都很大,尤其
    是大巴山西部山脉影响最大。大巴山的整体高度降低并非是其他试验线性叠加,
    降水减小程度比线性叠加更大,这说明各个地形对降水的作用是非线性的;(2)
    秦岭使大巴山和汉江河谷、陕北降水增加,使山脉本身降水减少。其中,秦岭山
    脊的作用是关键性的,秦岭山脉对降水的影响主要是通过地形产生的垂直次级环
    流实现的;(3)低层东南风沿汉江河谷喇叭口地形动力抬升与冷锋过山产生的垂
    直扰动的叠加激发了垂直上升运动的强烈发展,从而导致陕南强降水的发生;(4)
    锋面翻越秦岭是一个不连续过程,与Keuler等(1992)的结论相一致,锋面翻
    越大巴山过程则明显不同;(5)山脉除了对冷锋移行速度有影响外,对冷锋强度
    的变化也有重要影响。山脉对上层锋的影响不大,这是因为山
Based on kinds of conventional and non-conventional observation data, a sudden extremely heavy rainfall during June 8-9, 2002 in the southern part of Shaanxi province was investigated by means of observation analysis, numerical simulations, and diagnosis, especially the meso- systems' structure and the effects of meso-scale topography. By contrast, another case heavily influenced by terrain as well during June 24-25, 2002 in Beijing district was analyzed and similarities and dissimilarities between the two cases , generality and individuality of topographical effects on torrential rain were discussed. The following conclusions can be drawn:
    1. The analysis of the large-scale synoptic situation shows that strong precipitation is closely related to the explosion of monsoon and the intensification of cross-equatorial flow which bring a lot of vapor and meet with cold masses at the eastern of northwest district on 8th,June causing extremely heavy rainfall; that subtropical high-level jet at 200hPa, subtropical high at 500hPa and low-level jet at 850hPa are the weather backgrounds favorable to strong precipitation ; that the pattern of eastern highs and western lows and the establishment of a low-level jet and the coupling between upper-and low-level patterns that determine that the rain occurred in the east of the Northwest China (on average, this is the rainy season for the south of China, but not for the Northwest China); that water vapor comes from southerly and easterly flow which converge at the eastern of northwest district with convergence mainly in lower levels and PBL; that the high value of the whole-level apparent heat
     source is near the area of large rainfall in the direction of northeasterly-southwesterly agreeable to shear line very well and the condensation latent heat releasing is main heat source with vertical advection item playing key role in Q1 and Q2; that there is a vertical secondary circulation crossing low-lever jet whose ascending branch is at the area of large rainfall; that the construction of convection instability and conditional symmetry instability results that there is not only deep thermal instability, but also moisture influx and triggering mechanism of thermal instability causing strong torrential rain.
    2. The analysis of meso- scale synoptic systems indicated that the occurrence and development of the local and paroxysmal meso- scale synoptic systems led to this rainfall besides the helpful macro-scale conditions. The evolution of the meso- systems depended mainly on the topography and the macro-scale conditions, among which the topography and convective instability were thought to be the most important. The above analysis showed that this heavy rainfall event
    
    
    took on obvious meso-scale characters and was the combination of the three flows, so we can deduce: (1) surface southeasterly wind and topography may play the main role in this event; (2) the easterly cold air rushing into the southern Shaanxi province in the lower troposphere was strongly relative to the form of surface cold-front type of occlusion; (3) there were two reasons for the secondary circulation's strengthen in the evening, one was the effect of a mountain-valley wind and the other may be latent heat leading to ascending motion; (4) the shape of potential instability stratification corresponded well with the development of the warm-moisture advection; and (5) the vapor providing essential thermodynamics was transported by a southwesterly low-level jet from the Bay of Bengal and the South China Sea. Furthermore, with the effect of terrain, the southern Shaanxi province became the center of this extremely heavy rain process. At the same time, the disturbance of the low-level jet might be the triggering condition for heavy rain. But the surface occluded front crossing Qinling Mountains and strengthening, maybe the direct reason. Dynamic and thermal effect may also play an important role. Results show that positive perturbation of potential vorticity in the lower layers which is pro
引文
1.高守亭、陈辉,大地形背风波的转槽试验研究,气象学报,2000,58(6),653—665.
