用户名: 密码: 验证码:
滨海软土流变模型及其在结构物稳定性分析中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流变性是软土的重要工程特性之一。大量研究和工程实践经验表明,软土的变形不是瞬间产生,而是在较长时间内缓慢完成。软土的这种应力应变随时间的发展而不断变化的流变特性,对建筑物的稳定性及长期安全使用有十分重要的影响,因此成为工程领域研究的焦点课题。随着沿海地区经济的高速发展,很多基建项目兴建在海积软土上,这类软土流变性显著,为避免因结构物与软土地基失稳造成巨大损失,亟需加强对海积软土流变特性的研究。有鉴于此,本文围绕滨海软土流变特性这一重要课题展开研究,具体内容和结论如下:
     1.将具有高度流变性的天津港海积软土作为研究对象,运用改进的三轴流变仪对其进行室内蠕变特性试验,得出不同应力条件下土体随时间的蠕变变形发生发展过程,并分析了滨海软粘土的蠕变特性。
     2.在室内蠕变试验的基础上,基于半经验的修正理论,建立了滨海软粘土非线性蠕变本构模型。模型以流变元件为主,运用经验公式对其进行修正,补充了流变元件模型不能够反映的加速蠕变阶段,更加清楚合理的描述滨海软粘土的非线性蠕变过程。模型通过试验结果曲线推导得出,物理意义明确,简单直观。运用数值拟合方法根据试验数据确定了滨海软粘土本构模型的11个参数,并将蠕变模型解析解与试验实测值进行了对比,误差较小。
     3.利用蠕变本构模型结合土体一维太沙基固结理论,推导得出滨海软粘土地基的非线性蠕变固结沉降计算模型,并通过工程实例验证了此模型的合理性。运用沉降模型对天津滨海新区软土地基长期蠕变沉降做出预测。同时结合大变形固结理论推导出适用于饱和软粘土的一维大变形非线性蠕变固结沉降模型,与小变形太沙基蠕变固结沉降模型相比较,大变形控制下的蠕变沉降更加显著,特别是随着时间的增长,沉降越来越明显。
     4.将滨海软粘土蠕变本构模型利用UMAT子程序进行开发,导入有限元软件ABAQUS,建立了非线性蠕变本构模型的有限元平台。在此平台上对三轴蠕变试验进行了有限元数值模拟,模拟结果与蠕变试验曲线基本相符合,证明了滨海软粘土蠕变本构模型有限元开发程序的可靠性高、计算性能好,可以方便地运用于滨海软粘土上各种结构物的长期蠕变沉降及稳定性等问题的有限元分析中。
     5.最后利用滨海软粘土流变本构模型结合有限元数值分析对筒型基础码头结构进行三维有限元建模,并对其水平承载能力及长期稳定性进行模拟研究。
It is well known that the rheological property is one of the important engineering characters of the soft soil. Numbers of engineering experiences and researching results have showed that the distortion of soft clay does not generate instantly, but increases slowly in a long term. The rheological property of the stress and strain developing with the time of the soft soil becomes a focal issue in engineering practices, because it has important relation with stability and long-life performance of structures. With the rapid development of littoral economy, many capital constructions have been built on the marine soft clay with obvious rheological property in the littoral, consequently, the study of the rheological property of the marine soft clay must be enhanced for avoiding the constructions and foundations instability to issue in heavy loss. In this paper, an important problem about the rheological property of the marine soft clay has been studied, and the major contents and conclusions of this study are as follows:
     1. By using the improved triaxial rheological test apparatus an indoor creep test with the marine soft clay in Tianjin Port Aera has been finished, creep-time curves with different stress levels have been obtained, and the creep behavior of the littoral soft clay has been studied.
     2. Based on the indoor creep test, experience formulas and model theory, the non-linear creep constitutive model of the littoral soft clay is established. For expressly and logically describing the littoral soft clay’s non-linear rheologic characteristics, the creep constitutive model has the main part making of the rheological unit model, and the other part which is the experience formulas adding the phase of accelerating creep into this creep model. Because of be worked out through deeply analyzing of the creep test curves, the model is simple and intuitive, and has a definite physical purport. According to the creep test data, eleven parameters of the creep model are determined by the numerical approximation. Moreover, numerical results agree well with those of the test data, which provides convincing evidences for the model’s excellent solution quality and fidelity.
