用户名: 密码: 验证码:
植物甾烷醇衍生物的制备、功效及降胆固醇机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物甾醇和甾烷醇可从植物油精炼过程的脱臭馏出物中分离而来,具有多种重要的生理功能,如降胆固醇,抗癌,抗炎等,被誉为―生命的钥匙‖。植物甾烷醇是植物甾醇的饱和形式,其分子结构上不含碳碳双键。植物甾醇和甾烷醇特有的化学结构决定了它具有水不溶、油溶性低等特点,极大地限制了在食品、医药、化妆品等行业的应用。本研究旨在通过化学改性的方法合成植物甾烷醇衍生物,改善植物甾烷醇的油溶性和亲水性;在此基础上,研究植物甾烷醇衍生物的生理功效,并探索其分子作用机理。
     首先,在合成植物甾烷醇衍生物的基础上,建立了分析检测和分离纯化方法。确定了高效液相色谱分析植物甾烷醇月桂酸酯,琥珀酸单酯和山梨醇琥珀酸二酯的流动相,分别为甲醇/异丙醇/正己烷(8/1/1,v/v/v)、甲醇/甲酸(1000/1,v/v)和甲醇/甲酸(1000/1,v/v);硅胶柱层析分离月桂酸酯,琥珀酸单酯和山梨醇琥珀酸二酯的洗脱剂分别为环己烷/乙酸乙酯(8/2,v/v)、石油醚/乙酸乙酯/甲酸(10/10/0.02,v/v/v)和乙酸乙酯/甲醇/甲酸(18/2/0.15,v/v/v)。纯化的产品经红外光谱、质谱和核磁共振分析,证实合成产物为目标产物。
     植物甾烷醇的化学改性分两部分:一方面合成了植物甾烷醇脂肪酸酯改善油溶性,合成条件为:月桂酸为酰基供体,正己烷作溶剂,Novozym435为催化剂,酶用量为30g/L,植物甾烷醇用量为25mmol/L,月桂酸与植物甾烷醇的摩尔比为4:1,3分子筛用量为80g/L,反应温度为55oC;在此条件下反应96h,酯化率可达80%;另一方面,通过化学—酶催化两步法合成亲水性植物甾烷醇衍生物—植物甾烷醇山梨醇琥珀酸二酯,改善其亲水性,琥珀酸二酯的合成条件为:叔丁醇作溶剂,Lipozyme RM IM为催化剂,酶用量为100g/L,琥珀酸单酯用量为50mmol/L,琥珀酸单酯与D-山梨醇的摩尔比为1:3,3分子筛用量为80g/L,反应温度为55oC;在此条件下反应96h,酯化率可达51%。
     分别给KM小鼠灌胃植物甾醇(270mg/(kg·d))、甾烷醇(270mg/(kg·d))、甾醇酯(386mg/(kg·d))和甾烷醇酯(386mg/(kg·d))连续四周,结果发现:游离的植物甾醇(-11.5%)和甾烷醇(-14.7%)具有显著的降胆固醇功效,而酯化形式的植物甾醇和甾烷醇仍保留游离植物甾醇和甾烷醇的功能,主要表现为降低血清总胆固醇(-13.2%,-17.6%)和低密度脂蛋白胆固醇(-23%,-37%)水平,而对甘油三酯和高密度脂蛋白胆固醇含量没有影响,即经月桂酸修饰后的甾醇酯和甾烷醇酯不改变植物甾醇和甾烷醇的生理功效;在降胆固醇功效方面,等摩尔的植物甾醇与甾烷醇,甾醇酯与甾烷醇酯之间没有显著性差异;植物甾醇,甾烷醇,甾醇酯和甾烷醇酯均能降低肝胆固醇含量,有效地促进小鼠胆固醇的排泄。
     通过考察不同剂量的单酯(低:167mg/(kg·d);中:335mg/(kg·d);高:839mg/(kg·d))和二酯(低:221mg/(kg·d);中:442mg/(kg·d);高:1106mg/(kg·d))在小鼠体内的生理功效,对胆固醇代谢相关基因mRNA水平的影响,结果发现:植物甾烷醇琥珀酸单酯和二酯均保留有游离植物甾烷醇的降胆固醇功能(中剂量单酯:-13.3%;中剂量二酯:-12.9%;高剂量单酯:-14.6%;高剂量二酯:-15.0%),即经琥珀酸和山梨醇修饰后的植物甾烷醇单酯和二酯不改变植物甾烷醇的降胆固醇功效;二者对小鼠血糖水平,血清谷丙转氨酶和谷草转氨酶水平没有影响;且有助于小鼠肝脏LXR-α和CYP7A1基因的表达,而对肝HMGCR,LDLR和SREBP-2mRNA水平没有影响;植物甾烷醇及衍生物可能通过LXRα—CYP7A1—胆汁酸—排泄途径降低体内的胆固醇含量。
     通过研究植物甾烷醇衍生物的溶解性,结晶熔融特性,热稳定性等性质,结果证实:植物甾烷醇脂肪酸酯的油溶性较植物甾烷醇有了较大的改善;且饱和脂肪酸酯的油溶性随着脂肪酸碳链的增长而降低,不饱和脂肪酸酯的油溶性随着不饱和双键的增加而增加;山梨醇琥珀酸二酯在一定程度上改善了植物甾烷醇的亲水性。与植物甾烷醇相比,植物甾烷醇脂肪酸酯的熔融温度和结晶温度有所降低,且随着饱和脂肪酸碳链的增长而增加,植物甾烷醇山梨醇琥珀酸二酯的熔融温度和结晶温度有所升高。当植物甾醇、甾烷醇、月桂酸酯的添加量小于等于2%,油酸酯和亚油酸酯的添加量小于等于5%时,既不影响大豆油的结晶特性,也不影响产品的感官特性;改性产物—脂肪酸酯和琥珀酸二酯具有良好的热稳定性,不易在加工过程被破坏。
Plant sterols (phytosterols) and stanols (phytostanols) are generally extracted from thedeodorizer distillates. Both of them are regarded as―the key of life‖due to their manyimportant beneficial properties, such as cholesterol-lowering effects, anti-cancer,anti-inflammatory property and so on. Plant stanols (PS) are the hydrogenated counterparts ofplant sterols. However, the unique chemical structure of plant sterols and stanols determinestheir insolubility in water and poor solubility in oil, which greatly limits their application infood, medical, cosmetic and other industries. The present study aimed to synthesize plantstanol derivatives via chemical modification to improve their solubility in oil or water. On thebasis of modification, their physiological functions and the potential molecular mechanismwere investigated.
