用户名: 密码: 验证码:
西瓜果实品质形成的生理生化机制与基因表达谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
西瓜果实品质发育是一个十分复杂的动态过程,主要包含果实大小、糖含量与糖分组成、果肉的颜色、质地和风味等一系列的变化。本项研究的主要目的是探明西瓜果实品质发育过程中主要品质物质构成的变化特征、品质形成相关酶活性的变化规律以及相关基因表达情况。本研究选取高糖栽培西瓜品种97103(Citrullus lanatus subsp. vulgaris East-Asia Ecotype)和无糖近缘野生变种PI296341-FR(Citrullus lanatus subsp. lanatus)的几个关键发育阶段的西瓜果实,采用生理生化和高通量测序技术,系统分析了西瓜果实发育中品质形成的生理生化机制及品质相关基因表达模式。得到如下主要结果:
     1.栽培西瓜品种97103和野生变种PI296341-FR之间果实物质构成差异比较
     1.1.97103和PI296341-FR果实干物重的显著差异体现了光合同化物卸载和分配的差异。成熟果实中,97103卸载的光合同化物约为PI296341-FR的1.3-1.5倍;97103果实中卸载的光合同化物主要分配到果肉,以可溶性糖的形式积累,PI296341-FR主要分配到种子。
     1.2.97103和PI296341-FR果肉和果皮间糖分积累存在显著差异。97103果肉积累了大量的果糖、葡萄糖和蔗糖;97103果皮只积累很少量的葡萄糖和果糖,几乎不积累蔗糖。蔗糖的积累是决定97103果实甜度的主要因素。PI296341-FR果肉和果皮糖分的积累很少,以果糖和葡萄糖为主,蔗糖几乎为零。
     1.3. PI296341-FR果肉果胶和粗纤维含量比97103高3倍以上,是造成两个品种果肉硬度差异的主要原因。97103西瓜果实主要积累苹果酸。97103果肉苹果酸含量比PI296341-FR稍高,这一差异决定了现代栽培西瓜有别于野生西瓜的独特风味。
     2.栽培西瓜品种97103和野生变种PI296341-FR果实品质差异的生理生化机制
     2.1..甜组织(97103果肉)酸性a-半乳糖苷酶活性显著高于非甜组织,进一步支持了甜组织比非甜组织(97103果皮、PI296341-FR果皮和果肉)卸载了更多的光合同化物,主要以可溶性糖的形式在甜组织积累。甜组织与非甜组织碱性a-半乳糖苷酶活性几乎无差异。
     2.2.甜组织发育中后期不可溶性转化酶活性高与非甜组织,是甜组织中卸载光合同化物多于非甜组织的重要因素。可溶性酸性转化酶活性在甜组织发育中后期与非甜组织几乎无差异。甜组织蔗糖合成酶和蔗糖磷酸合成酶显著高于非甜组织,表明甜组织蔗糖的积累与蔗糖合成酶和蔗糖磷酸合成酶密切相关。
     2.3.97103果实果肉多聚半乳糖醛酸酶(PG)和纤维素酶(Cx)活性明显高于PI296341-FR果肉,是导致果实质地软化的重要酶。苹果酸脱氢酶活性显著差异造成了97103果肉与PI296341-FR果肉苹果酸含量差异。
     3.栽培品种和野生变种西瓜果实品质形成的基因表达谱
     3.1选取栽培品种97103发育的四个和野生变种PI296341-FR发育的六个重要时期,开展97103果肉和其果皮及PI296341-FR果肉进行链特异RNA序列分析。共确定了2,452个基因在97103果肉、826个基因在其果皮中及322在PI296341-FR果肉中差异表达。GO term富集分析表明,97103果肉、97103果皮和PI296341-FR果肉果实发育中生物过程如细胞壁构建、防御应答反应均发生了显著变化,而己糖和单糖代谢过程只在97103果肉中显著改变。
     3.2.在西瓜注释基因组中,共有62个糖代谢酶相关基因。转录组分析确定13个糖代谢酶相关基因果实发育中差异表达。西瓜果实发育的基因表达谱更能在基因表达水平反应糖代谢相关基因表达差异,西瓜果实甜组织比非甜组织有更多的基因差异表达。西瓜果实糖代谢基因表达调控机制复杂,部分相关基因表达与糖代谢酶活性有一致的动态变化趋势,但也有不同。基于西瓜果实糖代谢基因差异表达分析,建立了西瓜果肉细胞糖代谢模型:在西瓜果肉发育中,α-半乳糖苷酶、不可溶性酸性转化酶,蔗糖合成酶,蔗糖磷酸合成酶,UDP-葡萄糖异构酶,可溶性酸性转化酶和UDP半乳糖焦磷酸化酶相关酶基因家族存在一个或多个差异表达基因,这些差异表达的基因可能是调控果实糖卸载和糖代谢及积累的关键基因。
Fruit quality development of watermenlon is a complex process, mainly including changes of fruitshape and size, sugar content and composition, flesh color, texture and flavor. In this study, thepurpose is to investigate the variation of substances and enzymes that related to fruit quality, geneexpression profiling of fruit quality formation during watermelon fruit development. East-Asia Ecotypewatermelon accession97103(Citrullus lanatus subsp. vulgaris East-Asia Ecotype) with high sugarcontent and the wide type watermelon accession PI296341-FR(Citrullus lanatus subsp. lanatus)withvery low sugar content were used to study the physiological and biochemical mechanism and geneexpression profiling in several critical stages of fruit quality formation during watermelon fruitdevelopment via physiological and biochemical analysis and high-throughput sequencing technology.The main results are as following:
     1. The comparison of physical differences between97103with high sugar content andPI296341-FR fruit with low sugar content
     1.1. The significant difference of dry matter content between97103and PI296341-FR fruitindicated the differences of photosynthates unloading and partitioning. Unloaded photosynthates in97103matured fruit was about1.3-1.5times higher than that in PI296341-FR fruit. More unloadedphotosynthates were mainly stored in97103flesh tissue in the form of soluble sugars. In comparison,less photosynthates were unloaded into PI296341-FR fruit and mainly stored in seeds.