     3. By combining the creep constitutive model with one-dimensional Terzaghi consolidation theory, the non-linear creep consolidation sedimentation model of the littoral soft clay has been developed, and proved its rationality by some engineering project. Furthermore, a pre-estimation on long-term creep settlement of the soft clay in Tianjin Binhai New Aera is presented by using the sedimentation model. At the same time, the one-dimensional large-strain and non-linear creep consolidation sedimentation model which be adapted to the saturated soft clay has been deduced from the large-strain consolidation theory and the non-linear creep model. It has been shown that the discrepancy of the creep settlement between large-strain consolidation theory and small-strain one is more evidently with the increase of time.
     4. The finite elements analysis system of the non-linear creep constitutive model of the littoral soft clay has been founded through inputting the UMAT subroutine which is developed from the creep model into the finite elements soflware ABAQUS. The indoor triaxial creep test is simulated in this finite elements analysis system, and simulant results agree well with those of the indoor test, which well verifying the high reliability and computational capability of the finite elements analysis system. It is feasible that a series of problem of consolidation settlements and stability of the diversified structures in the littoral area can be settled by using the finite elements analysis system.
     5. Finally, a three-dimension finite elements model of the wharf structure with box-type suction foundation by applying the finite elements analysis system of the non-linear creep constitutive model of the littoral soft clay has been established for the analysis of the horizontal carrying capacity and the long-term stability of the wharf structure.
引文
[1]叶书麟,宰金璋,史佩栋等译.软粘土工程学[M].北京:中国铁道出社,1991.
    [2]徐杨青,郭见扬.海洋土特殊工程性质的成因分析,岩土力学,Vol.l0,No.4, 1989.
    [3]钱征,杨国强,曾锡庭.海洋软土的流变性质及其长期强度[J].天津软土地基,天津科技出版社,1986.5-11.
    [4]刘锡清.中国边缘海的沉积分区[J].海洋地质与第四纪地质,1996,16(3).
    [5]侯钊.天津软土地基[M].天津:天津科学技术出版社,1987.
    [6]孙钧.岩土材料流变及其工程应用[M].北京:中国建筑工业出版社,1999, 1-100.
    [7]范广勤.岩土工程流变力学[M].北京:煤炭工业出版社,1992,1-52.
    [8]刘雄,岩石流变学概论[M].北京:地质出版社,1994,2-35.
    [9]陈宗基.Structure Mechanicalsof Clay [J].中国科学,1959,8(1): 41-45.
    [10] (苏) C C Vyalov著,杜余培译.土力学的流变原理[M].北京:科学技术出版社, 1986.
    [11] Geuze E C W A, Tan Tjone-Kie.The mechanical behavior of clays[A].Proc.2th Int.Conf.on Rheology[C],1953,London,Britain,pp:247-259.
    [12] Hefeli R.Creep Problems in Soils[J].Snow and Ice.In:Prco.3nd.ICS MFE. Mexico,1953(13):122-126.
    [13]谢宁,姚海明.土流变研究综述[J].云南工业大学学报,1999,15(1):52-56.
    [14]谭罗荣.土的微观结构研究概况和发展[J].岩土力学,1983,4(1):73-86.
    [15]施斌.粘性微观结构研究回顾与展望[J].下程地质学报,1996,(1):37-44.
    [16] Moore C A,Donaldson C F.Quantifying soil microstructure using fractals[J].Geotechnique,1995,45(1):105-116.
    [17]詹美礼,钱家欢,陈绪禄.软土流变特性试验及流变模型[J].岩土工程报,1993,15(3):54-62.
    [18]余志顽,赵维炳,顾吉.粘弹-粘塑性软基排水预压的三维有限元分析[J].河海大学学报,1995,23(5):1-7.
