用户名: 密码: 验证码:
局域共振声子晶体的优化设计与模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三组元局域共振型声子晶体的晶格尺寸可以比布拉格散射产生的禁带波长小1~2个数量级,从而获得了利用小尺寸有效控制大波长的能力,可广泛应用于新型声波波导,滤波器以及声开关等器件的设计与制造。本文主要计算了二维及三维局域共振型声子晶体的共振频率、禁带位置以及相应薄层材料透射谱受共振单元改变的影响。共振单元的改变主要包括三种组分几何形状和填充率的改变,以及单元对称性降低后元胞结构的变化。本文主要通过对材料共振单元形状及晶格排列方式的优化设计,探索其对共振及透射特性的影响,获得了调节薄层局域共振型声子晶体材料的共振频率及透射率的有效途径。
     第一章简要介绍声学以及空气中声速的推导,引出流体中声波的方程;接着将流体中声场推广为固体中的弹性波场,详细介绍了声子晶体的起源、进展及研究现状。回顾传统声学中噪音、消声器以及两个共振现象之后,引出局域共振型声子晶体,讨论禁带形成机制,略述其在隔音方面的应用前景。第二章给出坐标转换公式,以此为基础由常见的直角坐标系中的弹性介质方程推导出柱坐标及球坐标中相应方程的表达式。在简要讨论了几种流体与固体的边界条件之后,给出一个球形振子算例,说明局域共振型声子晶体中弹性场的计算流程。
     第三章将最小二乘配点法及拉格朗日乘子法结合的思想引入到具有不规则边界振子的共振单元计算中,使其与位移势的单极子多阶展开结合形成半解析方法。该方法兼有解析解和数值解的优点:较短的计算时间及较广的应用范围,因此比较适用于实际问题。提出用动力学有效质量密度来确定其禁带位置及宽度,缩短了能带计算时间。用半解析方法对三维轴对称共振单元的共振频率及能带进行优化。计算结果表明,共振频率及归一化的带宽都可以得到优化。
     第四章研究了二维三组元局域共振声子晶体的共振模式及透射谱。其元胞由共轭放置的两个具有不规则振子的共振单元构成。共振模式通过第三章中提出的半解析法得到,随后用有限元模拟验证。椭圆柱振子沿短轴和长轴两振动模式会造成弹性波的全反射。在这两种振动模式之间,存在一种沿层面方向反相振动的模式,会使有效质量密度为零,从而造成弹性波的全透射。这种新振动模式的共振频率,会随着椭圆振子的指向角连续变化。
     第五章将单极多阶方法加以扩展成多极多阶方法,用以计算形状更一般的振子的声子晶体共振频率。虽然这会使势函数由一组非正交基展开,但是半解析法的收敛性会有明显增强;随形状改变产生的矩阵奇异性也被削弱,有利于求解。文中还简略叙述了有限元方法的数学基础,并尝试对二维形状作网格剖分。
The lattice constant of ternary locally resonant phononic crystal(PC) canbe 1~2 orders of magnitude lower than wavelength in its spectral gaps whichinduced by Bragg scattering. This characteristic can be used to control longclassical elastic wave by composite material of small dimensions. Hence it possesspotential for manufacturing of new wave guide, filters and switches. This thesiscompute the e?ect on resonance frequency, position of bandgap and transmissionspectrum of 2D and 3D locally resonant phononic crystal by changing the shapeof resonant unit. The change of resonant unit mainly includes the shape, fillingratio of three components and the cell structure for lower symmetry unit. Bystudying the units’shape and structure dependence of resonance frequency andtransmission characteristic, we obtain the way to tune the resonance frequencyand transmission spectrum of PC slab.
     In the first chapter, acoustics and brief deduction of sound velocity weregiven, then were generalized to the wave equation in ?uid. The concept ofelastic wave field was proposed to usher in the description of PC. The origin,progress and the current research of PC were introduced in detail. The tradi-tional noise, noise reducer and two kind of classical resonance phenomena werereviewed brie?y. Then the formalism of band gap in locally resonant PC and theprospect in noise reduce field was discussed. The orthogonal curvilinear coordi-nates transformation and the elastic wave equation in rectangular coordinates wasintroduced in Chapter two, from which the equations in cylindrical and sphericalcoordinates can be obtained. After a brief description of several kinds of bound-ary conditions in solid-?uid coupled problems, a spherical resonator example wasdiscussed to illustrate the elastic wave field computation.
