用户名: 密码: 验证码:
基于目标使用期和整体可靠性的既有钢筋混凝土结构鉴定与加固研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前既有建筑物鉴定标准和加固设计规范存在着以下不足:无法满足业主对既有建筑物的实际使用期限需求;没有一个量化的指标评价既有建筑物;鉴定规程和加固设计规范不相协调;加固设计的方法论多年来没有发展;没有从目标可靠度的方面进行加固设计。针对这些问题,本文在既有结构的构件可靠度计算、构件可靠性鉴定、结构整体可靠性鉴定、加固设计方法论以及基于可靠度的加固设计五个方面进行了研究。
     (1)在构件可靠度计算的研究中,采用了现行规范所使用的平稳二项随机荷载模型,将既有结构在不同目标使用期的荷载与现行规范进行了分析对比,得出了不同目标使用期的荷载统计特征值和活荷载标准值的修正系数。同时研究了既有结构风荷载及地震作用特点,根据其特点和超越概率的方法,推导出了广州地区既有结构基本风压折算系数、水平地震影响系数最大值等重要参数,从而可以根据目标使用期进行荷载和作用参数的调整。
     (2)在构件可靠性鉴定研究中,根据既有结构抗力和荷载的特点,建立了既有框架结构构件的基于分项系数法的可靠性评估表达式。应用现行规范中计算目标可靠度的校准法和在目标使用期下荷载和抗力的最优分项系数的计算公式,得到了不同目标使用期的荷载和抗力分项系数,实现了结构构件按不同目标使用期的可靠度鉴定评估。
     (3)在整体可靠性鉴定的研究中,先使用隶属度表示可靠性鉴定等级评价集,克服了规范方法中阶梯评价跳跃过大的缺点;然后引入层次分析法分析体系中构件的权重,并将构件的各种相关因素放入准则层,扩大了使用范围,避免了一般层次分析法简单分层的缺点;最后通过构件的鉴定等级评价集和权重求得结构整体可靠性鉴定评价集,从而进行结构体系的可靠性鉴定评价,并据此指导建筑物的下一步维护和加固设计工作。通过实例计算并与现行规范的鉴定结果进行比较,证明了该方法的有效性,其最大的优势在于电算化的简便性,可以进一步编程固化,有利于提高效率。
     (4)在加固设计方法论的研究中,将整体性理论引入建筑物可靠性加固设计中,提出了可靠性加固改造设计的整体性方法论。综合考虑结构的安全性、适用性、耐久性之间的要求和相互联系,从个体到局部到整体再到全局去把握设计方法,给建筑物加固改造研究开拓了一个全新的思路。同时根据基于可靠度的加固设计的特点,提出了建筑物加固改造技术的综合集成办法,编制了运用整体性理论进行建筑物可靠性加固设计的流程,建立了连接可靠性鉴定与可靠性加固设计的有效机制。
     (5)在基于可靠度加固设计方面,进行了三个方面的研究。第一部分是根据超越概率的概念,假设初始抗力的对数正态分布,推导了逆可靠度的计算公式。然而由于目前逆可靠度计算方法还不能应用于工程实际,因此在整体论的框架下,提出了采用正算法不断迭代逼近目标可靠度的加固设计方法。第二部分是在正算法的框架下,在规范的基础上编制了多功能的构件加固设计计算软件包,该软件包完善了输入输出的可视化功能,实现了将计算书中的公式用word格式输出的功能,大大提高了工程师的工作效率,为下一步计算加固后构件可靠度的电算化奠定了坚实的基础。最后一部分是对三种加固后的梁柱构件进行可靠度分析,并与拟建结构构件可靠度计算进行对比,提出了因承载力不足和因功能改造而加固后的构件可靠度的计算方法。通过编程计算,得到了在既定目标使用期的情况下,轴心受压柱加固后可靠度的影响因素按重要性依次为:既有结构的混凝土强度变异系数、荷载提升幅度、活荷载的卸载情况,这对加固设计具有直接的指导意义。
     与目前工程实际中进行阶梯式分级鉴定和基于承载力的加固设计不同,本文以目标使用期为基础,以可靠度为接口,对既有建筑物鉴定和加固设计进行了系统的研究,并形成一种将鉴定和加固设计对接的方法,为基于可靠度的加固设计研究提供了新的思路。本文附录通过实例,将本文方法与常规方法进行了经济性对比,在既定的目标使用期和目标可靠度下,本文提出的方法可以大幅节省工程造价,具有显著的经济效果。
Current appraisal standard and reinforcement design specification for existing building are inadequate for engineering practice in the following aspects. Firstly, the service life requirement from owners is hard to meet for existing buildings. Secondly, there are no any quantified indices to appraise existing structure. Thirdly, the appraisal standard is inconsistent with reinforcement design specification. In addition, with little development, methodology of reinforcement design does not introduce target reliability. To address these problems, this paper deals with the reliability analysis and appraisal of existing structure member, overall reliability appraisal, reinforcement design methodology as well as reinforcement design based on structure member reliability to achieve the reasonable and economical result. The main study is as follows.
     1. In the reliability analysis of structural member, stationary binomial random load model of current specification is adopted and existing structure loads corresponding to different target service life are compared with counterparts of specification. Therefore, load statistical characteristics and correction factor of live load normal value are obtained based on various target service life. In addition, wind load and earthquake action characteristics are studied. According to the load action feature and super probability theory, important parameter of existing building in Guangzhou region such as basic wind pressure conversion factor and maximum value of horizontal earthquake influence coefficients are derived. As a result, the load and action computation in reliability analysis can be adjusted on the basis of target service life.