     1.2. The contents of sucrose, fructose and glucose in97103central flesh were high, while thecontent of sucrose, fructose and glucose were very low in97103mesocarp, PI296341-FR central fleshand mesocarp. The accumulation of sucrose was the key factor determining the final sweetness of97103fruit flesh.
     1.3. The lower content of pectin, crude fiber and malate in97103fruit flesh than that inPI296341-FR lead to the attractive agricultural traits of cultivated watermelon, including crispy textureand distinct flavor.
     2. The physiological and biochemical differences for watermelon fruit between97103andPI296341-FR
     2.1. In comparison, the enzyme activity of acid alfa-galactosidase in sweet tissue was significanthigher than in non-sweet tissues. It indicated that more photosynthates were unloaded into sweet tissuethan non-sweet tissues, and accumulated in the form of soluble sugars in sweet tissue. There was almostno difference in the enzyme activity of alkaline alfa-galactosidase between sweet tissue (97103centralflesh) and non-sweet tissue (97103mesocarp, PI296341-FR flesh and mesocarp PI29634).
     2.2. The enzyme activity of Insoluble acid invertase (IAI) were higher in sweet tissue than innon-sweet tissues.It indicated that more photosynthates were unloaded into sweet tissue than non sweettissues and IAI played an important role in photosynthates unloading. No difference was observed inthe enzyme activity of soluble acid invertase between sweet tissue and non-sweet tissues in the latter stage of fruit development. The enzyme activities of sucrose synthase (SuSy) and sucrose phosphatesynthase (SPS) were significant higher in sweet tissue than those in non-sweet tissues. These resultsindicated that sucrose accumulation was closely related to the enzyme activities of SuSy and SPS.
     2.3. The enzyme activities of polygalacturonase (PG) and cellulose (Cx) in97193fruit flesh weresignificant higher than in other tissues including97103mesocarp, PI296341-FR flesh and mesocarp.These results indicated that the two enzymes should be involved in fruit texture solfting. The significantdifference of malate content between97193fruit flesh and PI296341-FR flesh may be due to theenzyme activity difference of malate dehydrogenase (MDH).
     3. The comparison of gene expression profiling between cultivated97103and wild typePI296341-FR during fruit quality development
     Four critical stages for97103and six critical stages for PI296341-FR had been chosen forstrand-specific RNA-seq analysis in97103flesh,97103mesocarp and PI296341-FR flesh during fruitdevelopment.2,452,826and322genes were identified that were differentially expressed in97103flesh,97103mesocarp and PI296341-FR flesh, respectively, during fruit development. GO termenrichment analysis indicated that, during fruit development, biological processes such as cell wallbiogenesis, biogenesis and defense responses were significantly altered in97103flesh,97103mesocarpand PI296341-FR flesh, whereas hexose and monosaccharide metabolic processes were onlysignificantly altered in97103flesh, supporting sugar contents observed among three tissues.
     The annotated watermelon genome contains a total of62sugar metabolic enzyme genes. Ourtranscriptome analysis identified13sugar metabolic genes that are differentially expressed during97103flesh development and among three tissues. The differences of differentially expressed sugarmetabolic genes can be better supported in transcriptome level and more genes were different expressedin sweet tissue than in non-sweet tissues of watermelon fruit. Some differentially expressed sugarmetabolic genes correlated with activities of sugar metabolic enzymes and some not, possible reasonwas the mechanism for sugar metabolic processes were complex.
     Based on the analyses of differentially expressed sugar metabolic genes, we propose a model forsugar metabolism in cells of watermelon fruit flesh: During watermelon flesh development,α-galactosidase (AGA), insoluble acid invertase (IAI), sucrose phosphate synthase(SuSy), sucrosephosphate synthase (SPS), UDP-glucose4-epimerase (UGE), soluble acid invertase (SAI) andUDP-galactose pyrophosphorylase (UGGP) had one or more expressed genes in enzyme families, andthese expressed genes involved in regulating sugar unloading and metabolism as key genes.