    [19]沈珠江.土石料的流变模型岌其应用[J].水利水运科学研究,1994(4):335- 342.
    [20]陈远洪,洪宝宁,龚道勇等.一个考虑土体流变的修正剑桥粘弹塑性模型[J].河海大学学报(自然科学版),2002,30(5):44-47.
    [21]高国瑞,黄土显微结构分类与湿陷性[J].中国科学(B辑).1980(12):1203- 1209.
    [22]高国瑞,黄土湿陷变形的结构理论[J].岩土工程学报,1990,12(4):1-10.
    [23]施斌,王宝军,宁文务.各向异性粘性土蠕变的微观力学模型[J].岩土工程学报,19(3):7-13.
    [24]马巍,吴紫汪,盛馄.冻土的蠕变及蠕变强度[J].冰川冻土,1994,16(2):113- 118.
    [25]王常明,肖树芳,夏玉斌.海积软土固结变形的结构性模型研究[J].长春科技大学学报,2001,31(4):363-367.
    [26]何开胜,沈珠江.结构性土的微观变形何机理研究[J].河海大学学报(自然科学版),2003,31(2):161-165.
    [27] Taylor,D.W.and Merchant,W.,A Theory of Clay Consolidation Accounting for Secondary Compression[J].J.of Mathematics a Physics, 1940,Vol.19.
    [28] Schilfman R.L.,Chen A.,Jordan J.C.An analysis of consolidation theories [J].Journal of Soil Mechanics and Foundarons,ASCE, 1969,285-311.
    [29] Murayalma,S.,Sekiguchi,H & Ueda,T.,A study of the stress-strain-time behavior of saturated clays based on a theory of nonlinear viscoelasticity [J].Soils and Foundations,1974,14(2),19-33.
    [30] Wu,T.H.,Resendiz,D,Neukirchner,R.J.,The analysis of consolidation by rate process theory[J].ASCE,92(SM6),1966,229-248.
    [31] Bardon,L..Consolidation of Clay with Non-linear Viscosity[J].J.Geotechnique, 1965,Vol.15,No.4.
    [32] Gibson R.E,England G.L.,Hussey M.J.L.The theory of one-dimensional consolidation of saturated clays:II.Finite non-linear consolidation of thin homogeneous layers[J].Geotechnique,1967,17(2),261-273.
    [33] Gibson R.E.,Schifhman R.L.,Cargill K.W.The theory of one-dimensional consolidation of saturated clays:II.Finite nonlinear consolidation of thick homogeneous layers[J].Canadian Geotechnical Journal,1981,18(2),280-293.
    [34]徐志英.考虑与骨架蠕变的三向固结理论[J].水利学报,1964(4).
    [35]赵维炳.广义Voigt模型模拟的饱和土体一维固结理论及其应用[J].岩土工程学报,1989.
    [36]谢康和.双层地墓一维固结理论与应用[J].岩土工程学报,1994,16(5):24- 35.
    [37]詹美礼,赵维炳,顾吉.软粘土粘弹-粘塑性模型及参数确定[A].中国青年学者岩土工程力学及其应用讨论会论文集[C].北京:科学出版社,1994,104- 109.
    [38]赵维炳,施建勇.软土固结与流变[M].南京:河海大学出版社,1996.
    [39] Xie,K.H.,Li,B.H.& Li.Q.L.,A nonlinear theory of consolidation under time-dependent loading[C].1996,Proc.2th ICSSE.Nanjing.
    [40] Xie K H.,Guo S,Li B H,Zeng G X.A theory of consolidation for soils exhibiting rheological characteristics under cyclic loading[C].Proc.Of the 9th Int.Conf.On Computer Methods and Advances in Geo-mechanics.1997,2, 1053-1058.Wuhan.
    [41] Xie,K.H.& Leo,C.J.,An investigation into the nonlinear consolidation of layered soft soils[C].Research Report CEII,School of Civic Engineering and Envrionment,1999,UWS,Nepean,Australia.
    [42] Perzyna P.Fundamental problems in viscop-lasticity[J].Advances in Applied Mechanics,1997,9:243-377.