    2.高守亭、赵思雄、周晓平、孙淑清、陶诗言,次天气尺度及中尺度暴雨系统的进展,大气科学,2003,27(4),618—627.
    
    
    3.胡伯威、彭广,暖切变型江淮梅雨锋结构及其形成和维持机制,大气科学,1996,20(4),463-472.
    4.蒋后硕、吕克利,高、低空急流中的锢囚锋环流,高原气象,2000,19(3),265-276.
    5.刘玉宝、胡志晋、何观芳、周秀骥、葛润生,中尺度山脉对流群的动力和微物理数值模拟,气象学报,1995,53(2),157-167.
    6.程麟生、冯伍虎,中纬度中尺度对流系统研究的若干进展,高原气象,2002,21(4),337-347.
    7.Peng Jiayi,Wu Rongsheng,and Wang Yuan,Initiation Mechanism of Meso-β Scale Convective Systems,Advances in Atmospheric Sciences,2002,19(5),870-884.
    8.许美玲、段旭、施晓辉、何华,突发性暴雨的中尺度对流复合体环境条件的个例分析,气象科学,2003,23(1),84-91.
    9.张庆红、刘彦、张玉玲,中尺度对流复合体的诊断分析,自然科学进展,1998,8(2),213-219.
    10.顾亚进、党人庆、唐洵昌、魏建苏,一次MCS过程的卫星云图和数值模拟分析,气象科学,2002,22(2),197-204.
    11.徐夏囡、“98.7”武汉及其附件地区特大暴雨中若干观测事实的分析,应用气象学报,2001,12(3),327-336.
    12.段旭、李英,低纬高原地区一次中尺度对流复合体个例研究,大气科学,2001,25(5),676-682.
    13.程麟生、冯伍虎,“987”突发大暴雨及中尺度低涡结构的分析和数值模拟,大气科学,2001,25(4),465-478.
    14.蒙伟光、王安宇、李江南、冯瑞权、梁嘉静,华南前汛期一次暴雨过程中的中尺度对流系统,中山大学学报(自然科学版),2003,42(3),73-77.
    15.王迎春、钱婷婷、郑永光、陶祖钰,对引发密云泥石流的局地暴雨的分析和诊断,应用气象学报,2003,14(3),277-286.
    16.沈浒英、姜彤、吴宜进,1998年长江流域暴雨洪水环流背景分析,自然灾害学报,2000,9(1),7-12.
    17.周自江、宋连春、李小泉,1998年长江流域特大洪水的降水分析,应用气象学报,2000,11(3),287-296.
    18.张顺利、陶诗言、张庆云、张小玲,1998年夏季中国暴雨洪涝灾害的气象水文特征,应用气象学报,2001,12(4),442-457.
    19.王庆、李军、李道季、陈吉余,淮河中游河床倒比降的形成、演变与治理,泥沙研究,2000,2(1),50-55.
    20.孙淑清、马廷标、孙纪改,低空急流与暴雨相互关系的对比分析,气象学报,1979,37(4),36-44.
    
    
    21.孙淑清、翟国庆,低空急流的不稳定性及其对暴雨的触发作用,大气科学,1980,4(4),327-337.
    22.李志楠、李廷福,北京地区一次强对流大暴雨的环境条件及动力触发机制分析,应用气象学报,2000,11(3),304-311.
    23.朱民、余志豪、陆汉城,中尺度地形背风波的作用及其应用,气象学报,1999,57(6),705-714.
    24.孙伟、侯明全,陕南2002-06-08暴雨洪水灾害分析,陕西气象,2003(1),29-31.
    25.王川,青藏高原东侧一次区域性暴雨天气过程分析,陕西气象,2003(1),11-13.
    26.张弘、孙伟、陈卫东,中尺度对流系统(MCSs)散度场的特殊结构,陕西气象,2003(2),1-5.
    27.宁志谦、梁生俊,陕西2次暴雨过程的能量和湿位涡分析,陕西气象,2003(3),1-4.
    28.毕宝贵、鲍嫒嫒,康志明、李泽椿,2003年7月3-4日淮河流域大暴雨结构和形成机理分析,待发表.