引文
1.曹建康,姜微波,赵玉梅著.果蔬采后生理生化实验技术.中国轻工业出版社,2007:84-87.
    2.常尚连,于贤昌,于喜艳.西瓜果实发育过程中糖分积累与相关酶活性的变化.西北农业学报,2006,15(3):138-141.
    3.陈发兴,刘星辉,陈立松.果实有机酸代谢研究进展.果树学报,2005,22(5):526-531.
    4.陈美霞,赵从凯,陈学森,郝会军,张宪省.杏果实发育过程中有机酸积累与相关代谢酶的关系.果树学报,2009,26(4):471-474
    5.程杰山,沈火林,井玉芳,杨辉,孙秀波,于岩.辣椒果实成熟过程中硬度及相关生理生化指标的变化.华北农学报,2006,21(6):75-78.
    6.付伟.罗汉果二倍体及四倍体遗传变异研究[博士学位论文].北京:北京协和医学院,2011.
    7.付亚茹.玉米气生根早期发育的转录组和候选基因的功能分析[硕士学位论文].泰安:山东农业大学,2011.
    8.关军锋.果实品质生理.科学出版社,2008:1-3.
    9.黄国成,陈发兴.菠萝栽培技术问答.中国盲文出版社,1999:37-40.
    10.贾关荣,赵文恩,申红山,王斌,马双武.西瓜中类胡萝卜素的柱色谱法分离分析.安徽农业科学,2008,20:8416-8418.
    11.蒋亚华.黄瓜碳水化合物代谢与运转特征研究[硕士学位论文].扬州:扬州大学,2005.
    12.阚娟.桃果实成熟软化机理的研究[硕士学位论文].扬州:扬州大学,2005.
    13.李培环,董晓颖,王永章,刘成连,原永兵,李鹏.新红星苹果果实蔗糖合酶的活性及亚细胞定位.园艺学报,2002,29(4):375-377.
    14.李湘龙,柏斌,吴俊,邓启云,周波.第二代测序技术用于水稻和稻瘟菌互作早期转录组的分析.遗传,2012,34(1):102-112.
    15.李雪梅.砂梨果实有机酸含量及代谢相关酶活性动态变化研究[硕士学位论文].武汉:华中农业大学,2008.
    16.李曜东,魏玉凝,顾淑荣.PG与番茄果实成熟的关系.植物学通报,2004,21(1):79-83
    17.刘娜,杨景华,张明方.嫁接西瓜microRNA的鉴定以及表达差异研究.园艺学报,2011,38(增刊):2606.
    18.刘慧英,朱祝军,刁明,葛志平.嫁接的西瓜果实发育过程中叶和果实蔗糖代谢的一些特性.植物生理学通讯,2006,42(5):835-840.
    19.刘慧英,朱祝军,钱琼秋,葛志平.砧木对小型早熟西瓜果实糖代谢及相关酶活性的影响.园艺学报,2004,31(1):47-52.
    20.刘慧英.嫁接影响西瓜果实品质和幼苗耐冷性的生理机制研究[博士学位论文].杭州:浙江大学,2003.
    21.刘润秋.砧木对嫁接西瓜生长发育及果实品质的影响[硕士学位论文].长春:吉林农业大学,2004.
    22.刘生财,林玉玲,陈晓东,赖钟雄.利用Solexa测序技术鉴定苋菜试管开花过程中的miRNAs.热带作物学报,2011,7:1296-1303.
    23.骆蒙,方天祺.甜瓜成熟期间多聚半乳糖醛酸酶与乙烯的变化和果实软化的关系.植物生理学通讯,1995,5:338-341.
    24.茅林春,张上隆.果胶酶和纤维素酶在桃果实成熟和絮败中的作用.园艺学报,2001,28(2):107-111.
    25.孟文慧,张显,罗婷.嫁接砧木对西瓜果实糖分积累及蔗糖代谢相关酶活性的影响.西北农林科技大学学报(自然科学版),2009,37(3):127-132.
    26.朴一龙,赵兰花,黄龙洙.梨果实贮藏中可溶性果胶和半纤维素分子结构的变化.园艺学报,2007,34(6):1525-1530.
    27.齐红岩,刘勇,衣宁宁,张建红.薄皮甜瓜组织结构、纤维素及果胶含量与果实感官品质的关系.中国蔬菜,2010(8):36-40.
    28.钱琼秋,刘慧英,朱祝军.嫁接西瓜果实发育过程中蔗糖代谢及相关酶调控的研究.浙江大学学报(农业与生命科学版),2004,30(3):285-289
    29.乔永旭,刘栓桃,赵智中,邢国明,何启伟.甜瓜果实发育过程中糖积累与蔗糖代谢相关酶的关系.果树学报,2004,21(5):447-450.
    30.食品中膳食纤维的测定.国标法GB/T5009.88,2008.
    31.宋烨,刘金豹,王孝娣.苹果加工品质的糖积累与蔗糖代谢相关酶活性.果树学报,2006,23(1):1-4.