    [43] Zienkiewicz O C,Cormeau IC.Visco-plasticity and creep in elastic solids-an unified numerical solution approach[J].Int.J.for Num.Methodsin Eng.,1974 (8):821-845.
    [44] Sekiguchi,H.& Toriihara.M.,Theory of one-dimensional consolidation of clays with consideration of their rheological properties[J].Soils and Foundations, 1976,16(1),27-44.
    [45] Sekiguchi H.Rheological characteristics of clays[C]. Proc.9th ICSMFE,1977, 289 -292.
    [46] Adachi T,Fusao Oka.Constitutive equations for normally consolidation clay based on elastic -viscoplastic[J].Soils and Found Tokyo,Japan,1982,22(4):47 -70.
    [47] Adachi T,et al.Mathematical structure of an overstress elastic-visco-plastic model for clay[J].Soils and Found.,Tokyo,Japan,1987,27(3):31-42.
    [48] Niemunis A.& Krieg S.Viscous behaviour of soil under oedometric conditions [J].Canadian Geotechnical Journal,1996,33.159-168.
    [49]廖红建,俞茂宏.粘土的弹粘塑性本构方程及其应用[J].岩土工程学报,1998, 20(2):41-44.
    [50] Morsy M M,Chan D H,Morgenstern N R.An efectives tress model for creep of clay[J].Canadian Geotechnical Journal,1995,32:819-834.
    [51]王勇,殷宗泽.一个用于面板坝流变分析的堆石流变模型[J].岩土力学,2000. 21(3):227-230.
    [52] Prevost J H.Nonlinear transient phenomena in saturated porous media[J]. Computer Methods in Appl.Mech.Eng.1982,20:3-18.
    [53] Bazant Z P,Krizek P J.Endochronic constitutive law for liquefaction of sand[C]. Proc.ASCE,1976,102 (SM2 ):33 1-344.
    [54] Fusao Oka,S,Leroueil and F.Tauenas.A Constitutive Model for Natural Soft Clay with Softening[J].Val.29,No.3,54-66,Sept.1989,Japanese Society of Soil Mechnics and Foundation Engineering.
    [55]王建国.土的剪胀性分析及内时本构模型第六届土力学及荃础工程学会论文集[C].上海:同济大学出版社,1991:199-202.
    [56] Buisman,A.S.K..Results of long duration settlement tests[C].Proc.of the 1st ICSMFE,1936,1,103-107.
    [57] Taylor D W.Fundamentals of Soil Mechanics[M].New York:Wiley and Sons, 1948.
    [58] Singh A,Mitchell J K.General stress-strain-time function for soils[J].Soil Mech.Found.Div.,ASCE,1968,94(l):21-46.
    [59] Mesri G,Rokhsar A.Theory of consolidation for clays[J].ASCE Journal of Geotechnical Engineering Division,1974,100(GT8):889-904.
    [60] Borja R.I,Kavazanjian E..A constitutive model for the stress-strain-time behaviour of wet clays[J].Geotechnlque,1985,35(3):283-298.
    [61]李军世,林咏梅.上海淤泥质粉质粘土的Singh-Mitchell蠕变模型[J].岩土力学,2000.21(4):363-366.
    [62] Kondner R L.Hyperbolic stress-strain-ime function for soils[J].Soil Mech. Eound.Div.,ASCE,1963,89(1):115-143.
    [63] Keedwell J K.Rheology and Soil Mechanics[J].Elsevier Applied Science Pubishingers,1984,91-92.
    [64] Vyalov S S.Rheologieal Fundamentals of Soil Menehanics[J].Elsevier APPlied Seience Publishingers,1986,231-232.
    [65] Kutter,B.L.& Sathialingam,N..Elastic-visco-plastic modeling of the rate- dependent behavior of cla ys[J].J.of Geo-technique,1992,42(3),427-441.
    [66] Mesri G.Eehres-Cordero E.Shields D R,Castro A.Shear stress-strain-ime behaviour of clays[J].Geoechnique,1981,31(4):537-552.