     In chapter 3, both the least square collocation method and the Lagrange mul- tiplier method were ushered in to the computation of resonance unit with irreg-ular boundaries. Combined with the single-pole multiple expansion of displace-ment potential, the semi-analytical method was formulated. The semi-analyticalway possessed merits of both analytical method and numerical method: shortercomputation time and more general application scope, and hence is suit for prac-tical problems computation. The dynamic e?ective mass density was proposedto figure out the position and width of band gap, which can save time. Both theresonance frequency and normalized band gap width of resonance unit can beoptimized by adjusting the shape of the unit.
     In chapter 4, the resonance modes and the transmission spectrum of 2Dternary PC were studied. The unit cell consists of two conjugate placed asym-metric elliptic cylinders coated with silicon rubber and embedded in a rigid ma-trix. The modes are obtained by the semi-analytic method in the least squarecollocation scheme and confirmed by the finite element method simulations. Tworesonance modes, corresponding to the vibration of the cylinder along the longand short axes, give rise to resonance re?ections of elastic waves. One mode inbetween the two modes, related to the opposite vibration of the two cylindersin the unit cell in the direction along the layer, results in the total transmissionof elastic waves due to zero e?ective mass density at the frequency. The reso-nance frequency of this mode, which has not yet been identified before, changescontinuously with the orientation angle of the elliptic resonator.
     The multiple expansion with single pole was extended to multiple multipolemethod, so as to obtain the resonance frequency of PC unit with more generalresonator shape. Although the wave fields are expanded into a set of nonorthogo-nal basis functions, the convergence was enhanced obviously, and the sti? matrixattribute to the irregular shape can be solved more accurately. The second partof this chapter was dedicated to the mathematical basis of the finite elementmethod, and we tried to generate the two dimensional mesh for irregular shapedresonator.
引文
[1]马大猷,现代声学理论基础,科学出版社, 2004.
    [2]胡聿贤,地震工程学,地震出版社, 2006.
    [3] Mei J., Liu Z., Wen W., et al.,“E?ective dynamic mass density of compos-ites”, Physical Review B, 2007, 76, 134205.
    [4] Imhof M.,“Multiple multipole expansions for acoustic scattering”, The Jour-nal of the Acoustical Society of America, 1995, 97, 754.
    [5] Imhof M.,“Multiple multipole expansions for elastic scattering”, The Jour-nal of the Acoustical Society of America, 1996, 100, 2969.
    [6]李太宝,计算声学:声场的方程和计算方法,科学出版社, 2005.
    [7] Miyashita T.,“Sonic crystals and sonic wave-guides”, Measurement Scienceand Technology, 2005, 16, R47–R63.
    [8]杜功焕,朱哲民,龚秀芬,声学基础,南京大学出版社, 2001.
    [9] Einspruch N., Witterholt E., and Truell R.,“Scattering of a plane transversewave by a spherical obstacle in an elastic medium”, Journal of AppliedPhysics, 1960, 31, 806.
    [10] Ying C. and Truell R.,“Scattering of a plane longitudinal wave by a sphericalobstacle in an isotropically elastic solid”, Journal of Applied Physics, 1956,27, 1086.
    [11] Sigalas M. and Economou E.,“Elastic and acoustic wave band structure”,Journal of Sound and Vibration, 1992, 168, 377–377.
    [12] Kushwaha M., Halevi P., Dobrzynski L., et al.,“Acoustic band structureof periodic elastic composites”, Physical review letters, 1993, 71(13), 2022–2025.
    [13] Mart′?nez-Sala R., Sancho J., Sanchez J., et al.,“Sound attenuation by sculp-ture”, Nature, 1995, 378, 241.
    [14] Li X. and Liu Z.,“Coupling of cavity modes and guiding modes in two-dimensional phononic crystals”, Solid State Communications, 2005, 133(6),397–402.
    [15] Benchabane S., Khelif A., Choujaa A., et al.,“Interaction of waveguide andlocalized modes in a phononic crystal”, Europhysics Letters, 2005, 71(4),570–575.