    32.孙利祥,丁淑丽,李建勇,朱风仙,汪继华.8个西瓜品种番茄红素含量的比较分析.上海农业学,2006,22(1):66-68
    33.索标.桃果实软化过程中细胞壁多糖降解特性的研究[硕士学位论文].扬州:扬州大学,2006.
    34.汤谧,别之龙,张保才,吴明珠,伊鸿平,冯炯鑫.西瓜、甜瓜果实品质及调控研究进展.长江蔬菜(学术版),2009,2b:10-14
    35.万赛罗,高橼,金青,聂敬全,林毅,蔡永萍.番茄果实成熟过程中硬度及相关生理生化指标的变化.中国蔬菜,2008(4):20-23.
    36.万学闪,刘文革,阎志红,赵胜杰,何楠,路绪强,刘鹏.不同倍性西瓜果实不同糖含量比较.长江蔬菜(学术版),2010,(8):19-22.
    37.王刚.棉花幼苗盐胁迫条件下Solexa转录组测序结果的分析及验证[硕士学位论文].泰安:山东农业大学,2011.
    38.王坚.中国西瓜甜瓜.北京:中国农业出版社,2000.
    39.王永章,张大鹏.红富士苹果果实蔗糖代谢与酸性转化酶和蔗糖合酶关系研究.园艺学报,2001,28(3):259-261.
    40.问亚琴,张艳芳,潘秋红.葡萄果实有机酸的研究进展.海南大学自然科学版,2009,27(3):302-307.
    41.武涛,秦智伟,周秀艳,冯卓.黄瓜性别决定基因表达谱分析《.庆祝中国园艺学会创建80周年暨第11次全国会员代表大会论文摘要集》,2009.
    42.熊丽东.红花转录组测序分析及其油体蛋白全长的获得[硕士学位论文].长春:吉林农业大学,2011.
    43.徐昌杰,陈昆松,张上隆.蔗糖酶对柑桔外切纤维素酶和外切多聚半乳糖醛酸酶活性测定的干扰及其排除.植物生理通讯,199733(1):43-46.
    44.许传强,李天来,齐红岩.嫁接对网纹甜瓜果实发育、糖含量及蔗糖代谢相关酶活性的影响.园艺学报,2006,33(4):773-778.
    45.薛炳烨,毛志泉,束怀瑞.草莓果实发育成熟过程中糖苷酶和纤维素酶活性及细胞壁组成变化.植物生理与分子生物学学报,2006,32(3):363-368;
    46.薛炳烨.肥城桃和草幕果实发育成熟软化生理机理的研究[博士学位论文].泰安:山东农业大学,2002.
    47.杨玉梅,张显,于蓉,于远.西瓜不同种质资源糖分积累规律的研究.西北植物学报,2006,15(6):111-113
    48.杨玉梅.不同西瓜种质资源糖分积累规律与糖代谢相关酶关系的研究[硕士学位论文].杨凌:西北农林科技大学,2006
    49.张飞,岳田利,费坚,等.果胶酶活力的测定方法研究.西北农业学报,2004,13(4):133-137.
    50.曾秀丽,张光伦,李春燕,等.三个脐橙品种果实主要细胞壁酶动态变化研究.亚热带植物科学,2006,35(2):12-16.
    51.张进献,李冬杰,张广华,李青云,葛会波.不同钙处理对采后草莓果实细胞壁酶活性、果胶含量的影响.北方园艺,2006(2):24-26.
    52.张明方,李志凌,陈昆松,钱琼秋,张上隆.网纹甜瓜发育果实糖分积累与蔗糖代谢参与酶的关系.植物生理与分子生物学学报,2003,29(5):455-462.
    53.张玉刚,祝军,梁美霞,戴洪义.利用RNA-Seq分析柱型和普通型苹果转录水平差异.园艺学报,2011,38(增刊):2454.
    54.赵淼.柑橘果实有机酸代谢及调控研究.安徽农业大学[硕士学位论文],2008:14-16.
    55.赵青华.草莓果实成熟过程中细胞壁组分变化的研究.食品与药品,2007,9(6):27-28.
    56.赵尊行,孙衍华,黄化成.山东苹果中可溶性糖、有机酸的研究.山东农业大学学报,1995,26(3):355-360.
    57. Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biology,2010,11: R106.
    58. Bang H. Environmental and genetic strategies to improve carotenoids and quality in watermelon.Dissertation for Ph D Degree at Texas A&M University, U.S.A.2005.
    59. Benjamini Y and Hochberg Y. Controlling the false discovery rate: a practical and powerfμLapproach to mμLtiple testing. Journal of the Royal Statistical Society. Series B,1995,57(7):289-300.
    60. Bethke PC, Sabba R, Bussan AJ.Tuber Water and Pressure Potentials Decrease and SucroseContents Increase in Response to Moderate Drought and Heat Stress. American Journal of PotatoResearch,2009,86:519-532.
    61. Bourgis F, Aruna Kilaru A, Cao X, Georges-Frank Ngando-Ebongue, Noureddine Drira, John B.Ohlrogge, Vincent Arondel. Comparative transcriptome and metabolite analysis of oil palm anddate palm mesocarp that differ dramatically in carbon partitioning. PNAS,2011,108(30):12527-12532.