    29.毕宝贵、刘月巍、李泽椿,2002年6月8-9日陕南大暴雨系统的中尺度分析,大气科学,2004,28(4).
    30.吴宇华、段昌辉、梁新兰,陕西2002-06-08区域性暴雨天气过程分析,陕西气象,2003(1),4-7
    31. JASON E. NACHAMKIN、RAY L. MCANELLY、AND WILLIAM R. COTTON, Interactions between a Developing Mesoscale Convective System and Its Environment. Part I:Observational Analysis, MONTHLY WEATHER REVIEW, 2000(5), 128,1205-1224.
    32. JASON E. NACHAMKIN, AND WILLIAM R. COTTON, Interactions between a Developing Mesoscale Convective System and Its Environment. Part Ⅱ: Numerical Simulation, MONTHLY WEATHER REVIEW, 2000(5), 128, 1225-1244.
    33. G. L. BROWNING, H.-O. KREISS、D. W. VAN DE KAMP, NOTES AND CORRESPONDENCE Comments on "Observations of a Mesoscale Ducted Gravity Wave", J A S, 57, 595-598.
    34. BRIAN A. COLLE AND CLIFFORD F. MASS, Windstorms along the Western Side of the Washington Cascade Mountains. Part I : A High-Resolution Observational and Modeling Study of the 12 February 1995 Event, MONTHLY WEATHER REVIEW, 1998(1), 28-52.
    35. M. SEGAL AND R. W.ARRITT, J. E. TILLMAN, NOTES AND CORRESPONDENCE On the Potential Impact of Daytime Surface Sensible Heat Flux on the Dissipation of Martian Cold Air Outbreaks, JOURNAL OF THE ATMOSPHERIC SCIENCES, 1997(6), 54, 1544-1549.
    36. BRUCE D. LEE, ROBERT B. WILHELMSON, The Numerical Simulation of Nonsupereell Tomadogenesis. Part Ⅲ: Parameter Tests Investigating the Role of CAPE, Vortex Sheet
    
    Strength, and Boundary Layer Vertical Shear, JOURNAL OF THE ATMOSPHERIC SCIENCES, 2000(7), 57, 2246-2261.
    37. J. C. DORAN AND E. D. SKYLLINGSTAD, Multiple-Scale Terrain Forcing of Local Wind Fields, MONTHLY WEATHER REVIEW, 1992(5), 120, 817-825.
    38. M. SEGAL, R. W. ARRITT, AND C. CLARK, R. RABIN, J, BROWN, Scaling Evaluation of the Effect of Surface Characteristics on Potential for Deep Convection over Uniform Terrain, MONTHLY WEATHER REVIEW, 1995(2), 123,383-400.
    39. YING-HWA KUO, LINSHENG CHENG AND JIAN-WEN BAO, Numerical Simulation of the 1981 Sichuan Flood. Part Ⅰ: Evolution, Mesoscale Southwest Vortex, MONTHLY WEATHER REVIEW, 1988(12), 116, 2481-2503.
    40. MORRIS A. BENDER, ROBERT E. TULEYA AND VOSHIO KURIHARA, A Numerical Study of the Effect of a Mountain Range on a Landfalling Tropical Cyclone, MONTHLY WEATHER REVIEW, 1985(4), 113,567-582.
    41. BRIAN A. COLLE AND CLIFFORD F. MASS, Windstorms along the Western Side of the Washington Cascade Mountains. Part Ⅱ: Characteristics of Past Events and Three-Dimensional Idealized Simulations, MONTHLY WEATHER REVIEW, 1998(1), 126,53-71.
    42. PIOTR K. SMOLARKIEWICZ AND RICHARD ROTUNNO, Low Froude Number Flow Past Three-Dimensional Obstacles. Part Ⅱ:Upwind Flow Reversal Zone, JOURNAL OF THE ATMOSPHERIC SCIENCES, 1990, 47(12), 1498-1511.
    43. Zhu Guofu, and Chen Shoujun, Analysis and Comparison of Mesoscale Convective Systems over the Qinghai-Xizang(Tibetan) Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 2003, 20(3), 311-322.