     The reaction products were firstly analyzed and separated. The HPLC mobile phases forplant stanyl laurate (PSL), hemisuccinate (PSH) and sorbitol succinate (PSS) analysis weremethanol/isopropanol/n-hexane (8/1/1, v/v/v), methanol/formic acid (1000/1, v/v) andmethanol/formic acid (1000/1, v/v), respectively. And the silica gel column chromatographiceluents for plant stanyl laurate, hemisuccinate and sorbitol succinate were cyclohexane/ethylacetate (8/2, v/v), petroleum ether/ethyl acetate/formic acid (10/10/0.02, v/v/v) and ethylacetate/methanol/formic acid (18/2/0.15, v/v/v), respectively. The purified products wereanalyzed by FT-IR, MS and NMR, and confirmed to be the goal products.
     The chemical modification of phytostanols can be divided into two aspects. On the onehand, plant stanol fatty acid esters (PSE) were successfully synthesized via chemicalmodification to improve their solubility in vegetable oil. The highest conversion of80%wasobtained under the selected conditions: lauric acid (LA) as acyl donor,25μmol/mL plantstanols,100μmol/mL lauric acid,80mg/mL3molecular sieves and40mg/mL Novozym435at150r/min and55oC for96h in10mL of n-hexane. On the other hand, hydrophilicplant stanol derivatives-plant stanol sorbitol succinate was prepared via chemo-enzymaticways to improve their hydrophilic property. The highest yield (>51%) of plant stanyl sorbitolsuccinate was obtained under the below conditions:50μmol/mL plant stanyl hemisuccinate,1:3molar ratio of plant stanyl hemisuccinate to D-sorbitol,80mg/mL3molecular sieves and100mg/mL Lipozyme RM IM in tert-butanol,150r/min and55oC.
     The physiological activities of plant sterols (270mg/(kg·d)), stanols (270mg/(kg·d)),phytosteryl laurate (386mg/(kg·d)) and phytostanyl laurate (386mg/(kg·d)) were investigatedin vivo using KM mice as animal model. Results showed that the free plant sterols (-11.5%)and stanols (-14.7%) could markedly lower the serum cholesterol in mice, and plant steryllaurate (-13.2%) and stanyl laurate (-17.6%) still retained the cholesterol-lowering property of the free forms. In detail, plant steryl and stanyl laurate could effectively reduce the serum totalcholesterol (TC) and low density lipoprotein cholesterol (LDL-C) levels in mice, and have noeffect on the serum high density lipoprotein cholesterol (HDL-C) and triglyceride (TAG)levels. There were no significant differences in reducing cholesterol between equimolarphytosterols and phytostanols, or between phytosteryl laurate and phytostanyl laurate. Also,plant sterols, stanols, and their laurate could remarkably decrease liver cholesterol content,and effectively promote the cholesterol excretion via feces.
     The physiological activities and the influence on the gene expression related tocholesterol metabolism of intermediate products–hemisuccinate (1×:167mg/(kg·d);2×:335mg/(kg·d);5×:839mg/(kg·d)) and hydrophilic plant stanol derivatives–sorbitol succinate(1×:221mg/(kg·d);2×:442mg/(kg·d);5×:1106mg/(kg·d)) were also investigated. Plantstanyl hemisuccinate (2×,-13.3%;5×,-14.6%) and plant stanyl sorbitol succinate (2×,-12.9%;5×,-15.0%) still retained the cholesterol-lowering effect, and had no effect on the serumblood glucose, alanine aminotransferase (ALT) and aspertate aminotransferase (AST) level inmice. Both of them could promote the liver alpha liver X receptor (LXR-α) and cholesterol7alpha-hydroxylase (CYP7A1) gene expression, but had no influence on the liver a3-hydroxy-3-methylglutaryl-coenzyme-a reductase (HMGCR), low density lipoproteinreceptor (LDLR) and sterol regulatory element binding protein (SREBP-2) mRNA level inmice. The cholesterol-lowering effect of plant stanol derivatives may be through activatingthe potential LXRα-CYP7A1-bile acid-fecal excretion pathway.
     The solubility in oil or water, crystallization and melting behavior, thermal stability ofplant stanols and their derivatives were explored. The solubility of plant stanol fatty acidesters in soybean oil was higher than plant stanols. The oil solubility of plant stanol saturatedfatty acid esters decreased with the increase of the carbon chain in fatty acids, and the oilsolubility of plant stanol unsaturated fatty acid esters increased with the number increase ofunsaturated double bond. Plant stanol sorbitol succinate improved the hydrophilic property ofplant stanols to a certain extent. Plant stanyl fatty acid esters had lower melting temperatureand crystallization temperature than plant stanols, and the melting and crystallizationtemperature increased with the increase of the carbon chain. Plant stanyl hemisuccinate andsorbitol succinate had higher melting and crystallization temperature. The crystallizationprofiles and sensory characteristics of the soybean oil were not affected when the amount ofplant sterols, stanol and laurate was not more than2%, or oleate and linoleate not exceed than5%. The modified products-both plant stanol fatty acid esters and plant stanyl sorbitolsuccinate had good thermal stability.