    [67]谢宁.软土非线性流变的理论、试验和应用[D].博士学位论文.上海:同济大学,1993.
    [68]郑榕明,陆浩亮,孙钧.软土工程中的非线性流变分析[J].岩土工程学报, 1996,18(5):1-13.
    [69] Dafalias Y F.Bounding surface elastoplasticity viscopla-sticity for particulate cohesive media[A].Vermeer P A,Luger H J.Proc.IUTAM Symp.on Deformation and Failure of Granular Materails[C].Balkema:Publishers Rotterdam,1982.97-107.
    [70] Borja R I,Kavazanjian,Jr,E.A constitutive model for the stress-strain-time behaviour of 'wet' clays[J].Geotechnique,London,England,1985,35(3): 283- 298.
    [71] Borja R I,Lee S R.Cam-clay plasticity,part I: Implicit integration of elasto-plastic constitutive relations.Compute[J].Methods Appl.Mech.Engng, 1990,78(1):49-72.
    [72] Borja R I.Generalized creep and stress relaxation model for clays[J].Geotech. Engng.,ASCE,1992,118(11):1765-1786.
    [73] Yin J.H.& Graham J.Equivalent times and one dimensional elastic viscoplastic modeling of time-dependent stress-strain behaviour of clays[J].Canadian Geotechnical Journal,1994,31,42-52.
    [74] Mosleh A Al-Shamrani,Stein Sture.A time-dependent bounding surface model for anisotropic cohesive soils[J].Soils and Foundations,1998,38(1):61-76.
    [75] Mesri G,Retires-Cordero E,Shields D R.et al.Shear stress-strain-time behaviour of clays[J].Geotechnique,1981,31(4):537-552.
    [76]陈晓平,朱鸿鹊,张芳枝等.软土变形时效特性的试验研究[J].岩石力学与工程学报,2005,24(12):2142-2148.
    [77]李作勤.粘土固结变形的时间性[J].岩土工程学报,1992,14(6):60-67.
    [78]谢宁.土的室内流变试验探讨[[J].岩土工程师,1999,11(1):5-9.
    [79]谢宁.土流变试验设计及有关问题研究[J].云南工学院学报,1994,10(4):76- 82
    [80]蓝柳和.成层软粘土地基非线性流变固结性状研究[D].浙江大学,2002.
    [81]谢兰捷.饱和软粘土多维粘弹性固结理论研究[D].同济大学,2000.
    [82] Duncan J.M.,Rajot J P.,Perrone V.J.Coupled analysis of consolidation and secondary compression[C].Proc.of the 2nd Int.Conf.on Soft Engineering,1, 1996,3-27,Nanjing.
    [83] Garlanger J.E..The consolidation of soils exhibiting creep under constant effective stress[J].Gentechnigue,1972,22(1):71-78.
    [84] Berry P L.& Poskitt T.J.The consolidation of peat[J].Geotechnigue,1972, 22(1):27-52.
    [85] Sekiguchi H.& Toriihara M. Theory of one-dimensional consolidation of clays with consideration of their rheological properties[J].Soils and Foundations, 1976,16(1):27-44.
    [86] Mesri G.& Choi Y.K..Settlement analysis of embankments on soft clays[J]. Journal of Geotechnical Engineering,ASCE,1985,11(4):441-464.
    [87] Mesri G.& Choi Y K..The uniqueness of the end-of-primary void ratio- effective stress relationship[J].Proc.of the 11th ICSMFE,1985,587-593.
    [88] Murayama,S.& Shibata,T.,Flow and stress relaxation of clays(International Union of Theoretical and Applied Mechanics) [C].Symp.Rheol.Soil.Mech., Grenoble p.99,1964.
    [89] Zienkiewicz O C,Cormeau IC.Visco-plasticity and creep in elastic solids-a unified numerical solution approach[J].Int.J.for Num.Methods in Eng.,1974 (8):821-845.
    [90]黄文熙.土的工程性质[M].北京:水利电力出版社,1983.