    44. JOHN W. NIELSEN-GAMMON, DAVID M. SCHULTZ, Comments on "The Intensification of the Low-level Jet during the Development of Mesoscale Convective Systems on a Mei-Yu Front", MONTHLY WEATHER REVIEW, 1999(9), 127, 2227-2231.
    45.袁佳双、寿绍文,高低空位涡扰动、非绝热加热与气旋的发生发展,热带气象学报,2002(5),18(2),121-130.
    46.王建中、马淑芬、丁一汇,位涡在暴雨成因分析中的应用,应用气象学报,1996(2),7(1),19-27.
    47.孙建华、赵思雄,华南“94·6”特大暴雨的中尺度对流系统及其环境场研究Ⅱ物理过程、环境场以及地形对中尺度对流系统的作用,大气科学,2002(9),26(5),633-646.
    48.刘延英、仪清菊、周丽、徐祥德,1991年江淮梅雨的湿有效能量分析,气象科学,1999(12),57(6),741-750.
    49.陆尔、丁一汇、李月洪,1991年江淮特大暴雨的位涡分析与冷空气活动,应用气象学报,
    
    1994(8),5(3),266-274.
    50.张小玲、陶诗言、张庆云,1998年7月20~21日武汉地区梅雨锋上突发性中-β系统的发生发展分析,应用气象学报,2002(8),13(4),385-397.
    51.贝耐芳、赵思雄,1998年“二度梅”期间突发强暴雨系统的中尺度分析,大气科学,2002(7),26(4),526-540.
    52.徐双柱,“98·7”武汉市特大暴雨的中尺度分析,气象,28(7),54-58.
    53.胡伯威、彭广,长江中、下游梅雨锋产生和发展的个例研究,气象学报,1995(6),53,613-621.
    54.寿绍文、励申申、彭广、吴书君,条件性对称不稳定与梅雨锋暴雨,南京气象学院学报,1993(9),16(3),364-367.
    55.姜海燕、葛润生、朱晓燕,华南暴雨试验IOP-6期间6月9日长乐地区强降水风场结构的初步分析,应用气象学报,2001(2),12(1),97-101.
    56.夏文梅、张亚萍、汤达章、顾松山、杜秉玉,暴雨多普勒天气雷达资料的分析,南京气象学院学报,2002(12),25(6),787-794.
    57.寿绍文、励申申,1991年梅雨期江淮地区持续性暴雨降水强度的变化及其成因,南京气象学院学报,1996(6),19(2),197-203.
    58.刘屹岷、吴国雄、刘辉、刘平,空间非均匀加热对副热带高压形成和变异的影响Ⅲ:凝结潜热加热与南亚高压及西太平洋副高,气象学报,1999(10),57(5),525-538.
    59.刘屹岷、吴国雄,副热带高压研究回顾及对几个基本问题的再认识,气象学报,2000(8),58(4),500-512.
    60.丁一汇、吴晓曦、马淑芬,1991年江淮暴雨期地气通量与混合层结构的研究,气象学报,1997(6),55(3),257-270.
    61.宋敏红、钱正安,高原及冷空气对1998和1991年夏季西太副高及雨带的影响,高原气象,2002(12),21(6),556-563.
    62.陆尔、丁一汇,1991年江淮持续性特大暴雨的夏季风活动分析,应用气象学报,1997(8),8(3),316-324.
    63.吴国雄、蔡雅萍、唐晓菁,湿位涡和倾斜涡度发展,气象学报,1995(11),53(4),387-405.
    64.郁淑华、滕家谟、何光碧,高原地形对四川盆地西部突发性暴雨影响的数值试验,大气科学,1998(5),22(3),379-383.
    65.孙健、赵平、周秀骥,一次华南暴雨的中尺度结构及复杂地形的影响,气象学报,2002(6),20(3),333-342.
    66.齐瑛、傅抱璞,过山气流与地形形状,南京大学学报,1992(10),28(4),633-643.
    67.邓家铨、朱赛霞、郑敏,不同地形边界层风场特征及山谷风污染气象个例分析,热带地理,1989(12),9(4),346—353.
    
    
    68.张美根、韩志伟、雷孝恩,地形性中尺度环流的数值模拟及验证,大气科学,2000(1),24(1),122-130.