引文
1.董涛.植物甾醇酯的化学合成及其抗氧化性研究[D]:[硕士学位论文].无锡:江南大学,2008
    2.冯妹元.常见食物中植物甾醇的气相色谱分析方法和应用的研究[D]:[硕士学位论文].南昌:南昌大学,2006
    3.盛漪,华伟,谷文英.植物甾醇资源在食品原料中分布[J].粮食与油脂,2002,5:40-41
    4.王立刚,刘功权.大豆甾醇[J].大豆通报,2004,4:34-36
    5.马媛.植物甾烷醇脂肪酸酯的化学合成及性质研究[D]:[硕士学位论文].无锡:江南大学,2012
    6. Peterson D W. Effect of soybean sterols in the diet on plasma and liver cholesterol in chicks [J]. Proc SocExp Biol Med,1951,78:143-147
    7. Pollak O J. Reduction of blood cholesterol in man [J]. Circulation,1953,7(5):702-706
    8. Pollak O J. Successful prevention of experimental hypercholesteremia and cholesterol atheroclerosis in therabbit [J]. Circulation,1953,12:696-701
    9. Jia X, Chen Y, Zidichouski J, et al. Co-administration of berberine and plant stanols synergistically reducesplasma cholesterol in rats [J]. Atherosclerosis,2008,201:101-107
    10. Wang Y, Jia X, Ghanam K, et al. Berberine and plant stanols synergistically inhibit cholesterol absorptionin hamsters [J]. Atherosclerosis,2010,209:111-117
    11. Mensink R P, de Jong A, Lutjohann D, et al. Plant stanols dose-dependently decrease LDL-cholesterolconcentrations, but not cholesterol-standardized fat-soluble antioxidant concentrations, at intakes up to9g/d[J]. Am J Clin Nutr,2010,92:24-33
    12. Gylling H, Hallikainen M, Nissinen M J, et al. Very high plant stanol intake and serum plant stanols andnon-cholesterol sterols [J]. Eur J Nutr,2009,49:111-117
    13. Goldberg A C, Ostlund R E, Bateman J H, et al. Effect of plant stanol tablets on low-density lipoproteincholesterol lowering in patients on statin drugs [J]. Am J Cardiol,2006,97:376-379
    14. Brufaua G, Canela M A, Rafecas M. Phytosterols: physiologic and metabolic aspects related tocholesterol-lowering properties [J]. Nutr Res,2008,28:217-225
    15. Mensink R P, Ebbing S, Lindhout M, et al. Effects of plant stanol esters supplied in low-fat yoghurt onserum lipids and lipoproteins, non-cholesterol sterols and fat soluble antioxidant concentrations [J].Atherosclerosis,2002,160:205-213
    16. Ling W H, Jones P J H. Dietary phytosterols: a review of metabolism, benefits and side effects [J]. Life Sci,1995,57(3):195-206
    17. Katan M B, Grundy S M, Jones P, et al. Efficacy and safety of plant stanols and sterols in the managementof blood cholesterol levels [J]. Mayo Clin Proc,2003,78:965-978
    18. Chien Y L, Wu L Y, Lee TC, et al. Cholesterol-lowering effect of phytosterol-containing lactic-fermentedmilk powder in hamsters [J]. Food Chem,2010,119:121-126
    19. Li R, Jia C S, Yue L, et al. Lipase-catalyzed synthesis of conjugated linoleyl β-sitosterol and itscholesterol-lowering properties in mice [J]. J Agric Food Chem,2010,58:1898-1902
    20. Gylling H, Miettinen T A. Serum cholesterol and cholesterol and lipoprotein metabolism inhypercholesterolaemic NIDDM patients before and during sitostanol ester-margarine treatment [J].Diabetologia,1994,37:773-780
    21. Vanhanen H T, Kajander J, Lehtovirta H, et al. Serum levels, absorption efficiency, faecal elimination andsynthesis of cholesterol during increasing doses of dietary sitostanol esters in hypercholesterolaemic subjects[J]. Clin Sci,1994,87:61-67
    22. Gylling H, Siimes M A, Miettinen T A. Sitostanol ester margarine in dietary treatment of children withfamilial hypercholesterolemia [J]. J Lipid Res,1995,36:1807-1812
    23. Miettinen T A, Puska P, Gylling H, et al. Reduction of serum cholesterol with sitostanol-ester margarine ina mildly hypercholesterolemic population [J]. N Engl J Med,1995,333:1308-1312
    24. Gylling H, Radhakrishnan R, Miettinen T A. Reduction of serum cholesterol in postmenopausal womenwith previous myocardial infarction and cholesterol malabsorption induced by dietary sitostanol estermargarine. Women and dietary sitostanol. Circulation,1997,96:4226-4231
    25. Hallikainen M A, Uusitupa M I J. Effects of2low-fat stanol ester–containing margarines on serumcholesterol concentrations as part of a low-fat diet in hypercholesterolemic subjects [J]. Am J Clin Nutr,1999,69:403-410
    26. Matsuoka R, Muto A, Kimura M, et al. Cholesterol-lowering activity of plant sterol-egg yolk lipoproteincomplex in rats [J]. J Oleo Sci,2008,57(5):309-314
    27. Demonty I, Ras R T, van der Knaap H C, et al. Continuous dose-response relationship of theLDL-cholesterol-lowering effect of phytosterol intake [J]. J Nutr,2009,139:271-284
    28. Law M. Plant sterol and stanol margarines and health [J]. BMJ,2000,320(7238):861-864
    29. Abumweis S S, Barake R, Jones P J. Plant sterols/stanols as cholesterol lowering agents: a meta-analysis ofrandomized controlled trials [J]. Food Nutr Res,2008,52:52-6930Ikeda I, Sugano M. Comparison of absorption and metabolism of beta-sitosterol and beta-sitostanol in rats[J]. Atherosclerosis,1978,30:227-237
    31. Sugano M, Morioka H, Ikeda I. A comparison of hypocholesterolemic activity of β-sitosterol andβ-sitostanol in rats [J]. J Nutr,1977,107:2011-2019