    62. Boyle E, Weng S, Gollub J, Jin H, Botstein D, Cherry JM, Sherlock G. GO:TermFinder—opensource software for accessing Gene Ontology information and finding significantly enriched GeneOntology terms associated with a list of genes. Bioinformatics,2004,20(18):3710-3715.
    63. Brown AC, Summers WL. Carbohydrate accumμLation and color development in watermelon. JAm Soc Hortic Sci,1985,110:683-687.
    64. Brummell DA, Valeriano DC, Carlos H. Crisosto CH and Labavitch JM.Cell wall metabolismduring maturation, ripening and senescence of peach fruit. Journal of Experimental Botany,2004(55):2029-2039.
    65. Burger Y and Schaffer AA. The Contribution of Sucrose Metabolism Enzymes to SucroseAccumuLation in Cucumis melo. J. Amer. Soc. Hort. Sci.,2007,132(5):704-712.
    66. Caspar T, Huber SC, Somerville C. Alterations in growth, photosynthesis, and respiration in astarchless mutant of Arabidopsis thaliana (L.) deficient in chloroplast phosphoglucomutase activity.Plant Physiol.,1985,79:11-17.
    67. Claid Mujaju. Diversity of landraces and wild forms of watermelon (Citrullus lanatus) in southernAfrica. Swedish University of AgricuLtural Sciences,2009.
    68. Elkashif, ME, Huber DJ. Enzymic hydrolysis of placental cell wall pectins and cell separation inwatermelon (Citrullus lanatus) fruits exposed to ethylene. Physiologia Plantarum,1988,73(3):432–439.
    69. Elmstrom, GW, Davis, PL. Sugars in developing and mature fruits of several watermelon cuLtivars.J. Am. Soc. Hortic. Sci.,1981,106,330-333.
    70. FAO Statistics [http://faostat.fao.org]
    71. Fernie AR, Roessner U, Trethewey RN, Willmitzer L.The contribution of plastidial PGM to thecontrol of starch synthesis within the potato tuber. Planta,2001,213:418–426.
    72. Figueroa CR, Rosli HG, Civello PM, Mart nez GA, Herrera R, Moya-Leon MA. Changes in cellwall polysaccharides and cell wall degrading enzymes during ripening of Fragaria chiloensis andFragaria×ananassa fruits. Scientia Horticulturae,2010,124:454-462.
    73. Findlay N, Oliver KJ, Nil N, Coombe BG. Solute accumulation by grape pericarp cells. IV.Perfusion of pericarp apoplast via the pedicel and evidence for xylem malfunction in ripeningberries. J Exp Bot,1987,38:668-679.
    74. Gao Z and Schaffer AA.A novel Alkaline a-Galactosidase from melon fruit with a substratepreference for Raffinose. Plant Physiol.,1999,119:979-987.
    75. GaudreaμLt PR, Webb JA.Alkaline a-galactosidase in leaves of Cucurbita pepo. Plant Sci Lett,1982,24:281-288.
    76. GaudreaμLt PR, Webb JA. Alkaline a-galactosidase activityand galactose metabolism in thefamily Cucurbitaceae. Plant Sci.,1986,45:71-75
    77. Giovannoni J. Molecular biology of fruit maturation and ripening. Annu. Rev.Plant Physiol. PlantMol. Biol.2001,52:725-749.
    78. Godt DE and Roitsch T. Regulation and tissue-specific distribution of mRNAs for threeextracellular invertase isoenzymes of tomato suggests an importantfunction in establishing andmaintaining sink metabolism. Plant Physiol.,1997,115:273-282.
    79. Gregory AT, Donald G. Synthesis of polygalacturonase during tomato fruit ripening. Planta,1982,155:64-67.
    80. Gross K C, Pharr D M.A potential pathway for galactose metabolism in Cucumis sativus L., astachyose transporting species. Plant Physiol.,1982,69:117-121.
    81. Guo SG, Liu J, Zheng Y, Huang MY, Zhang H, Gong G, He H, Ren Y, Zhong S, Fei Z, Xu Y.Characterization of transcriptome dynamics during watermelon fruit development: sequencing,assembly, annotation and gene expression profiles.BMC Genomics2011,12:454.
    82. Hadfield KA, Jocelyn KC. Rose, Yaver DS, Berka RM, Bennett AB. Polygalacturonase GeneExpression in Ripe Melon Fruit Supports a Role for Polygalacturonase in Ripening-AssociatedPectin Disassembly. Plant Physiol.,1998,117:363–373
    83. Hammami C, Rene F and Maria M. Process-quality optimization of the vacuum freeze-drying ofapple slices by the response surface method. International Journal of Food Science and Technology,1999,34:145-150.
    84. Handley LW, Pharr DM, McFeeters RF. Carbohydrate changes during maturation of cucumberfruit. Plant Physiol1983,72:498-502.
    85. Hanson KR, McHale NA. A starchless mutant of Nicotiana sylvestris containing a modified plastidphosphoglucomutase. Plant Physiol.,1988,88:838–844.