    [16] El Boudouti E., Mrabti T., Al-Wahsh H., et al.,“Transmission gaps andFano resonances in an acoustic waveguide: analytical model”, Journal ofPhysics-Condensed Matter, 2008, 20(25), 255212–255212.
    [17] Hou Z. and Assouar B.,“Transmission property of the one-dimensionalphononic crystal thin plate by the eigenmode matching theory”, Journalof Physics D: Applied Physics, 2008, 41(9), 95103.
    [18] Sigalas M.,“Elastic wave band gaps and defect states in two-dimensionalcomposites”, The Journal of the Acoustical Society of America, 1997, 101,1256.
    [19] Sigalas M.,“Defect states of acoustic waves in a two-dimensional lattice ofsolid cylinders”, Journal of Applied Physics, 1998, 84, 3026.
    [20] Kafesaki M. and Economou E.,“Multiple-scattering theory for three-dimensional periodic acoustic composites”, Physical Review B, 1999, 60,11993.
    [21] Kafesaki M., Sigalas M., and Garcia N.,“Frequency modulation in the trans-mittivity of wave guides in elastic-wave band-gap materials”, Physical Re-view Letters, 2000, 85(19), 4044–4047.
    [22] Vasseur J., Djafari-Rouhani B., Dobrzynski L., et al.,“Complete acous-tic band gaps in periodic fibre reinforced composite materials: the car-bon/epoxy composite and some metallic systems”, Journal of Physics: Con-densed Matter, 1994, 6, 8759–8770.
    [23] Sigalas M. and Soukoulis C.,“Elastic-wave propagation through disorderedand/or absorptive layered systems”, Physical Review B, 1995, 51, 2780.
    [24] Kushwaha M. and Halevi P.,“Stop bands for cubic arrays of spherical bal-loons”, The Journal of the Acoustical Society of America, 1997, 101, 619.
    [25] Kushwaha M. and Halevi P.,“Ultra-wideband filter for noise control”, TheJournal of the Acoustical Society of America, 1997, 101, 3076.
    [26] Kushwaha M.,“Stop-bands for periodic metallic rods: Sculptures that canfilter the noise”, Applied Physics Letters, 1997, 70, 3218.
    [27] Sanchez-Perez J., Caballero D., Martinez-Sala R., et al.,“Sound attenuationby a two-dimensional array of rigid cylinders”, Physical Review Letters,1998, 80(24), 5325–5328.
    [28] Liu Z., Zhang X., Mao Y., et al.,“Locally Resonant Sonic Materials”, Sci-ence, 2000, 289(5485), 1734–1736.
    [29]温熙森,光子/声子晶体理论与技术,科学出版社, 2005.
    [30] Yilmaz C., Hulbert G., and Kikuchi N.,“Phononic band gaps induced by in-ertial amplification in periodic media”, Physical Review B, 2007, 76, 054309.
    [31] Wu L. and Chen L.,“The dispersion characteristics of sonic crystals con-sisting of elliptic cylinders”, Journal of Physics D: Applied Physics, 2007,40(23), 7579.
    [32] Yang S., Page J., Liu Z., et al.,“Ultrasound tunneling through 3D phononiccrystals”, Physical review letters, 2002, 88(10), 104301–104301.
    [33] Yang S., Page J., Liu Z., et al.,“Focusing of sound in a 3D phononic crystal”,Physical Review Letters, 2004, 93(2), 24301–24301.
    [34] Feng L., Liu X., Chen Y., et al.,“Negative refraction of acoustic wavesin two-dimensional sonic crystals”, Physical review B, 2006, 72(3), 33108–33108.
    [35] Hu X., Hang Z., Li J., et al.,“Anomalous Doppler e?ects in phononic bandgaps”, Physical Review E, 2006, 73, 015602–1.
    [36] Lu M., Zhang C., Feng L., et al.,“Negative birefraction of acoustic waves ina sonic crystal”, Nature Materials, 2007, 6(10), 744–748.
    [37] Go?aux C. and S′anchez-Dehesa J.,“Two-dimensional phononic crystalsstudied using a variational method: Application to lattices of locally res-onant materials”, Physical Review B, 2003, 67(14), 144301.
    [38] Hirsekorn M.,“Small-size sonic crystals with strong attenuation bands inthe audible frequency range”, Applied Physics Letters, 2004, 84, 3364.