    32. Musa-Veloso K, Poon T H, Elliot J A, et al. A comparison of the LDL-cholesterol lowering effcacy ofplant stanols and plant sterols over a continuous dose range: results of a meta-analysis of randomized,placebo-controlled trials [J]. Prostagland Leuk Essent Fatty,2011,85(1):9-2833O’Neill F H, Sanders T A, Thompson G R. Comparison of efcacy of plant stanol ester and sterol ester:short-term and longer-term studies [J]. Am J Cardio,2005,96:29D-36D34Becker M, Staab D, Von Bergmann K. Treatment of severe familial hypercholesterolemia in childhood withsitosterol and sitostanol [J]. J Pediatr,1993,122(2):292-29635Gilbert R. Thompson, Scott M. Grundy. History and development of plant sterol and stanol esters forcholesterol-lowering purposes [J]. Am J Cardiol,2005,96(suppl):3D-9D
    36. de Jong A, Plat J, Lütjohann D, et al. Effects of long-term plant sterol or stanol ester consumption on lipidand lipoprotein metabolism in subjects on statin treatment [J]. Brit J Nutr,2008,100:937-94137O'Neill E H, Brynes A, Mandeno R, et al. Comparison of the effects of dietary plant sterol and stanol esterson lipid metabolism [J]. Nutr Metab Cardiovasc Dis,2004,14:133-14238Talati R, Sobieraj D M, Makanji S S, et al. The comparative effcacy of plant sterols and stanols on serumlipids: a systematic review and meta-analysis [J]. J Am Diet Assoc,2010,110:719-72639Vanstone C A, Raeini-Sarjaz M, Parsons W E, et al. Unesterified plant sterols and stanols lowerLDL-cholesterol concentrations equivalently in hypercholesterolemic persons [J]. Am J Clin Nutr,2002,76:1272-1278
    40. Borgstrom B. Partition of lipids between emulsifed oil and micellar phases of glyceride-bile saltdispersions [J]. J Lipid Res,1967,8:598-608
    41. Ikeda I, Tanabe Y, Sugano M. Effects of sitosterol and sitostanol on micellar solubility of cholesterol [J]. JNutr Sci Vitaminol,1989,35:361-369
    42. Lees A M, Mok H Y, Lees R S, et al. Plant sterols as cholesterol-lowering agents: clinical trials in patientswith hypercholesterolemia and studies of sterol balance [J]. Atherosclerosis,1977,28:325-338
    43. Brown A W, Hang J, Dussault P H, et al. Phytosterol ester constituents affect micellar cholesterol solubilityin model bile [J]. Lipids,2010,45:855-862
    44. Armstrong M J, Carey M C. Thermodynamic and molecular determinants of sterol solubilities in bile saltmicelles [J]. J Lipid Res,1987,28:1144-1155
    45. Hassan A S, Rampone A J. Intestinal absorption and lymphatic transport of cholesterol and beta-sitostanolin the rat [J]. J Lipid Res,1979,20:646-653
    46. Heinemann T, Kullak-Ublick G A, Pietruck B, et al. Mechanisms of action of plant sterols on inhibition ofcholesterol absorption. Comparison of sitosterol and sitostanol [J]. Eur J Clin Pharmacol,1991,40: S59-S63
    47. Liu Y, Manchekar M, Sun Z, et al. Apolipoprotein B-containing lipoprotein assembly in microsomaltriglyceride transfer protein-defcient McA-RH7777cells [J]. J Lipid Res,2010,51:2253-2264
    48. Kam N T, Albright E, Mathur S N, et al. Inhibition of acylcoenzyme A: cholesterol acyltransferase activityin CaCo-2cells results in intracellular triglyceride accumulation [J]. J Lipid Res,1989,30:371-377
    49. Clark S B, Tercyak A M. Reduced cholesterol transmucosal transport in rats with inhibited mucosal acylCoA: cholesterol acyltransferase and normal pancreatic function [J]. J Lipid Res,1984,25:148-159
    50. Field F J, Mathur S N. Beta-sitosterol: esterifcation by intestinal acylcoenzyme A: cholesterolacyltransferase (ACAT) and its effect on cholesterol esterifcation [J]. J Lipid Res,1983,24:409-417
    51. Davis H R, Zhu L J, Hoos L M, et al. Niemann-Pick C1Like1(NPC1L1) is the intestinal phytosterol andcholesterol transporter and a key modulator of whole-body cholesterol homeostasis [J]. J Biol Chem,2004,279:33586-33592
    52. Plosch T, Kruit J K, Bloks V W, et al. Reduction of cholesterol absorption by dietary plant sterols andstanols in mice is independent of the Abcg5/8transporter [J]. J Nutr,2006,136:2135-2140
    53. Klett E L, Lu K, Kosters A, et al. A mouse model of sitosterolemia: absence of Abcg8/sterolin-2results infailure to secrete biliary cholesterol [J]. BMC Med,2004,2,5
    54. Lo Sasso G, Murzilli S, Salvatore L, et al. Intestinal specifc LXR activation stimulates reverse cholesteroltransport and protects from atherosclerosis [J]. Cell Metab,2010,12:187-193
    55. Kruit J K, Plosch T, Havinga R, et al. Increased fecal neutral sterol loss upon liver X receptor activation isindependent of biliary sterol secretion in mice [J]. Gastroenterology,2005,128:147-156
    56. Temel R E, Sawyer J K, Yu L, et al. Biliary sterol secretion is not required for macrophage reversecholesterol transport [J]. Cell Metab,2010,12:96-102
    57. Bradford P G, Awad A B. Phytosterols as anticancer compounds [J]. Mol Nutr Food Res,2007,51:161-170
    58.张强,赵新淮.植物甾醇及其抗癌作用[J].中国油脂,2006,31(10):57-59
    59. Richelle M, Enslen M, Hager C, et al. Both free and esterified plant sterols reduce cholesterol absorptionand the bioavailability of β-carotene and α-tocopherol in normocholesterolemic humans [J]. Am J Clin Nutr,2004,80:171–177
    60.Z Shimizu H, Ross R K, Bernstein L, et al. Cancers of the prostate and breast among Japanese and whiteimmigrants in Los Angeles County [J]. Brit J Cancer,1991,63:963-966