    69.肖庆农、张颖、李微,锋面波发展演变与气旋形成的数值研究,大气科学,1995(7),19(4),465-474.
    70.贝耐芳、赵思雄,初值及物理过程对“98·7”暴雨预报结果的影响,气候与环境研究,2002(12),7(4),386-396.
    71.连志鸾,对华北中尺度低压个例的数值模拟及敏感性试验,南京气象学院学报,2002(8),25(4),548-554.
    72.闫敬华、薛纪善,“5.24”华南中尺度暴雨系统结构的数值模拟分析,热带气象学报,2002(11),18(4),302-308.
    73.卢乃锰,吴蓉璋,强对流降水云团的云图特征分析,应用气象学报,1997(8),8(3),269-275.
    74.许习华,锋面附近垂直环流的重力波特征,热带气象,1991(5),7(2),127-134.
    75.周明煜,Hsiaoming Hsu、袁耀初,黄海、东海海域出海气旋发展过程中尺度数值模拟,地球物理学报,2003(3),46(2),175-178.
    76.D.O.Blanchard,对流有效位能垂直分布作用的评价,气象科技,2000(2),34—40.
    77.杨晓霞、张爱华、贺业坤,连续冰雹天气的物理量场特征分析,气象,26(4),50-54.
    78.王建中、丁一汇,一次华北强降雪过程的湿对称不稳定性研究,气象学报,1995(11),53(4),45-460.
    79. Jordan G Powers,1997: Numerical model simulation of a mesoscale gravity wave event: sensitivity tests and spectral analyses,Mon. Wea. Rev., 125, 1838-1869.
    80. Paul J. Neiman, E Martin Ralph, Robert L. Weber, and Taneil Uttal, Louisa B. Nance, David H.Levinson.2001: Observations of nonclassical frontal prooagation and frontally forced gravity waves adjacent to steep topography, Mon. Wea. Rev., 129, 2633-2659.
    81. Peng JingBei, and Song ZhengShan,2003: Heat and moisture budgets during the period of HUBEX/GAME in the summer of 1998, Advances in Atmospheric Sciences.20,245-251.
    82. Yi-Leng Chen and Xin An Chen, Sue Chen and Ying-Hwa Kuo, 1997: A numerical study of the low-level jet during TAMEX IOP 5, Amer. Meteor.Soc., 125, 2583-2604.
    83. Shiyuan Zhong, Jerome D. Fast, and Xindi Bian, 1996: A case study of the great plains low-level jet using wind profiler network data and a high-resolution mesoscale model, Amer. Meteor. Soc., 124, 785-806.
    84. Jason E. Nachamkin. and William R. Cotton, 2000: Interactions between a developing mesoscale convective system and its environment, part Ⅱ: Numerical Simulation, Amer. Meteor. Soc., 128, 1225-1244.
    85. Yi-Leng Chen, Shu-Fen Tseng, 2000: Comments on "The Intensification of the low-level jet
    
    during the Development of Mesoscale Convective Systems on a MEI-YU Front", Amer.Meteor. Sot., 128,495-506.
    86.孙淑清,梅雨锋中大振幅重力波的活动及其与环境场的关系,大气科学,1990,14(2),163-172.
    87.余志豪,陆汉城,范献忠,梅雨锋移动性中-β尺度暴雨雨蜂团的观测研究,中国人民解放军空军气象学院学报1987第1期,1-13.
    88.李耀辉,寿绍文,一次江淮暴雨的MPV及对称不稳定研究,气象科学,2000,20(2),171-178.
    89.丁德刚,王树芬,相向而行的重力波与暴雨,大气科学,1994,18(4),451-455.
    90.崔春光,房春花,胡伯威等,地形对低涡大暴雨影响的数值模拟试验,气象,26(8),14-18.
    91.吴国雄,刘还珠,全型垂直涡度倾向方程和倾斜涡度发展,气象学报,1999,57(1),1-15.
    92.范可,琚建华,范学峰,湿位涡诊断分析在东南亚强降水中的应用,气象科技,2003,31(1),23-28.
    93.刘还珠,张绍晴,湿位涡与锋面强降水天气的三维结构,应用气象学报,1996,7(3),275-284.