    86. Harrison CJ, Hedley CL, Wang TL. Evidence that the rug3locus of pea encodes plastidialphosphoglucomutase confirms that the imported substrate for starch synthesis in pea amyloplasts isglucose-6-phospkate. Plant J,1998,13:753–762.
    87. Hinton DM and Pressey R. CeluLase activity in peaches during ripening.Journal of Food Science,1974,39(4):783-785.
    88. Hobson GE.Determination of polygalacturonase in fruits. Nature,1962,195:804–805
    89. Hubbard NL, Huber SC and Pharr DM. Sucrose phosphate synthase and acid invertase asdeterminants of sucrose concentration in developing muskmelon (Cucumis melon L.) fruits, PlantPhysiol.,1989,91:1527-1534.
    90. Huber DJ. The Role of Cell Wall Hydrolases in Fruit Softening. Horticultural Reviews,1983,5:169-219.
    91. Huber SC, Huber LH. Role and regulation of sucrose phosphate synthase in higher plants. AnnuRev Plant Physiol Plant Mol Biol1996,47:431-443.
    92. Isla MI, Vattuone MA, Ordonez RM SampietroAI.Invertase activity associated with the walls ofSolanum tuberosum tubers. Phytochemistry,1999,50(4):525-534.
    93. IwatsuboT, Nakagawa H, Ogura N, Hirabayashi T, SatoT. Acid invertase of melon fruit:immunochemical detection of acid invertases. Plant Cell Physiol,1992,33:1127-1133.
    94. Jin CH, Suo B, Kan J, Wang HM, Wang ZJ. Changes in Cell Wall Polysaccharide of HarvestedPeach Fruit during Storage. Journal of Plant Physiology and Molecular Biology,2006,32(6):657-664.
    95. Kano Y. Changes of sμgar kind and its content in the fruit of watermelon during its developmentand after harvest. Environ. Control Biol.,1991,29,159–166.
    96. Karakurt Y, Huber DJ.Cell wall-degrading enzymes and pectin solubility and depolymerization inimmature and ripe watermelon (Citrullus lanatus) fruit in response to exogenous ethylene. PhysiolPlant.,2002,116:398-405.
    97. Karuppiah N, Vadlamudi B, Peter B. Kaufman. Purification and Characterization of Soluble(Cytosolic) and Bound (Cell Wall) Isoforms of Invertases in Barley (Hordeum vulgare) ElongatingStem Tissue. Plant Physiol.,1989,91(3):993-998.
    98. Keller F, Pharr DM. Metabolism of carbohydrates in sink and sources: galactosyl-sucroseoligosaccharides. In E Zamski, AA Schaffer, eds, Photoassimilate Distribution in Plants and Crops.Marcel Dekker, New York,1996:157–183
    99. Kim YH, Hwang BH, Kim JK.Changes in soluble and transported sugars content and activity oftheir hydrolytic enzymes in muskmelon (Cucumis melo L.) fruit during development andsenescence.Korean Journal of Horticultural Science&Technology,2007,25(2):89-96.
    100. Koh, TH, Melton, LD, Newman, RH. Solid-state13C NMR characterization of cell walls ofripening strawberries. Can. J. Bot.1997,75:1957-1964.
    101. Koh, TH, Melton, LD. Ripening-related changes in cell wall polysaccharides of strawberry corticaland pith tissues. Postharvest Biol. Technol.2002,26,23-33.
    102. Krμger NJ, von Schaewen A.The oxidative pentose phosphate pathway: structure and organisation.Curr Opin Plant Biol,2003,6:236–246.
    103. Langmead B, Trapnell C, Pop M and Salzberg SL. ΜLtrafast and memory-efficient alignment ofshort DNA sequences to the human genome. Genome Biology,2009,10: R25.
    104. Langmead B, Trapnell C, Pop M and Salzberg SL. ΜLtrafast and memory-efficient alignment ofshort DNA sequences to the human genome. Genome Biology,2009,10: R25.
    105. Lester GE, Arias LS, Lim MG. Muskmelon fruit soluble acid invertase and sucrose phosphatesynthase activity and polypeptide profiles during growth and maturation. J Am Soc Hortic Sci2001,126:33-36.
    106. Lester GE, Dunlap JR.Physiological changes during development and ripening of “Perlita”muskmelon fruits. Sci Hortic,1985,26:323-331
    107. Levi A, Thomas CE, Keinath A, Wehner T. Genetic diversity among watermelon (Citrulluslanatus and Citrullus colocynthis) accessions. Genetic Resources and Crop Evolution,2001,48:559-566.
    108. Lingle SE and Dunlap JR. Sucrose metabolism in netted musk melon fruit during development,Plant Physiol.,1987,84:386-389.
    109. Maclachlan G and Brady C. Endo-1,4--glucanase, xyloglucanase and xyloglucan endo-transglycosylase activities versus potential substrates in ripening tomatoes. Plant Physiol.,1994,105:965-974.