    61. Raicht R F, Cohen B I, Fazzini E, et al. Protective effect of plant sterols against chemically-induced colontumors in rats [J]. Cancer Res,1980,40:403-405
    62.田莉莉,王际辉,叶淑红等.植物甾醇-共轭亚油酸酯对结肠癌细胞增殖的抑制作用[J].大连工业大学学报,2012,31(2):88-90
    63. Awad A B, Downie A, Fink C F, et al. Dietary phytosterol inhibits the growth and metastasis ofMDA-MB-231human breast cancer cells grown in SCID mice [J]. Anticancer Res,2000,20:821-824
    64. Awad A B, Fink C S, Williams H, et al. In vitro and in vivo (SCID mice) effect of phytosterols on thegrowth and dissemination of human prostate cancer PC-3cells [J]. Euro J Cancer Prev,2001,10:507-513
    65. Llaverias G, Escolà-Gil J C, Lerma E, et al. Phytosterols inhibit the tumor growth and lipoproteinoxidizability induced by a high-fat diet in mice with inherited breast cancer [J]. J Nutr Biochem,2013,24:39-48
    66.李庆勇,姜春菲,张黎等. β-谷甾醇、豆甾醇诱导人肝癌细胞SMMC-7721凋亡[J].时珍国医国药,2012,23(5):1173-1175
    67. Loizou S, Lekakis I, Chrousos G P, et al. β-Sitosterol exhibits anti-infammatory activity in human aorticendothelial cells [J]. Mol Nutr Food Res,2010,54:551-558
    68.于学珍,马世平,李海涛等.植物甾醇凝胶促进烧伤创面愈合及抗炎作用[J].中国天然药物,2007,5(2):130-133
    69. Tovey F I, Capanoglu D, Langley G J, et al. Dietary phytosterols protective against peptic ulceration [J].Gastroenterol Res,2011,4(4):149-156
    70. Prieto J M, Recio M C, Giner R M. Anti-inflammatory activity of β-sitosterol in a model ofoxazolone-induced contact-delayed-type hypersensitivity [J].2006,5(3):57-62
    71.左玉.植物甾醇研究与应用[J].粮食与油脂,2012,7:1-4
    72. Grandmoujin-Ferjani A, Schuler-Muller I, Hartmann M A. Sterol modulation of the plasma membranefrom orn roots reconstituted into soybean lipisa [J]. Plant Physiol,1997,113:163-174
    73. Bouic P J, Clark A, Lamprecht J, et al. The effects of β-sitosterol (BSS) and β-sitosterol glucoside (BSSG)mixture on selected immune parameters of marathon runners: inhibition of post marathon immune suppressionand inflammation [J].1nt J Sport Med,1999,20(2):258-262
    74. Raitakari O T, Salo P, Ahotupa M. Carotid artery compliance in users of plant stanol ester margarine [J].Eur J Clin Nutr,2008,62:218-224
    75.张莉华,许新德,邵斌等.植物甾醇毒理学安全性评价[J].中国油脂,2010,35(5):19-22
    76. Baker V A, Hepburn P A, Kennedy S J, et al. Safety evaluation of phytosterol esters. part1. assessment ofoestrogenicity using a combination of In vivo and In vitro assays [J]. Food Chem Toxicol,1999,37:13-22
    77. Hepburn P A, Horner S A, Smith M. Safety evaluation of phytosterol esters. part2. subchronic90-day oraltoxicity study on phytosterol esters-a novel functional food [J]. Food Chem Toxicol,1999,37:521-532
    78. Waalkens-Berendsen D H, Wolterbeek A P M, Wijnands M V W, et al. Safety evaluation of phytosterolesters. part3. two-generation reproduction study in rats with phytosterol esters-a novel functional food [J].Food Chem Toxicol,1999,37:683-696
    79. Sanders D J, Minter H J, Howes D, et al. The safety evaluation of phytosterol esters. part6. Thecomparative absorption and tissue distribution of phytosterols in the rat [J]. Food Chem Toxicol,2000,38:485-491
    80. Wolfreys A M, Hepburn P A. Safety evaluation of phytosterol esters. Part7. Assessment of mutagenicactivity of phytosterols, phytosterol esters and the cholesterol derivative,4-cholesten-3-one [J]. Food ChemToxicol,2002,40:461-470
    81. Zawistowski J,胡春, Kit D D.植物甾醇和植物甾烷醇:来源、安全性以及在保健食品中的应用[J].中国食品学报,2002,2(2):48-56
    82.张娟聪,潘秋月,孟祥河等. β-环糊精改善植物甾醇水溶性的研究[J].中国粮油学报,2008,23:111-114
    83.钱伟,张春枝,吴文忠. O/W型微乳法制备纳米植物甾醇酯[J].安徽农业科学,2009,37:3771-3772
    84.钱伟,张春枝,吴文忠.植物甾醇微胶囊的制备[J].大连工业大学学报,2009,28:165-168
    85. Leong W F, Man Y B C, Lai O M, et al. Optimization of processing parameters for the preparation ofphytosterol microemulsions by the solvent displacement method [J]. J Agric Food Chem,2009,57:8426-8433
    86. Alexander M, Acero Lopez A, Fang Y, et al. Incorporation of phytosterols in soy phospholipidsnanoliposomes: Encapsulation effciency and stability [J]. LWT-Food Sci Technol,2012,47:427-436
    87. Leong W F, Lai O M, Long, K, et al. Preparation and characterisation of water-soluble phytosterolnanodispersions [J]. Food Chem,2011,129:77-83
    88. Tan Z, Le K, Moghadasian M, et al. Enzymatic synthesis of phytosteryl docosahexaneates and evaluationof their anti-atherogenic effects in apo-E defcient mice [J]. Food Chem,2012,134:2097-2104
    89. Weber N, Weitkamp P, Mukherjee K D. Cholesterol-lowering food additives: lipase-catalysed preparationof phytosterol and phytostanol esters [J]. Food Res Int,2002,35:177-181
    90. Shimada Y, Hirota Y, Baba T, et al. Enzymatic synthesis of steryl esters of polyunsaturated fatty acids [J].JAOCS,1999,76:713-716
    91. Panpipat W, Xu X, Guo Z, et al. Improved acylation of phytosterols catalyzed by Candida Antarcticalipase A with superior catalytic activity [J]. Biochem Eng J,2013,70:55-62
    92. Pan X, Chen B, Wang J, et al. Enzymatic synthesizing of phytosterol oleic esters [J]. Appl BiochemBiotechnol,2012,168:68-77