    [39] Hirsekorn M., Delsanto P., Leung A., et al.,“Elastic wave propagation inlocally resonant sonic material: Comparison between local interaction simu-lation approach and modal analysis”, Journal of Applied Physics, 2006, 99,124912.
    [40] Batra N.K., Matic P., and Everett R.K.,“Sonic crystal composites for se-lective noise reduction”, Ultrasonics Symposium, 2002, 1, 547–550.
    [41] Fang N., Xi D., Xu J., et al.,“Ultrasonic metamaterials with negative mod-ulus”, Nature Materials, 2006, 5(6), 452–456.
    [42] Liu F., Cai F., Ding Y., et al.,“Tunable transmission spectra of acous-tic waves through double phononic crystal slabs”, Applied Physics Letters,2008, 92, 103504.
    [43] Cheng Y., Xu J., and Liu X.,“One-dimensional structured ultrasonic meta-materials with simultaneously negative dynamic density and modulus”,Physical Review B, 2008, 77, 045134.
    [44]何琳,朱海潮,邱小军,杜功焕,声学理论与工程应用,科学出版社, 2006.
    [45]许肖梅,声学基础,科学出版社, 2003.
    [46] Hu X., Chan C., and Zi J.,“Two-dimensional sonic crystals with Helmholtzresonators”, Physical Review E, 2005, 71, 055601.
    [47] Wang Z., Lee S., Kim C., et al.,“Acoustic wave propagation in one-dimensional phononic crystals containing Helmholtz resonators”, Journalof Applied Physics, 2008, 103, 064907.
    [48]刘伯胜,雷家煜,水声学原理,哈尔滨:哈尔滨工程大学出版社, 1993.
    [49] Rayleigh L.,“On the pressure developed in a liquid during the collapse of aspherical cavity”, Philosophical Magazine, 1917, 34(200), 94–98.
    [50] Lamb H.,“The early stages of a submarine explosion”, Philosophical Mag-azine, 1923, 45, 266.
    [51] Minnaert M.,“On musical air-bubbles and the sounds of running water”,Philosophical Magazine, 1933, 16(7), 235–249.
    [52] Cole R., Underwater Explosions, Princeton, 1948.
    [53] Parkin B., Plesset M., of Technology C.I., et al., A note on the cavity ?owpast a hydrofoil in a liquid with gravity, California Institute of Technology,1957.
    [54] Plesset M., Cavitating Flows, California Institute of Technology, Division ofEngineering and Applied Science, 1969.
    [55] Plesset M. and Prosperetti A.,“Bubble dynamics and cavitation”, AnnualReview of Fluid Mechanics, 1977, 9(1), 145–185.
    [56] Noltingk B. and Neppiras E.,“Cavitation produced by ultrasonics”, Pro-ceedings of the Physical Society. Section B, 1950, 63, 674–685.
    [57] Poritsky H.,“The collapse or growth of a spherical bubble or cavity in aviscous ?uid”, Proceedings of the First U. S. National Congress on AppliedMechanics, 1952, 813–821.
    [58] Robinson R. and Buchanan R.,“Undamped Free Pulsations of an IdealBubble”, Proceedings of the Physical Society. Section B, 1956, 69, 893–900.
    [59] Guth W.,“Zur Entstehung der Stosswellen bei der Kavitation [Formationof shock waves in cavitation]”, Acustica, 1956, 6(6), 526.
    [60] Brennen C., Cavitation and bubble dynamics, Oxford University Press, USA,1995.
    [61] Vokurka K.,“On Rayleigh’s model of a freely oscillating bubble. I. Basicrelations”, Czechoslovak Journal of Physics, 1985, 35(1), 28–40.
    [62] Plesset M.S.,“The dynamics of cavitation bubbles”, Journal of AppliedMechanics, 1949, 16, 277.
    [63] Leighton T.G.,“Derivation of the rayleigh-plesset equation in terms of vol-ume”, ISVR Technical Report No 308, 2007.
    [64]钱祖文,非线性声学,科学出版社, 1992.
    [65] Li J. and Chan C.,“Double-negative acoustic metamaterial”, Physical Re-view E, 2004, 70(5), 055602.
    [66] Ding Y. L.Z.,“Metamaterial with Simultaneously Negative Bulk Modulusand Mass Density”, Physical Review Letters, 2007, 99(9), 93904.