    [91]孙更生,郑大同.软土地基与地下工程[M].北京:中国建筑工业出版社, 1986.
    [92]龚晓南,熊传祥,项可祥,候永峰.粘土结构性对力学性质的影响及形成原因分析[J].水利学报,2000,10:43-47.
    [93]胡瑞林,王思敬,李向全.21世纪工程地质学生长点:土体微结构力学[J].水文地质和工程地质,1999,(4):5-8.
    [94]王常明.海积软土微观结构定量化及固结模型研究[D].长春科技大学博士学位论文,1999.
    [95]房后国.海积软土固结过程中结合水的行为[D].古林大学硕士学位论文, 2002.
    [96]李生林,薄遵昭,秦素娟等编译.土中结合水译文集[D].地质出版社,1982.
    [97]吴风彩.粘性土的吸附结合水测量和渗流的某些特点[J].岩土工程学报, 1984,Vo1.6,No.3.
    [98]高国瑞.近代土质学[M].东南大学出版社,1990.
    [99]耶格JC,库克NG.W著.中国科学院工程力学研究所译.岩石力学基础[M].科学出版社,1981.
    [100]徐杨青,郭见扬.海洋土特殊工程性质的成因分析[J].岩土力学,Vol.l0,No. 4,1989.
    [101]魏汝龙.软粘土的工程性状[J].土木工程学报,1986,20(4):98-110.
    [102]袁建新.土的弹粘塑性关系[J].岩土工程学报,1982,14(4).
    [103]殷建华,Jack I.Clark.土与时间相关的一维应力-应变性状、粘弹塑性模型和固结分析[J].岩土力学,1994,15(3):65-80.
    [104]钱家欢,殷宗泽.土工原理与计算(第二版) [M].北京:中国水利水电出版社, 1996.
    [105]张超杰.结构性软土一维弹粘塑性固结性状研究[D].博士学位论文,浙江大学,2003.
    [106]郑辉.软粘土地基大应变非线性流变固结理论研究[D].博士学位论文,浙江大学,2004.
    [107]龚晓南.高等土力学[M].杭州:浙江大学出版社,1996.
    [108]朱鸿鹄,陈晓平,程小俊等.考虑排水条件的软土蠕变特性及模型研究[J].岩土力学,2006,27(5):694-698.
    [109]王深,刘浩吾,许强.三峡泄滩滑坡滑动带土的改进Mesri蠕变模型[J].西南交通大学学报,2004,39(1):15-19.
    [110]刘雄.岩石流变学概论[M].北京:地质出版社,1994.
    [111]孙钧.粘土流变力学特性及其工程应用研究[M].同济大学出版社,1991.
    [112]杨挺青,粘弹性力学[M].华中理工大学出版社,1990.
    [113][日]村山朔郎.关于粘土的流变特性(石朝辉译)[M].南京水利科学研究所.
    [114]沈珠江.结构性粘土的非线性损伤力学模型[J].水利水运科学研究,1993(4).
    [115]曾国熙,正常固结粘土不排水剪切的归一化形状[A],见曾国熙教授科技论文选集[C],北京:中国建筑工业出版社,1997,52-62.
    [116]于新豹,刘松玉,缪林昌.连云港软土蠕变特性及其工程应用[J].岩土力学, 2003,24(6):1001-1006.
    [117]赵锡宏,姜洪伟,袁聚云等.上海软土各向异性弹塑性模型[J].岩土力学, 2003,24(3):322-330.
    [118]李建中,彭芳乐,龙冈文夫.粘土的粘塑性特性试验与三要素本构模型[J].岩土力学,2005,26(6):915-919.
    [119]王贵君,孙文若.硅藻岩蠕变特性研究[J].岩土工程学报,1996,18(6):55-60.
    [120]刘绘新,张鹏,盖峰.四川地区盐岩蠕变规律研究[J].岩石力学与工程学报, 2002,21(9):1290-1294.
    [121]朱定华,陈国兴.南京红层软岩流变特性试验研究[J].南京工业大学学报, 2002,24(9):77-79.