    93. Zheng M M, Dong L, Lu Y, et al. Immobilization of Candida rugosa lipase on magnetic poly (allyl glycidylether-co-ethylene glycol dimethacrylate) polymer microsphere for synthesis of phytosterol esters ofunsaturated fatty acids [J]. J Mol Catal B: Enzym,2012,74:16-23
    94. Torrelo G, Torres C F, Se orans F J, et al. Solvent-free preparation of phytosteryl esters with fatty acidsfrom butterfat in equimolecular conditions in the presence of a lipase from Candida rugosa [J]. J ChemTechnol Biotechnol,2009,84:745-750
    95. Weber N, Weitkamp P, Mukherjee K D. Steryl and stanyl Esters of fatty acids by solvent-free esterificationand transesterification in vacuo using lipases from rhizomucor miehei, candida antarctica, and carica papaya[J]. J Agric Food Chem,2001,49:5210-5216
    96. Deng Q, Zhang P, Huang Q, et al. Chemical synthesis of phytosterol esters of polyunsaturated fatty acidswith ideal oxidative stability [J]. Eur J Lipid Sci Technol,2011,113:441-449
    97. Pang M, Jiang S, Cao L, et al. Novel synthesis of steryl esters from phytosterols and amino acid [J]. J AgricFood Chem,2011,59(19):10732-10736
    98. Condo A M, Baker D C, Moreau R A, et al. Improved method for the synthesis oftrans-feruloyl-β-sitostanol [J]. J Agric Food Chem,2001,49:4961-4964
    99. Pouilloux Y, Courtois G, Boisseau M, et al. Solid base catalysts for the synthesis of phytosterol esters [J].Green Chem,2003,5:89-91
    100. Valange S, Beauchaud A, Barrault J, et al. Lanthanum oxides for the selective synthesis of phytosterolesters: Correlation between catalytic and acid–base properties [J]. J Catal,2007,251:113-122
    101. Robles-Manuel S, Barrault J, Valange S. Selective synthesis of phytosterol esters from natural sterols andfatty methyl esters over Mg-containing solid catalysts [J]. C R Chimie,2011,14:656-662
    102. Yang Y, He W, Jia C, et al. Effcient synthesis of phytosteryl esters using the Lewis acidic ionic liquid [J].J Mol Catal A: Chem,2012,357:39-43
    103.杨谦,余晓姣,姚秉华.甲基咪唑酸性离子液体催化制备甾醇烟酸酯[J].西北农业学报,2009,18:305-308
    104. Meng X, Sun P, Pan Q, et al. Synthesis of plant sterol esters catalyzed by heteropolyacid in a solvent-freesystem [J]. Eur J Lipid Sci Technol,2006,108:13-18
    105. Zhang W, Wang Y, Hayat K, et al. Effcient lipase-selective synthesis of dilauryl mannoses bysimultaneous reaction-extraction system [J]. Biotechnol Lett,2009,31:423-428
    106. Abidi S L. Chromatographic analysis of plant sterols in foods and vegetable oils [J]. J Chromatogr A,2001,23(1-2):173-201
    107. Inger Wretensj I, Karlberg B. Characterization of sterols in refined borage oil by GC-MS [J]. J Amer OilChem Soc,2009,79(11):1069-1074
    108. Lau H L, Puah C W, Choo Y M, et al. Simultaneous quantification of free fatty acids, free sterols,squalene, and acylglycerol molecular species in palm oil by high-temperature gas chromatography-flameionization detection [J]. Lipids,2005,40(5):523-528
    109. Hennessey T M, Andrews D, Nelson D L. Biochemical studies of the excitable membrane of Parameciumtetraurelia. VII. Sterols and other neutral lipids of cells and cilia [J]. J Lipid Res,1983,24:575-587
    110. Passi S, Nazzaro-porro M, Boniforti L, et al. Analysis of lipids and dioxin in chloracne due totetrachloro-2,5,7,8-p-dibenzodioxin [J]. Brit J Dermatol,1981,105(2):137-143
    111.李瑞.共轭亚油酸β-谷甾醇酯的酶催化合成及其功能性质的研究[D]:[硕士学位论文].无锡:江南大学,2006
    112.孔庆江.薄层色谱分析在层析分离过程中的应用[J].化学工程师,2004(4):20-21
    113.郭雪峰,岳永德.黄酮类化合物的提取-分离纯化和含量测定方法的研究进展[J].安徽农业科学,2007,35(26):8083-8086
    114.李燕,吴然然,于佰华等.红外光谱在中药定性定量分析中的应用[J].光谱学与光谱分析,2006,26(10):1846-1849
    115.刘勤,张淑珍,吴弻东等.电喷雾质谱在手性识别和分析中的应用[J].化学进展,2006,18(6):780-788
    116.高明珠.核磁共振技术及其应用进展[J].信息记录材料,2011,12(3):48-51
    117. Bobzin S C, Yang S, Kasten T P. Application of liquid chromatography-nuclear magnetic resonancespectroscopy to the identification of natural products [J],2000,748(1),259-267
    118.赵佳.有机相脂肪酶催化合成麦芽糖月桂酸酯的研究[D]:[硕士学位论文].无锡:江南大学食品学院,2009
    119.孙志浩,生物催化工艺学[M].北京:化学工艺出版社,2005
    120. Zaks A, Klibanov A M. The Effect of water on enzyme action in organic media [J]. J Biol Chem,1988,263(17):8017-8021
    121. Laane C, Vos K, Veeger C. Rules for optimization of biocatalysis in organic solvents [J]. BiotechnolBioeng,1987,30:81-87
    122. Liu Y, Lotero E, Goodwin J G. Effect of carbon chain length on esterifcation of carboxylic acids withmethanol using acid catalysis [J]. J Catal,2006,243:221-228
    123. abeder S, Habulin M, Knez. Lipase-catalyzed synthesis of fatty acid fructose esters [J]. J Food Eng,2006,77:880-886
    124. Bousquet M P, Willemot R M, Monsan P, et al. Lipase-catalyzed a-butylglucoside lactate synthesis inorganic solvent for dermo-cosmetic application [J]. J Biotechnol,1999,68:61-69
    125. Lai D T, O'Connor C J. Studies on synthesis of short chain alkyl esters catalyzed by goat pregastric lipase[J]. J Mol Catal B: Enzym,1999,6(4):411-420
    126.姚晓玲,黄琴,陈茂彬.有机介质中酶催化合成月桂酸甾醇酯[J].食品研究与开发,2007,28(7):15-17
    127.邵强.植物甾醇琥珀酸酯化反应及产物的重结晶分离研究[D]:[硕士学位论文].扬州:扬州大学,2006
    128.许文林,邵强,黄一波等. β-谷甾醇与琥珀酸酐单酯化反应动力学研究[J].扬州大学学报(自然科学版),2005,8(2):21-23
    129. Degn P, Zimmermann W. Optimization of carbohydrate fatty acid ester synthesis in organic media by alipase from Candida Antarctica [J]. Biotechnol Bioeng,2001,74:483-491