    110. Mardis ER. The impact of next-generation sequencing technology on genetics. Trends Genet,2008,24(3):133–141.
    111. Margulies M, Egholm M, Altman WE, et al. Genome sequencing in microfabricated high-densitypicolitre reactors. Nature,2005,437(7057):376–380.
    112. Maxam AM and Gilbert W. A new method for sequencing DNA. Proc Natl Acad Sci, USA,1977,74(2):560-564.
    113. McCaskill A and Turgeon R.Phloem loading in Verbascum phoeniceum L. depends on thesynthesis of raffinose family oligosaccharides. Proc Natl Acad Sci, USA,2007,149(43):19619–19624
    114. McCollum TG, Huber DJ and Cantliffe DJ. Soluble sμgar composition and invertase activityduring muskmelon fruit development. J Amer Soc Hort Sci,1988,113:399-403
    115. McCollum TG, Huber DJ, Cantliffe DJ.Modification of polyuronides and hemicelluloses duringmuskmelon fruit softening. Physiol Plant,1989,76:303–308
    116. Merav Yativ, Idan Harary, Shmuel Wolf. Sucrose accumμLation in watermelon fruits: geneticvariation and biochemical analysis. Journal of Plant Physiology,2010,167:589-596.
    117. Mi Tang, Zhi-long Bie, Ming-zhu Wu, Hong-ping Yi, Jong-xin Fen. Changes in organic acids andacid metabolism enzymes in melon fruit during development.Scientia Horticulturae,2010,123:360-365.
    118. Miron D and Schaffer AA. Sucrose Phosphate Synthase, Sucrose Synthase, andInvertase Activitiesin Developing Fruit of Lycopersicon escμLentum Mill and the Sucrose Accumulating Lycopersiconhirsutum Humb and Bonpl. Plant Physiol.,1991,95:623-627.
    119. Mitchell, D.E., Gadus, MV, Madore, MA. Patterns of assimilate production and translocation inMuskmelon (Cucumis melo L.). I. Diurnal Patterns. Plant Physiol.,1992,99:959-965.
    120. Morgutti S, Negrini N, Nocito FF, Ghiani A, Bassi D, Cocucci M. Changes inendo-polygalacturonase levels and characterization of a putative endo-PG gene during fruitsoftening in peach genotypes with nonmelting and melting flesh fruit phenotypes. New Phytologist,2006,171(2):315–328.
    121. MortazaviA, Williams BA, McCue K, Schaeffer L and Wold B.Mapping and quantifyingmammalian transcriptomes by RNA-Seq. Nature Methods,2008,5(7):621-628.
    122. Nielsen T H, Skiarbek H C, Karlsen P. Carbohydrate metabolism during fruit development insweet pepper (Capsicum annuum) plants. Physiol Plant,1991,82:311-319.
    123. Nir Dai, Shahar Cohen, Vitaly Portnoy, Galil Tzuri, Rotem Harel-Beja, Maya Pompan-Lotan, NirCarmi, Genfa Zhang, Alex Diber, Sarah Pollock, Hagai Karchi, Yelena Yeselson, MarinaPetreikov, Shmuel Shen, Uzi Sahar, Ran Hovav, Efraim Lewinsohn, Yakov Tadmor, David Granot,Ron Ophir, Amir Sherman, Zhangjun Fei, Jim Giovannoni, Yosef Burger, Nurit Katzir, Arthur A.Schaffer.Metabolism of soluble sμgars in developing melon fruit: a global transcriptional view ofthe metabolic transition to sucrose accumμLation. Plant Mol Bio,2011,76:1-18.
    124. Nishiyama K, Guis M, Rose C JK, Kubo Y, Bennett KA, Lu W, Kato K, Ushijima K, Nakano R,Inaba A, Bouzayen M, Latche A, Pech JC and Bennett AB. Ethylene regulation of fruit softeningand cell wall disassembly in Charentais melon.Journal of Experimental Botany,2007,58(6):1281-1290.
    125. Pharr DM, Huber SC, Sox HN. Leaf carbohydrate status and enzymes of translocate synthesis infruiting and vegetative plant of Cucumis sativus L. Plant Physiol.,1985,77:104-108.
    126. Pharr DM, Sox HN, Smart EL, Lower RL. Identification and distribution of soluble saccharides inpickling cucumber plants and their fate in fermentation. J Am Soc Hortic Sci,1977;102:406-409.
    127. Pharr DM, Sox HN. Changes in carbohydrate and enzyme levels during the sink to sourcetransition of leaves of Cucumis sativus L., a stachyose translocator. Plant Sci Lett1984,35:187-193.
    128. Pharr M, Hubbard NL. Melons: biochemical and physiological control of sμgar accumμLation. InEncyclopedia of AgricμLtural Science, Academic Press, New York,1994(3):25-37.
    129. Ranwala AP, Suematsu C, Masuda H.The role of-galactosidases in the modification of cell wallcomponents during muskmelon fruit ripening. Plant Physiol.,1992,100:1318-1325.
    130. Roitsch T,Gonzalez MV. Function and regulation of plant invertases: sweet sensations. TrendsPlant Sci.,2004,9:606-613.