    [67] Brekhovskikh L.M., Waves in Layered Media, Academic Press, 1980.
    [68] Sigalas M. and Garcia N.,“Theoretical study of three dimensional elasticband gaps with the finite-di?erence time-domain method”, Journal of ap-plied physics, 2000, 87, 3122.
    [69] Diez A., Kakarantzas G., Birks T., et al.,“Acoustic stop-bands in periodi-cally microtapered optical fibers”, Applied Physics Letters, 2000, 76, 3481.
    [70] Go?aux C. and Vigneron J.,“Theoretical study of a tunable phononic bandgap system”, Physical Review B, 2001, 64(7), 3913.
    [71] Liu Z., Chan C., and Sheng P.,“Three-component elastic wave band-gapmaterial”, Physical Review B, 2002, 65(16), 165116–165116.
    [1] Graff K., Wave Propagation in Elastic Solids, Ohio State University Press,Columbus, 1975.
    [2] Wang G., Wen X., Wen J., et al.,“Two-Dimensional Locally ResonantPhononic Crystals with Binary Structures”, Physical Review Letters, 2004,93(15), 154302.
    [3] Wang G., Wen J., Liu Y., et al.,“Lumped-mass method for the study ofband structure in two-dimensional phononic crystals”, Physical Review B,2004, 69(18), 184302.
    [4] Wang G., Wen J., and Wen X.,“Quasi-one-dimensional phononic crystalsstudied using the improved lumped-mass method: Application to locallyresonant beams with ?exural wave band gap”, Physical Review B, 2005,71(10), 104302.
    [5] Achenbach J.D., Wave Propagation in Elastic Solids, 1973.
    [6]钟伟芳,聂国华,弹性波的散射理论,华中理工大学出版社, 1997.
    [7] Gladwell G., Contact Problems in the Classical Theory of Elasticity, KluwerAcademic Publishers, 1980.
    [8]徐秉业.,弹性力学,北京:清华大学出版社, 2007.
    [9]武际可..,弹性力学教程, 2002.
    [10] G. R. Liu S.S.Q.,有限元法实用教程,湖南大学出版社, 2004.
    [11] Chung T.J., General Continuum Mechanics, Cambridge University Press,2007.
    [12] Rose J.L.,固体中的超声波,科学出版社, 2004.
    [13]刘觉平,电动力学,高等教育出版社, 2004.
    [14] Flugge W., Tensor analysis and continuum mechanics, Springer, 1972.
    [15] Morse P. and Feshbach H., Methods of Theoretical Physics, McGraw-Hill,1953.
    [16]李太宝,计算声学:声场的方程和计算方法,科学出版社, 2005.
    [17] Fahy F., Sound and Structural Vibration: Radiation, transmission and re-sponse, Academic Press, 1985.
    [18]马大猷,现代声学理论基础,科学出版社, 2004.
    [19] Liu Z., Zhang X., Mao Y., et al.,“Locally Resonant Sonic Materials”, Sci-ence, 2000, 289(5485), 1734–1736.
    [20] Gu Y., Luo X., and Ma H.,“Optimization of the local resonant sonic materialby tuning the shape of the resonator”, Journal of Physics D: Applied Physics,2008, 41(20), 205402.
    [21] Liu Z., Chan C., and Sheng P.,“Analytic model of phononic crystals withlocal resonances”, Physical Review B, 2005, 71(1), 014103.
    [22] Kin Hung Fung Z.L. and Chan C.T.,“Transmission properties of locallyresonant sonic materials with finite slab thickness”, Z. Kristallogr., 2005,220, 871.
    [1] Goffaux C. and S′anchez-Dehesa J.,“Two-dimensional phononic crystalsstudied using a variational method: Application to lattices of locally res-onant materials”, Physical Review B, 2003, 67(14), 144301.
    [2] Hirsekorn M., Delsanto P., Leung A., et al.,“Elastic wave propagation inlocally resonant sonic material: Comparison between local interaction simu-lation approach and modal analysis”, Journal of Applied Physics, 2006, 99,124912.
    [3]盛剑霓等,电磁场与波分析中半解析法的理论方法与应用,科学出版社,2006.