    130. Jia, C, Zhao J, Feng B, et al. A simple approach for the selective enzymatic synthesis of dilauroyl maltosein organic media [J]. J Mol Catal B: Enzym,2010,62:265-269
    131. Duan Z Q, Du W, Liu D H. Novozym435-catalyzed1,3-diacylglycerol preparation via esterifcation int-butanol system [J]. Process Biochem,2010,45:1923-1927
    132. Chen B, Liu H, Guo Z, et al. Lipase-catalyzed esterifcation of ferulic acid with oleyl alcohol in ionicliquid/isooctane binary systems [J]. J Agric Food Chem,2011,59:1256-1263
    133. Tarahomjoo S, Alemzadeh I. Surfactant production by an enzymatic method [J]. Enzyme Microb Technol,2003,33:33-37
    134. He W S, Jia C S, Ma Y, et al. Lipase-catalyzed synthesis of phytostanyl esters in non-aqueous media [J]. JMol Catal B: Enzym,2010,67:60-65
    135. Yadav G D, Dhoot S B. Immobilized lipase-catalysed synthesis of cinnamyl laurate in non-aqueousmedia [J]. J Mol Catal B: Enzym,2009,57:34-39
    136. Gumel A M, Annuar M S M, Heidelberg T, et al. Thermo-kinetics of lipase-catalyzed synthesis of6-O-glucosyldecanoate [J]. Bioresour Technol,2011,102:8727-8732
    137. Plat J, Mensink R P. Plant stanol and sterol esters in the control of blood cholesterol levels: mechanismand safety aspects [J]. Am J Cardiol,2005,96:15D-22D
    138. Lichtenstein A H. Plant stanol/sterol ester-containing foods and cardiovascular disease risk [J]. Nutr ClinCare,2000,3:274-278
    139. Calpe-Berdiel L, Escola-Gil J C, Blanco-Vaca F. New insights into the molecular actions of plant sterolsand stanols in cholesterol metabolism [J]. Atherosclerosis,2009,203:18-31
    140. Devaraj S, Jialal I. The role of dietary supplementation with plant sterols and stanols in the prevention ofcardiovascular disease [J]. Nutr Rev,2006,64:348-354
    141. Moreau R A, Whitaker B D, Hicks K B. Phytosterols, phytostanols, and their conjugates in foods:structural diversity, quantitative analysis, and health-promoting uses [J]. Prog Lipid Res,2002,41:457-500
    142. Nguyen T T. The cholesterol-lowering action of plant stanol esters [J]. J Nutr,1999,129:2109-2112
    143. Reagan-Shaw S, Nihal M, Ahmad N. Dose translation from animal to human studies revisited [J]. FASEBJ,2007,22:659-661
    144. Chien Y L, Wu L Y, Lee T C, et al. Cholesterol-lowering efect of phytosterol-containing lactic-fermentedmilk powder in hamsters [J]. Food Chem,2010,119:1121-1126
    145.谢敏浩.谷甾烷醇的分析、制备及降胆固醇功能研究[D]:[博士学位论文].无锡:江南大学,2006
    146.刘炜炜.植物甾醇酯对高脂血症大鼠降血脂功能的研究[D]:[硕士学位论文].杭州:浙江大学,2007147. Lin Y, Meijer G W, Vermeer M A, et al. Soy protein enhances the cholesterol-lowering efect of plantsterol esters in cholesterol-fed hamsters [J]. J Nutr,2004,134:143-148
    148. Chung D W, Kim W D, Noh S K, et al. Efects of hydrophilic and lipophilic β-sitosterol derivatives oncholesterol absorption and plasma cholesterol levels in rats [J]. J Agric Food Chem,2008,56:6665-6670
    149. Hallikainen M A, Sarkkinen E S, Gylling H, et al. Comparison of the effects of plant sterol ester and plantstanol ester-enriched margarines in lowering serum cholesterol concentrations in hypercholesterolaemicsubjects on a low-fat diet [J]. Eur J Clin Nutr,2000,54:715-725
    150. Normén L, Dutta P, Lia A, et al. Soy sterol esters and beta-sitostanol ester as inhibitors of cholesterolabsorption in human small bowel [J]. Am J Clin Nutr,200071(4):908-913
    151.张泽生,侯冬梅,贺伟等.植物甾醇对高血脂大鼠血脂水平的影响[J].食品科学,2011,32:306-309
    152. Patricia F R, Jose A R, Luis M S, et al. Egg yolk improves lipid profile, lipid peroxidation and retinalabnormalities in a murine model of genetic hypercholesterolemia [J]. J Nutr Biochem,2008,19:40-48
    153.黄红霞.天然红心鸭蛋蛋黄粉的生物活性及作用机理研究[D]:[博士学位论文].武汉:华中农业大学,2006
    154. Vanhanen H T, Blomqvist S, Ehnholm C, et al. Serum cholesterol, cholesterol precursors, and plant sterolsin hypercholesterolemic subjects with different apoE phenotypes during dietary sitostanol ester treatment [J]. JLipid Res,1993,34:1535-1544
    155. AbuMweis S S, Barake R, Jones P J H. Plant sterols/stanols as cholesterol lowering agents: Ameta-analysis of randomized controlled trials [J]. Food Nutr Res,2008,52:1-17
    156. Nijjar P S, Burke F M, Bloesch A, et al. Role of dietary supplements in lowering low-density lipoproteincholesterol: A review [J]. J Clin Lipidol,2010,4:248-258
    157. Hayes K C, Pronczuk A, Wijendran V, et al. Free phytosterols facilitate excretion of endogenouscholesterol in gerbils [J]. J Nutr Biochem,2005,16:305-311
    158. Smet E D, Mensink R P, Plat J. Effects of plant sterols and stanols on intestinal cholesterol metabolism:suggested mechanisms from past to present [J]. Mol Nutr Food Res,2012,56:1058-1072
    159. Chen Z Y, Jiao R, Ma K Y. Cholesterol-lowering nutraceuticals and functional foods [J]. J Agr FoodChem,2008,56:8761-8773
    160. Zhou Y, Jia C, Li R, et al. An efficient and expeditious synthesis of phytostanyl esters in a solvent-freesystem [J]. Eur J Lipid Sci Technol,2012,114:896-904