    94.吴海英,寿绍文,位涡扰动与气旋的发展,南京气象学报,2002,25(4),510-517.
    95.郑新江,陶诗言,罗敬宁等,1998年7月21—22日特大暴雨过程的中-β尺度云团特征,气象学报,2001,59(5).
    96.雷恒池,王宏,胡朝霞,肖辉,黄美元,1998年7月21日武汉暴雨小尺度动力特征的数值模拟研究,大气科学,2002,26(5),647-662.
    97.谈哲敏,伍荣生,地形上空边界层流中低层锋面结构的理论研究Ⅱ:冷锋、均匀地转流,气象学报,2000,58(2),137-150.
    98.王菱,华北山区坡地方位和海拔高度对降水的影响,地理科学,1996,16(2),150-158.
    99.傅抱璞,地形和海拔高度对降水的影响,地理学报,1992,47(4),302-314.
    100.程麟生,郭英华,初始条件和大地形对西南涡演变的中尺度模拟影响,兰州大学学报,1990,26(4),140-147.
    101.邹坚峰,大地形附近气流爬绕运动的一个动力学分析,气象科学,1989,9(1),27-36.
    102.陈明,傅抱璞,于强,山区地形对暴雨的影响,地理学报,1995,50(3),256-263.
    103.吴庆丽,陈敏,王洪庆等,暴雨雨团中β尺度流场结构的数值模拟,科学通报,2002,47(18),1437-1441.
    104.李柏,寿绍文,励申申,梅雨锋生次级环流对暴雨的作用,气象科学,1996,16(4),314-321.
    
    
    105. 高守亭,孙淑清,次天气尺度低空急流的形成,大气科学,1984,8(2),178-188.
    106. 寿绍文,李耀辉,范可,暴雨中尺度气旋发展的等熵面位涡分析,气象学报,2001,59(5),560-568.
    107. 陆汉城,吕梅,何齐强,一次冷锋后飑线的大振幅重力波特性分析,应用气象学报,1992,3(2),136-144.
    108. 桑建国,李启泰,小尺度地形引起的切变重力波,气象学报,1992,50(2),227-231.
    109. 高守亭,雷霆,周玉淑等,强暴雨系统中湿位涡异常的诊断分析,应用气象学报,2002,13(6),662-670.
    110. 胡伯威,关于位涡理论及其应用的几点看法,南京气象学院学报,2003,26(1),111-115.
    111. 胡伯威,暖切变型梅雨锋的天气.动力学研究,大气情报,17(1),1-3.
    112. 胡伯威,暖切变型梅雨锋的天气动力学研究及其预报问题,暴雨·灾害,1997,37-43.
    113. 胡伯威,潘鄂芬,顾中华,梅雨锋上暴雨云团活动的个例分析,应用气象学报,1992,3(1),42-50.
    114. 宋正山,鲍嫒媛,杨辉,初夏东南亚季风建立过程的气候诊断分析,高原气象,2002,21(2),119-127.
    115. 彭新东,程麟生,江淮暴雨期一次低涡切变线过程的降水特征分析,兰州大学学报,1995,31(1),111-114.
    116. 丁治英,张兴强,寿绍文,南亚高压与偏北风急流出口区的暴雨生成机制,应用气象学报,2002,13(6),671-679.
    117. 王文,程麟生,96.1高原暴雪过程湿对称不稳定的诊断分析,兰州大学学报,2001,37(1),109-120.
    118. 彭京备,宋正山,1999年夏季江淮地区热源和水汽汇时空变化特征,气候与环境研究,2001,6(2),153-160.
    119. 张小玲,陶诗言,张庆云,1998年梅雨锋的动力热力结构分析,应用气象学报,2002,13(3),257-268.
    120. 谢齐强,1991年江淮流域持续性特大暴雨的水汽输送,气象,19(10),16-20.
    121. 翁笃鸣,罗哲贤.山区地形气候,气象出版社,1990:1-36.
    122. 钱永甫,颜宏,王谦谦等.行星大气中地形效应的数值研究,科学出版社,1988.1-3.
    123. 叶笃正,高由禧等.青藏高原气象学,明文书局,1966:1-9.