    [4] Imhof M.,“Multiple multipole expansions for acoustic scattering”, The Jour-nal of the Acoustical Society of America, 1995, 97, 754.
    [5]严宗毅,低雷诺数流理论,北京大学出版社, 2002.
    [6] Gang W., Li-Hui S., Yao-Zong L., et al.,“Accurate evaluation of lowest bandgaps in ternary locally resonant phononic crystals”, Chinese Physics, 2006,15(8), 1843.
    [7] Kin Hung Fung Z.L. and Chan C.T.,“Transmission properties of locallyresonant sonic materials with finite slab thickness”, Z. Kristallogr., 2005,220, 871.
    [8] Desjardins R., Ellis C., and Sankewitsch V.,“Vibration isolation system”,Technical report, 1978, uS Patent 4,088,042.
    [9] Yilmaz C. and Kikuchi N.,“Analysis and design of passive low-pass filter-type vibration isolators considering sti?ness and mass limitations”, Journalof Sound and Vibration, 2006, 293(1-2), 171–195.
    [10] Yilmaz C., Hulbert G., and Kikuchi N.,“Phononic band gaps induced by in-ertial amplification in periodic media”, Physical Review B, 2007, 76, 054309.
    [11] Schwarz H. and K¨ockler N., Numerische mathematik, Teubner BG GmbH,2006.
    [12] Wilkinson J., The algebraic eigenvalue problem, Oxford University Press,1988.
    [13] Imhof M.,“Multiple multipole expansions for elastic scattering”, The Jour-nal of the Acoustical Society of America, 1996, 100, 2969.
    [14] Imhof M.,“Computing the elastic scattering from inclusions using the mul-tiple multipoles method in three dimensions”, Geophysical Journal Interna-tional, 2004, 156(2), 287–296.
    [15]吴望一,“解任意形状非细长长轴对称体stokes流动的一种新方法”,中国科学A辑, 1984, 145.
    [16] Hafner C., The generalized multipole technique for computational electro-magnetics, Artech House Boston, 1990.
    [17] Moreno E., Erni D., and Hafner C.,“Band structure computations of metal-lic photonic crystals with the multiple multipole method”, Physical ReviewB, 2002, 65(15), 155120–155120.
    [18] Moreno E., Erni D., Hafner C., et al.,“Multiple multipole method withautomatic multipole setting applied to the simulation of surface plasmonsin metallic nanostructures”, Journal of the Optical Society of America A,2002, 19(1), 101–111.
    [19] Novotny L. and Hafner C.,“Light propagation in a cylindrical waveguidewith a complex, metallic, dielectric function”, Physical review E, 1994,50(5), 4094–4106.
    [20] Greenberg M., Di?erential equations & Linear algebra, Prentice Hall UpperSaddle River, NJ, 2001.
    [21] Zimmerman W., Multiphysics modelling with finite element methods, WorldScientific, 2006.
    [22] Liu Z., Zhang X., Mao Y., et al.,“Locally Resonant Sonic Materials”, Sci-ence, 2000, 289(5485), 1734–1736.
    [23] Hirsekorn M.,“Small-size sonic crystals with strong attenuation bands inthe audible frequency range”, Applied Physics Letters, 2004, 84, 3364.
    [24] Wang G., Wen X., Wen J., et al.,“Two-Dimensional Locally ResonantPhononic Crystals with Binary Structures”, Physical Review Letters, 2004,93(15), 154302.
    [25] Liu Z., Chan C., and Sheng P.,“Analytic model of phononic crystals withlocal resonances”, Physical Review B, 2005, 71(1), 014103.
    [26] Psarobas I.E., Stefanou N., and Modinos A.,“Phononic crystals with planardefects”, Physical Review B, 2000, 62, 5536.
    [27] Ho K., Cheng C., Yang Z., et al.,“Broadband locally resonant sonic shields”,Applied Physics Letters, 2003, 83, 5566.
    [28] Chen H., Luo X., and Ma H.,“Scattering of elastic waves by elastic spheresin a NaCl-type phononic crystal”, Physical Review B, 2007, 75(2).
    [1] Gu Y., Luo X., and Ma H.,“Optimization of the local resonant sonic materialby tuning the shape of the resonator”, Journal of Physics D: Applied Physics,2008, 41(20), 205402.