    [122]陈铁林,陈生水,周成,沈珠江.粘土的流变特性分析[J].岩土工程学报,2001, 23(3),279-283.
    [123]陈晓平,黄国怡,梁志松.珠江三角洲软土特性研究[J].岩石力学与工程学报, 2003,2(1):137-141.
    [124]韦立德,徐卫亚,朱珍德,邵建富.岩石粘弹塑性模型的研究[J].岩土力学, 2002,23(5),583-586.
    [125]朱向荣.软土预压流变特性研究[D].浙江大学博士学位论文,1993.
    [126]金丰年等.关于粘弹性模型的讨论[J].岩石力学与工程学报,1995(10).
    [127]蔡新等.土石坝流变非线性特性分析[J].河海大学学报,1999(11).
    [128]廖生键等.粘性土的弹粘塑性本构方程及其应用[J].岩土工程学报,1998(3).
    [129]李青麒.软岩蠕变参数的曲线拟和计算方法[J].岩石力学与工程学报[J]. 1998,17(5):559-564.
    [130]夏才初,孙钧.蠕变试验中流变模型辨识及参数确定[J].同济大学学报,1996, 24(5):498-50.
    [131]陈国荣,姜弘道,池永斌.三维粘弹性参数反分析[J].河海大学学报,1996,24 (6):25-28.
    [132]陈沉江,潘长良,曹平等.基于人工神经网络的岩土流变本构模型辨识[J].中国有色金属学报,2002,12(5):1027-1034.
    [133]冯康.非线性模型中参数的确定,数值计算方法[M].国防工业出版社,1978.
    [134]赵维炳.软粘土的一种粘弹性本构模型及参数测定[C].中国青年学者岩土工程力学与应用讨论会论文集,1994.
    [135]Terzaghi,K.,Theoretical soil mechanics[M].NewYork,1923.
    [136]门福录.粘土固结与次时间效应单维问题的近似解[J].水利学报,1963,(1): 44-54.
    [137]陈宗基.固结及次时间效应的单向问题[J].土木工程学报,1958,5(1):1-9.
    [138]陈宗基.粘土层沉陷(由于固结和次时间效应)的二维问题[J].力学学报, 1958,2(1):1-9.
    [139]陈晓平.软土非线性弹粘性固结分析[C].第九届十力学及岩土工程学术会议论文集.清华人学出版社,北京,2003,351-354.
    [140]钱家欢.流变理论在土力学方面的应用[C].第四届全国土力学及基础工程学术会议论文选集.中国建筑工业出版社,1986.
    [141]谢康和.双层地基一维固结理论及应用[J].岩土工程学报,1994,16(5):24- 35.
    [142]谢康和,郑辉,李冰河,刘兴旺.变荷载下成层地基一维非线性固结分析[J].浙江大学学报(工学版),2003,37(4):426-431.
    [143]许玉景,杨敏,黄福才.天津市滨海地区平原水库软土堤基沉降分析[J].天津:海河水利,2004,No.3:53-54.
    [144]殷宗泽.土体固结与沉降[M].北京:中国电力出版社,1998.
    [145]洪振舜.吹填土的一维大变形固结计算模型[J].河海人学学报,1987,15(6): 27-36.
    [146]洪振舜.大变形固结计算模型及定解条件的探讨[J].河海大学学报,1987, 16(5):103-111.
    [147]李冰河,谢康和,应宏伟,曾国熙.软粘土非线性一维大应变固结分析[J].岩土工程学,2000,22(3):368-370.
    [148]李冰河,谢康和,应宏伟,曾国熙.考虑土体自重的一维大应变固结分析[J].岩土工程学,2000,33(3):54-59.
    [149]朱吴,袁建新.拖带坐标下的固结理论及其变分原理[J].岩土力学,1990, 11(1):11-17.
    [150]Gibson R.E.,England G.L.,Hussey M.J.L..The theory of one-dimensional consolidation of saturated clays: I.Finite non-linear consolidation of thin homogeneous layers[J].Geotechnique,1967,17(2):261-273.