    124. Fuqing Zhang, and Steven E. Koch, 2000: Numerical simulation of a gravity wave event over CCOPE. Part Ⅱ: Waves generatedby an orographic density current, Amer. Meteor. Soc., 128, 2777-2796.
    125. Steven E. Peckham, and Louis J. Wicker, 2000: The influence of topography and lower-tropospheric winds on dryline morphology, Amer. Meteor. Soc., 128, 2165-2189.
    126. Stanley G Benjamin, and Toby N.Carlson, 1986: Some effects of surface heating and
    
    topography on the regional severe storm environment. Part I: Three-Dimensional simulations, Amer. Meteor. Soc., 14, 307-329.
    127. Michael J.Dickinson, and David J. Knight, 1999: Frontal interaction with mesoscal topography, Amer. Meteor. Soc., 56, 3544-3559.
    128. 范广州,吕世华,地形对华北地区夏季降水影响的数值模拟研究,高原气象,1999,18(4),659-667.
    129. 崔春光,闵爱荣,胡伯威,中尺度地形对“98.7”鄂东特大暴雨的动力作用,气象学报,2002,60(5),602-612.
    130. 高坤,翟国庆,俞樟孝,屠彩虹,华东中尺度地形对浙江暴雨影响的模拟研究,气象学报,1994,52(2),157—164.
    131. 胡伯威,崔春光,房春花,1998年7月21~22日鄂东沿江连日特大暴雨成因探讨,大气科学,2001,25(4),479-491.
    132. 罗建英,王宗敏,周军,梅雨锋急流暴雨变化的地理原因研究,南京气象学院学报,2003,26(3),371-377.
    133. 孙建华,赵思雄,一次罕见的华南大暴雨过程的诊断与数值模拟研究,大气科学,2000,24(3),381-392.
    134. 翟国庆,高坤,俞樟孝,屠彩虹,暴雨过程中中尺度地形作用的数值试验,大气科学,1995,19(4),475-480.
    135. 孙建,赵平,周秀骥,一次华南暴雨的中尺度结构及复杂地形的影响,气象学报,2002,60(3),333-342.
    136. 朱民,余志毫,陆汉城,中尺度地形背风波的作用及其应用,气象学报,1999,57(6),705-714.
    137. 胡伯威,中尺度地形对大气铅直运动和强降水的影响,暴雨·灾害,2000,8-23.
    138. 肖庆农,伍荣生,地形对于气流运动影响的数值研究,气象学报,1995,53(1),38-49.
    139. 齐英,傅抱璞,李兆元,秦岭山脉对冷空气屏障的理论研究,气象学报,1995,53(2),186-193.
    140. 刘辉志,洪钟祥,桑建国,对流边界层中过山气流的数值模拟,气候与环境研究,2001,6(3),305-311.
    141. 董佩明,张维桓,沈桐立,下垫面强迫对京津冀大暴雨作用的数值研究,应用气象学报,1999,10(4),436-444.
    142. 侯建忠,王川,杜继稳,王索民,陕西致洪性大暴雨特征分析及应对措施,陕西气象,2003(3),10-13.
    143. 杜继稳,梁生俊,偏南气流翻越秦岭山脉的数值分析,西北大学学报(自然科学版),1997,27(2),141-145.
    144. 张庆洪,刘启汉,王洪庆,陈受钧,华南梅雨锋上中尺度对流系统的数值模拟,科学通
    
    报,2000,45(18),1988-1992.
    145. 寿绍文,励申申,张诚忠,范可,梅雨锋中尺度切变线雨带的动力结构分析,气象学报,2001,59(4),405-413.
    146. 姜勇强,王昌雨,张维桓,陈中一,台风倒槽内β中尺度低涡及特大暴雨的数值模拟,气象学报,2003,61(3),312-322.
    147. 王劲松,李耀辉,康凤琴,张华,西北地区东部一次暴雨的数值模拟试验,高原气象,2002,21(3),258-266.
    148. 毕宝贵,李泽椿,李晓莉,孙军.北京地区降水的特殊性及其预报方法,南京气象学院学报,2004,27(1),79-89.