    131. Rosli HG, Civello PM, Mart nez GA. Changes in cell wall composition of three Fragaria×ananassa cultivars with different softening rate during ripening. Plant Physiol Biochem.,2004,42:823-831.
    132. Sakurai N and Nevins DJ.Relationship between fruit softening and wall polysaccharides inavocado (Persea americana Mill) mesocarp tissues. Plant&Cell Phybiology,1997,38:603-610.
    133. Sanger F, Nicklen S and Coulson AR. DNA sequencing with chain-terminating inhibitors. ProcNatl Acad Sci, USA,1977,74(12):5463-5467.
    134. Schaffer AA, Aloni B, Fogelman E. Sucrose metabolism and accumμLation in developing fruit ofCucumis. Phytochemistry1987;26:1883-1889.
    135. Schaffer AA, Pharr DM, Madore MA.Cucurbits. In E Zamski, AA Schaffer, eds, PhotoassimilateDistribution in Plants and Crops. Marcel Dekker, New York,1996:729-757.
    136. Sedgley M, Newbury HJ, Possingham JV. Early fruit development in the watermelon: anatomicalcomparison of pollinated, auxin-induced parthenocarpic and unpollinated fruits. Ann Bot-London1977,41:1345-1355.
    137. Seifert GJ. Nucleotide sμgar interconversions and cell wall biosynthesis: how to bring the inside tothe outside. Curr Opin Plant Biol,2004,7:277-284
    138. Smyth, KG. Linear Models and Empirical Bayes Methods for Assessing Differential Expression inMicroarray.Experiments.Statistical Applications in Genetics and Molecular Biology,2004,3(1):article3.
    139. Sun J, Loboda T, Sung SJS, Black CC. Sucrose synthase in wild tomato, Lycopersiconchemielewskii, and tomato fruit sink strength. Plant Physiol.,1992,98:1163–1169.
    140. Takaya M, Yuri I, Tetsuro S, Sayuro T, Shohei Y. Role of sucrose synthase and other relatedenzymes in sucrose accumulation in peach fruit. J Japan Soc Hort Sci1991,60(3):531-538.
    141. Tang GQ, Luscher M, Sturm A. Antisense repression of vacuolar and cell wall invertase intransgenic carrot alters early plant development and sucrose partitioning. Plant Cell,1999,11:177-189.
    142. Trapnell C, Pachter Land Salzberg SL. TopHat: discovering splice junctions with RNA-Seq.Bioinformatics,2009,25(9):1105-1111.
    143. Vargas WA, Salerno GL. The Cinderella story of sucrose hydrolysis: Alkaline/neutral invertases,from cyanobacteria to unforeseen roles in plant cytosol and organelles. Plant Science,2010,178:1-8.
    144. Villarreal NM, Rosli HG, Martnez GA, Civello PM. Polygalacturonase activity and expression ofrelated genes during ripening of strawberry cultivars with contrasting fruit firmness. PostharvestBiology and Technology,2008,47:141-150.
    145. Watanabe K, Saito T, Hirota S, Takahashi B. Carotenoid pigmenta in red, orange, and yellowfleshed fruits of watermelon (Citrullus vulgaris) cultivars. Engei Gakkai Zasshi,1987,56:45-50.
    146. Wechter WP, Levi A, Harris KR, Davis AR, Fei Z, Katzir N, Giovannoni JJ, Salman Minkov A,Hernandez A, Thimmapuram J. Gene expression in developing watermelon fruit. BMC Genomics,2008,9:275.
    147. Yasar Karakurt and Donald J. Huber.Cell wall-degrading enzymes and pectin solubility anddepolymerization in immature and ripe watermelon (Citrullus lanatus) fruit in response toexogenous ethylene. Physiologia Plantarum,2002,116:398-405.
    148. Yashoda HM, Prabha TN, Tharanathan RN. Mango ripening? Chemical and structuralcharacterization of pectic and hemicellulosic polysaccharides.Carbohydrate Research,2005,340(7):1335-1342.
    149. Yelle S, Chetelat RT, Dorais M, DeVerna JW, Bennett AB. Sink metabolism in tomatofruit.IV.Genetic and biochemic alanalysis of sucrose accumμLation. Plant Physiol.,1991,95:1026-1035.
    150. Yu TS, Lue WL, Wang SM, Chen J.Mutation of Arabidopsis plastid phosphoglucose isomeraseaffects leaf starch synthesis and floral initiation. Plant Physiol.,2000,123:319–326.
    151. Zhang B, Tolstikov V, TurnbμLl C, Hicks LM, and Fiehn O. Divergent metabolome and proteomesμggest functional independence of dual phloem transport systems in cucurbits. Proc Natl Acad SciUSA,2010,107(30):13532–13537.
    152. Zhang XY, Wang XL, Wang XF, Xia GH, Pan QH, Fan RC,Wu FQ, Yu XC, Zhang DP. A shift ofphloem unloading from symplasmic to apoplasmic pathway is involved in developmental onset ofripening in grape berry. Plant Physiol.,2006,142:220-232.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700