    [151]Gibson R.E.,Schifhman R.L.,Cargill K.W..The theory of one-dimensional consolidation of saturated clays:II.Finite nonlinear consolidation of thick homogeneous layers[J].Canadian Geotechnical Journal,1981,18(2):280-293.
    [152]Mesri G.& Tavenas F..Discussion:Permeability and consolidation of normally consolidated soils[J].Journal of Geotechnical Engineering,ASCE,109(6):873- 878.
    [153]Tavenas F.,Leblond P.,Jean P.,Leroueil S..The permeability of natural clays Pant I:Methods of laboratory measurement[J].Canadian Geotechnical Journal, 1983,20.
    [154]Tavenas F.,Jean P.,Leblond P.,Leroueil S..The permeability of natural soft clays.Part II:Permeability characteristics[J].Canadian Geotechnical Journal, 1983,20,645-660.
    [155]Butterfield R..A natural compression law for soils[J].Geotechnique,1980, 469-480.
    [156]Tan T.S.& Scott R.F.. Finite strain consolidation-A study of convection[J]. Soils and Foundations,1988,28(3):64-74.
    [157]Gibson R.E.,Gobert A.,Schiffman R.L..On Cryer's problem with large displacements and variable permeability[J].Geotechnigue,1990,40(4):627- 631.
    [158]Mikasa M.,Takada N.,Oshima A.,Kiyama M..Nonlinear consolidation theory for nonhomogeneous clay layers and its application[J].Soils uhd Focrrcdutioras,1998,38(4),205-212.
    [159]Vermeer P.A.& Neher H.P..A soft soil model that accounts for creep[C]. Beyond 2000 in Computational Geotechnics,Balkema,Rotterdam, 1999.
    [160]Baars S.V..Soft soil creep modeling of large settlements[J].Faculty of Civil Engineering,Univ.Tech.Delft,Netherlands,2001.
    [161]Den Haan E.J..Vertical compression of soils[D].Thesis, Delft University.
    [162]谢康和,李冰河.半解析法在软粘土一维大应变固结问题中的应用[J].中国学术期刊文摘,1999,5(2),254-255.
    [163]王磊.半解析法是经济有效的计算方法[J].力学与实践,1984,6(5),31-33.
    [164]谢康和,郑辉,Leo C.J..软粘土一维非线性大应变固结解析理论[J].岩土工程学报,2002,24(6):680-684.
    [165]谢新宇,朱向荣,谢康和,潘秋元.饱和土体一维大变形理论新进展[J].岩土工程学报,1997,19(4),30-38.
    [166]谢新宇.考虑变形耦合的一维大变形固结分析[J].浙江大学学报(工学版),2002,36(5):544-548.
    [167]谢康和,郑辉,Leo C.J..变荷载下饱和软粘土一维大应变固结解析理论[J].水利学报,2003,10:6-13.
    [168]曾攀.有限元分析及其应用[M].北京:清华大学出版社,2004.
    [169]关治,陈景良.数值计算方法[M].北京:清华大学出版社,1990.
    [170]朱伯芳.有限单元法原理与应用[M].北京:中国水利水电出版社,1998.
    [171]庄茁(译),TedB,WingK(著).连续体和结构的非线性有限元[M].北京:清华大学出版社,2002.
    [172]ABAQUS/Standard Use’s Manual[M].U.S.A,Hibbitt,Karlsson & Sorensen, Ine,2002.
    [173]庄茁,张帆,琴松等.ABAQUS非线性有限元分析与实例[M].北京:科学出版社,2005.
    [174]石亦平,周玉蓉.ABAQUS有限元分析实例详解[M].北京:机械工业出版社, 2005.
    [175]庄茁.ABAQUS有限元软件6.4版入门指南[M].北京:清华大学出版社, 2004.
    [176]王励成,邵敏.有限单元法基本原理和数值方法(第二版)[M].北京:清华大学出版社,1997.
    [177]殷宗泽.土坝非线性有限元计算程序.姜弘道.水工结构工程与岩土工程的现代计算方法及程序[M].南京:河海大学出版社,1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700