    149. Atkinson, B.W., 1981: Meso-scale atmospheric circulations, Academlc Press.
    150. 吉野正敏(郭可展译),1984:局地气候原理,广西科学技术出版社。
    151. Barry, R.G, 1981: Mountain weather and climate, Printed in the United States of America.
    152. Long, R.R: Some aspects of the flow of stratified fluids. Part Ⅰ, Ⅱ. Tellus, 1953 (5), 42-48;1954 (6), 97-115.
    153. Houghton, D.D. and A.Kasahara, 1968: Nonlinear shallow fluid flow over an isolated ridge. Commum. Pure and Appl. Math., 21, 1-23.
    154. Chao,J. E et al(巢纪平等), 1966: A preliminary investigation on the formation of pressure jump produced by mountains in a two-layer model, Scientia Sinica, 15, 723-729.
    155. Klemp, J.B. and D.K. Lily, 1975: The dynamics of wave induced downslope winds, J.Atmos. Sci. 32, 320-339.
    156. Smith, R.B., 1985: On sever downslope winds, J. Atmos. Sci., 42, 2597-2603.
    157. Durran, D.R., 1986: Another look at downslope windstorms. Part Ⅰ: On the development of analogs to supercritical flow in an infinitely deep, continuously stratified fluid. J. Atmos. Sci., 43, 2527-2543.
    158. Druuan, D.R. and J.B. Klemp, 1987: Another look at downslope windstorms. Part Ⅱ: Nonlinear amplification beneath wave-overturning layers. J. Atmos. Sci. 44, 3402-3412.
    159. Prandtl, L., 1952: Essentials of fluid dynamics, Blakie and Son Ltd. London.
    160. Gleeson, T.A., 1951: On the theory of cross-valley winds arising from differential heating of the slopes. J. Meteor., 8, 389-405.
    161. Whiteman, C.D., 1990: Observations of thermally developed wind systems in mountainous terrain, Atmospheric Processes over Complex Terrain, W. Bluman, Ed., Amer. Meteor. Soc., 5-42.
    162. Barr, S. and M.M. Orgill, 1989: Influence of external meteorology on nocturnal valley drainage winds, J. Appl. Meteor., 28, 497-517.
    
    
    163. Egger, J., 1990: Thermally forced flows: Theory. Atmospheric Processes over Complex Terrain, W. Bluman, Ed., Amer. Meteor. Soc., 43-81.
    164. Queney, P. Theory of perturbation in stratified currents with application to airflow over mountain barriers. Department of Meteorology, University of Chicago, Misc. Rep. 1947, 25, 67.
    165. Scorer, R. Theory of waves in the lee of mountains. Quart. J. Roy. Meteor. Sot., 1949, 75: 41-56.
    166. Benjamin, T. B. and M. J. Lighthill, On sinusoidal waves and bores. Proc. Roy. Soc., 1954, A224: 478-460.
    167. Banjamin, T.B. Upstream influence. J. Fluid Mech., 1979, 40: 49-79.
    168. Mclntyre, M. On Long's hypothesis of no upstream influence in uniformly stratified or rotating flow. J. Fluid Mech., 1972, 52: 202-243.
    169. Pierrhumbert, R.T. Linear results on the barrier effects of mesoscale mountains. J. Atmos. Sci., 1984, 41: 1346-1367.
    170. Pierrhumbert, R.T. and B. Wyman. Upstream effects of mesoscale mountains. J. Atmos. Sci., 1985, 42: 977-1003.
    171. Pierhumbert, R.T. A theoretical model of orographically modified cyclogenesis. J. Atmos. Sci., 1985, 42: 1244-1258.
    172. Pierhumbert, R.T. Local and global baroclinic instability of zonally varying flow. J. Atmos. Sci., 1984, 41: 2141-2162.
    173. Bannon, P.R. and J.A. Zehnder. Baroclinic flow over a mountain ridge. J. Atmos. Sci., 1989, 46: 703-714.
    174. Clark, T.L. and W. R. Peltier, 1984: Critical level reflection and the resonant growth of nonlinear mountain waves, J. Atmos. Sci. 41, 3122-3134.
    175. Wu, R. S.(伍荣生), 1991: The surface friction and the flow over mountain, Adv. In Atmos. Sci., 8,272-278.
    176. 齐瑛,1993:中尺度山地气候动力学,科学出版社,1-182.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700