    [2] Hirsekorn M., Delsanto P., Leung A., et al.,“Elastic wave propagation inlocally resonant sonic material: Comparison between local interaction simu-lation approach and modal analysis”, Journal of Applied Physics, 2006, 99,124912.
    [3] Wu L. and Chen L.,“The dispersion characteristics of sonic crystals con-sisting of elliptic cylinders”, Journal of Physics D: Applied Physics, 2007,40(23), 7579.
    [4] Chen Y. and Ye Z.,“Acoustic attenuation by two-dimensional arrays of rigidcylinders”, Physical Review Letters, 2001, 87(18), 184301–184301.
    [5] Go?aux C. and S′anchez-Dehesa J.,“Two-dimensional phononic crystalsstudied using a variational method: Application to lattices of locally res-onant materials”, Physical Review B, 2003, 67(14), 144301.
    [6] Mei J., Liu Z., Shi J., et al.,“Theory for elastic wave scattering by atwo-dimensional periodical array of cylinders: An ideal approach for band-structure calculations (7 pages)”, PHYSICAL REVIEW-SERIES B-, 2003,67(24), 245107–245107.
    [7] Mei J., Liu Z., Wen W., et al.,“E?ective Mass Density of Fluid-Solid Com-posites”, Physical Review Letters, 2006, 96(2), 024301.
    [8] Mei J., Liu Z., Wen W., et al.,“E?ective dynamic mass density of compos-ites”, Physical Review B, 2007, 76, 134205.
    [9] Wu Y., Lai Y., and Zhang Z.,“E?ective medium theory for elastic metama-terials in two dimensions”, Physical Review B, 2007, 76, 20.
    [10] Miyashita T.,“Sonic crystals and sonic wave-guides”, Measurement Scienceand Technology, 2005, 16, R47–R63.
    [11] Kushwaha M.S.,“Band gap engineering in phononic crystals”, Recent Re-search Developments in Applied Physics, 1999, 2, 743.
    [12] Cao Y., Hou Z., and Liu Y.,“Convergence problem of plane-wave expansionmethod for phononic crystals”, Physics Letters A, 2004, 327(2-3), 247–253.
    [13] Kafesaki M., Penciu R., and Economou E.,“Air bubbles in water: A stronglymultiple scattering medium for acoustic waves”, Physical Review Letters,2000, 84(26), 6050–6053.
    [14] Sainidou R., Stefanou N., Psarobas I., et al.,“A layer-multiple-scatteringmethod for phononic crystals and heterostructures of such”, ComputerPhysics Communications, 2005, 166(3), 197–240.
    [15] Imhof M.,“Multiple multipole expansions for elastic scattering”, The Jour-nal of the Acoustical Society of America, 1996, 100, 2969.
    [16] Imhof M.,“Computing the elastic scattering from inclusions using the mul-tiple multipoles method in three dimensions”, Geophysical Journal Interna-tional, 2004, 156(2), 287–296.
    [17] Egli R., Geiger A., Wiget A., et al.,“A modified least-squares collocationmethod for the determination of crustal deformation: first results in theSwiss Alps”, Geophysical Journal International, 2007, 168(1), 1–12.
    [18] Khelif A., Deymier P., Djafari-Rouhani B., et al.,“Two-dimensionalphononic crystal with tunable narrow pass band: Application to a waveguidewith selective frequency”, Journal of Applied Physics, 2003, 94, 1308.
    [19] Wang G., Wen J., Liu Y., et al.,“Lumped-mass method for the study ofband structure in two-dimensional phononic crystals”, Physical Review B,2004, 69(18), 184302.
    [20] Hirsekorn M.,“Small-size sonic crystals with strong attenuation bands inthe audible frequency range”, Applied Physics Letters, 2004, 84, 3364.
    [21] Yilmaz C., Hulbert G., and Kikuchi N.,“Phononic band gaps induced by in-ertial amplification in periodic media”, Physical Review B, 2007, 76, 054309.
    [22] Go?aux C., Sanchez-Dehesa J., Yeyati A., et al.,“Evidence of fano-like inter-ference phenomena in locally resonant materials”, Physical Review Letters,2002, 88(22), 225502–225502.
    [23] Liu Z., Chan C., and Sheng P.,“Analytic model of phononic crystals withlocal resonances”, Physical Review B, 2005, 71(1), 014103.