    161. Liang Y T, Wong W T, Guan L, et al. Effect of phytosterols and their oxidation products on lipoproteinprofles and vascular function in hamster fed a high cholesterol diet [J].Atherosclerosis,2011,219:124-133
    162. Zhang Z, Wang H, Jiao R, et al. Choosing hamsters but not rats as a model for studying plasmacholesterol-lowering activity of functional foods [J]. Mol Nutr Food Res,2009,53:921-930
    163. Folch J, Lees M, Sloane Stanley G H. A simple method for the isolation and purification of total lipidsfrom animal tissues [J]. J Biol Chem,1957,226(1):497-509
    164.刘静娜.壳聚糖降脂作用机理研究[D]:[博士学位论文].无锡:江南大学,2008
    165. Turnbull D, Whittaker M H, Frankos V H, et al.13-week oral toxicity study with stanol esters in rats [J].Regul Toxicol Pharmacol,1999,29:216-226
    166. Panda S, Kar A, Patil S. Soy sterols in the regulation of thyroid functions, glucose homeostasis andhepatic lipid peroxidation in mice [J]. Food Res Int,2009,42:1087-1092
    167. He W S, Jia C S, Yang Y B, et al. Cholesterol-lowering effects of plant steryl and stanyl laurate by oraladministration in mice [J]. J Agr Food Chem,2011,59:5093-5099
    168. Patricia F R, Jose A R, Luis M S, et al. Egg yolk improves lipid profle, lipid peroxidation and retinalabnormalities in a murine model of genetic hypercholesterolemia [J]. J Nutr Biochem,2008,19:40-48
    169.吴冬梅.血脂康改善内皮功能和抗动脉粥样硬化的机制探讨[D]:[博士学位论文].南京:南京中医药大学,2008
    170.潘涛.血脂清降脂及抗动脉粥样硬化作用与机制研究[D]:[博士学位论文].南京:南京中医药大学,2008
    171.王玉明,王静凤,薛长湖.胆固醇影响大鼠脂肪代谢的机制研究[J].营养学报,2007,29(6):530-534
    172.逄龙,王静凤,董平等.2种海参对大鼠实验性高脂血症预防作用的比较[J].营养学报,2006,5:446-447
    173. Fungwe T V,Fox J E,Cagen L M, et al. Stimulation of fatty acid biosynthesiS by dietary cholesterol andof cholesterol synthesiS by dietary fatty acid [J]. J lipid Res,1994,35:311-318
    174. Fungwe T V, Cagen L M, Cook G A, et al. Dietary cholesterol stimulates hepatic biosynthesis oftriglyceride and reduces oxidation of fatty acids in the rat [J]. J Lipid Res,1993,4:933-941
    175. Katan M B, Grundy S M, Jones P, et al. Effcacy and safety of plant stanols and sterols in the managementof blood cholesterol levels [J]. Mayo Clin Proc,2003,78:965-978
    176. Be towski J. Liver X receptors (LXR) as therapeutic targets in dyslipidemia [J]. Cardiovasc Ther,2008,26:297-316
    177. Calpe-Berdiel L, Escola-Gil J C, Ribas V, et al. Changes in intestinal and liver global gene expression inresponse to a phytosterol-enriched diet [J]. Atherosclerosis,2005,181:75-85
    178. Volger O L, van der Boom H, de Wit E C, et al. Dietary plant stanol esters reduce VLDL cholesterolsecretion and bile saturation in apolipoprotein E*3-Leiden transgenic mice [J]. Arterioscler Thromb Vasc Biol,2001,21:1046-1052
    179. Shefer S, Salen G, Bullock J, et al. The effect of increased hepatic sitosterol on the regulation of3-hydroxy-3-methylglutaryl-coenzyme A reductase and cholesterol7alpha-hydroxylase in the rat andsitosterolemic homozygotes [J]. Hepatology,1994,20:213-219
    180. Boberg K M, Akerlund J E, Bjorkhem I. Effect of sitosterol on the rate-limiting enzymes in cholesterolsynthesis and degradation [J]. Lipids,1989,24:9-12
    181.郭拥军. NPC1在细胞内胆固醇代谢SREBP信号通路中的作用探讨[D]:[博士学位论文].济南:山东大学,2007
    182.姚晓敏,宋保亮,王灿华等,胆固醇平衡调控中的SREBP途径[J],上海交通大学学报(农业科学版),2006,24(3):311-320
    183. Sato R. Sterol metabolism and SREBP activation [J], Arch Biochem Biophys,2010,501:177-181
    184.王浩,张泽生,张颖等.高胆固醇膳食对大鼠和仓鼠肝脏HMG-CoA-R、LDL-R蛋白和基因表达的影响[J].食品研究与开发,2010,31(10):192-195
    185.邹艳艳.高脂高胆固醇饮食喂养的apoE<'-/->/LDLR<'-/->小鼠肝脏脂代谢相关基因的表达研究[D]:[硕士学位论文].济南:山东师范大学,2009
    186. Geyeregger R, Zeyda M, Stulnig T M, et al. Liver X receptors in cardiovascular and metabolic disease [J].Cell Mol Life Sci,2006,63:524-539
    187.王强,江渝.肝X受体的研究进展[J].生理科学进展,2009,40(2):147-150
    188.王博涵.不同剂量白藜芦醇对高脂模型小鼠脂代谢及相关基因SIRTl,LXR-a和ABCAl影响的实验研究[D]:[硕士学位论文].沈阳:中国医科大学,2010
    189.马颖.高胆固醇和贝特类化合物分别通过LXR、PPAR Q增加大鼠胆汁酸的合成[D]:[硕士学位论文].石家庄:河北医科大学,2006
    190. Yang C, Yu L, Li W, et al. Disruption of cholesterol homeostasis by plant sterols [J]. J Clin Invest,2004,114:813-822
    191. Plat J, Nichols J A, Mensink R P. Plant sterols and stanols: effects on mixed micellar composition andLXR (target gene) activation [J]. J Lipid Res,2005,46:2468-2476
    192. Chiang J Y L, Kimmel R, Stroup D. Regulation of cholesterol7a-hydroxylase gene (CYP7A1)transcription by the liver orphan receptor (LXRa)[J]. Gene,2001,262:257-265
    193. He W S, Ma Y, Pan X X, et al. Efficient solvent-free synthesis of phytostanyl esters in the presence ofacid-surfactant-combined catalyst [J]. J Agric Food Chem,2012,60:9763-9769
    194.檀亦兵.用差示扫描量热法研究维生素C的热稳定性及热动力学[J].无锡轻工大学学报,2003,22(2):102-105
    195.刘书成,章超桦,洪鹏志.差示扫描量热法对金枪鱼鱼油热氧化动力学研究[J].中国油脂,2005,30(9):41-44
    196. Vaikousi H, Lazaridou A, Biliaderis C G, et al. Phase Transitions, Solubility, and crystallization kinetics ofphytosterols and phytosterol-oil blends [J]. J Agric Food Chem,2007,55:1790-1798
    197. Vu P L, Shin J A, Lim C H, et al. Lipase-catalyzed production of phytosteryl esters and theircrystallization behavior in corn oil [J]. Food Res Int,2004,37:175-180
    198.周泉城.大豆甾醇的热解及热动力学研究[J].中国粮油学报,2012,27(5):18-21

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700