    [24] Gra? K., Wave Propagation in Elastic Solids, Ohio State University Press,Columbus, 1975.
    [25] Imhof M.,“Multiple multipole expansions for acoustic scattering”, The Jour-nal of the Acoustical Society of America, 1995, 97, 754.
    [26] Wang G., Wen X., Wen J., et al.,“Two-Dimensional Locally ResonantPhononic Crystals with Binary Structures”, Physical Review Letters, 2004,93(15), 154302.
    [27] Gang W., Li-Hui S., Yao-Zong L., et al.,“Accurate evaluation of lowest bandgaps in ternary locally resonant phononic crystals”, Chinese Physics, 2006,15(8), 1843.
    [28] Kalinowski A.J.,“Acoustic transparency of non-homogeneous plates (withrepeating inclusions) using periodic structures methodology”, Proceedings ofCOMSOL User Conference, Boston, MA, 2007.
    [1]吴望一,“解任意形状非细长长轴对称体stokes流动的一种新方法”,中国科学A辑, 1984, 145.
    [2] Hirsekorn M., Delsanto P., Leung A., et al.,“Elastic wave propagation inlocally resonant sonic material: Comparison between local interaction simu-lation approach and modal analysis”, Journal of Applied Physics, 2006, 99,124912.
    [3] Gang W., Li-Hui S., Yao-Zong L., et al.,“Accurate evaluation of lowest bandgaps in ternary locally resonant phononic crystals”, Chinese Physics, 2006,15(8), 1843.
    [4] Kin Hung Fung Z.L. and Chan C.T.,“Transmission properties of locallyresonant sonic materials with finite slab thickness”, Z. Kristallogr., 2005,220, 871.
    [5] Imhof M.,“Multiple multipole expansions for acoustic scattering”, The Jour-nal of the Acoustical Society of America, 1995, 97, 754.
    [6] Moreno E., Erni D., Hafner C., et al.,“Multiple multipole method withautomatic multipole setting applied to the simulation of surface plasmonsin metallic nanostructures”, Journal of the Optical Society of America A,2002, 19(1), 101–111.
    [7]盛剑霓等,电磁场与波分析中半解析法的理论方法与应用,科学出版社,2006.
    [8] Junger M.,“Sound scattering by thin elastic shells”, The Journal of theAcoustical Society of America, 1952, 24, 366.
    [9] L′eon F., Lecroq F., D′ecultot D., et al.,“Scattering of an obliquely incidentacoustic wave by an infinite hollow cylindrical shell”, The Journal of theAcoustical Society of America, 1992, 91, 1388.
    [10] S′equin C., Lee K., and Yen J.,“Fair, G2-and C2-continuous circle splinesfor the interpolation of sparse data points”, Computer-Aided Design, 2005,37(2), 201–211.
    [11] Li Q., Wills D., Phillips R., et al.,“Implicit fitting using radial basis func-tions with ellipsoid constraint”, Computer Graphics Forum, volume 23,Blackwell Publishing Ltd., 2004, 55–69.
    [12]龙述尧,蒯行成,刘腾喜,计算力学,湖南大学出版社, 2007.
    [13]杨庆生,现代计算固体力学,科学出版社, 2007.
    [14] Zimmerman W.B.J., COMSOL-Multiphysics有限元法多物理场建模与分析,人民交通出版社, 2007.
    [15] Jakub F.K., A simplex cut-cell adaptive method for high-order discretizationsof the compressible Navier-Stokes equations, Ph.D. thesis, MassachusettsInstitute of Technology, 2007.
    [16] Persson P. and Strang G.,“A simple mesh generator in matlab”, SIAMreview, 2004, 329–346.
    [17] Ju L.,“Conforming centroidal Voronoi Delaunay triangulation for qualitymesh generation, Inter”, J. Numer. Anal. Model. v4, 2007, 531–547.
    [18] Du Q. and Wang D.,“Recent progress in robust and quality Delaunay meshgeneration”, Journal of Computational and Applied Mathematics, 2006,195(1-2), 8–23.
    [19] Zhang C. and Chen T.,“E?cient feature extraction for 2D/3D objects inmeshrepresentation”, Image Processing, 2001. Proceedings. 2001 Interna-tional Conference on, volume 3, 2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700