     2. In the research on reliability appraisal of structure member, reliability appraisal expression by subitem coefficient method is established for existing frame structure based on the characteristics of resistance and load. Through calibration method for target reliability and optimized load and computation equation for resistance subitem coefficients in current specification, load and resistance subitem coefficients are derived for different target service life. Therefore, reliability appraisal of structure member can be made corresponding to different target service life.
     3. In the overall reliability appraisal of structure, membership grade is introduced to the reliability appraisement grade set so as to avoid the large gap between grades. And improved analytic hierarchy process is applied to determine the weight of each system member. Related factors are put into the principle layer. So the appraisal scope is extended in contrast to the simple classification of general analytic hierarchy. Finally, the overall reliability appraisement set is determined by appraisement grade set and weight of structure member. In this way, reliability appraisal can be conducted to guide further maintenance and reinforcement design. This approach is compared with current specification and proved effective in engineering examples. Its obvious advantage lies in the convenience and high efficiency of electronic computation by program compilation.
     4. In the study on reinforcement design methodology, integrity theory is applied to reliability reinforcement design of building and integrity methodology of reliability reinforcement design is established. Combined the safety, applicability with durability, structure reinforcement design is conducted from single member to integral structure and even the whole environment, which is useful for building reinforcement research. Taking account of the characteristics of reliability-based reinforcement design, a comprehensive integration method for building reinforcement is proposed and a flow chart is made to illustrate reliability reinforcement design procedure based on integrity theory. Consequently, an effective mechanism is built to connect reliability appraisal and reliability reinforcement design.
     5. Reliability-based reinforcement design research is carried out in three aspects. Firstly, from the concept of super probability, reverse-reliability computation equation in the reinforcement design is derived from lognormal distribution of initial resistance. However, reverse-reliability is still not put into practice, so normal algorithm reinforcement design method is also presented by iteration and approach target reliability. Secondly, with the frame of normal algorithm, member reinforcement design software package is developed based on specification. Moreover, this software package includes input and output visualization function and it enables equation in calculation account to output in word format which enhances the efficiency of engineers and makes foundation for computerizing the reliability analysis of reinforced member. Lastly, reliability of reinforced structure members is analyzed and compared with member reliability of new-built structure. As a result, reliability computation method for reinforced member is proposed due to inadequate bearing capacity and function alteration respectively. A program is developed for reliability analysis and the result shows that for given target service life, the reliability influence factors of reinforced axially compressed column are concrete strength variation coefficient of existing structure, the load increase factor as well as the ratio of construction load to design load by the order of importance. This result provides useful and practical information for reinforcement design. Different from leap grading in structure appraisement and bearing capacity-based reinforcement design in the present engineering practice, this paper deals with existing building appraisement and reinforced design based on target service life and reliability. And a bridge is established between appraisal and reinforcement design, contributing to reliability-based reinforcement design research. Furthermore, the engineering examples are given in the attachment to compare the proposed method in this paper with the current method in the terms of economy. It turns out that this method can reduce the engineering cost significantly for the given target service life and target reliability, which is helpful and meaningful for guiding reinforcement engineering practice.
引文
[1] JCSS-OSTL/DIA/Vrov-10-11-2000, PROBABILISTIC MODEL CODE[S]. 12th draft
    [2] ISO/DIS2394, Gneral Principles on reliabilityhr structures[S]. 1998
    [3] EN 1990, Basis of structural design[S]. 2002
    [4] ANSI A58.1-82, Minimum Design Loads for Buildings and Other Structures[S]. 01-Jan-1982
    [5] Ellingwood.B. Galambos.T.V., MacGregor. J.G et al. Development of a probability based load criterion for American National Standard A58[R]. Publication 577, Natioonal Bureau of Standard, Department of Commerce, Washington.D.C, 1980
    [6] ACI 318-95, Building Code Requirements for Reinforced Concrete[S]. 1995
    [7] EN 1990, Eurocode, Basis of structural design[S]. EN 1991, Eurocode 1, Actions on structures[S]. EN 1992, Eurocode 2, Design of concrete structures[S]. EN 1993, Eurocode 3, Design of steel structures[S]. EN 1994, Eurocode 4, Design of composite steel and concrete structures[S]. EN 1995, Eurocode 5, Design of timber structures[S]. EN 1996, Eurocode 6, Design of masonry structures[S]. EN 1997, Eurocode 7, Geotechnical design[S]. EN 1998, Eurocode 8, Design of structures for earthquake resistance[S]. EN 1999: Eurocode 9, Design of aluminium structures[S]. 1998
    [8] Basis of structural Design for Buildings and Public Works[S]. Ministry of Land, Infrastructure and Transport, 2002
    [9]张富春译.已有建筑物可靠性鉴定方法和检验手册[G].冶金工业部建筑研究总院技术情报室资料.北京,1982
    [10] Bresler.B, Nanson.J.M, Comartin.C.D. Practical Evaluation of Structural Reliability[S]. 1980
    [11] Culver, Charles G, Natural Hazards Evaluation of Existing Buildings[S]. National Bureau of Standards, Building Science Series, 1975
    [12] Freudental.A.M. Safety of structures[M], 1947
    [13] Freudental.A.M, Garrelts.J.M, Sinozuka.M. The analysis of structural safety[M], 1966
    [14] Hart, Gary C., Damage evaluation using reliability indices[A]. Proceedings of the Symposium on Probabilistic Methods in Structural Engineering[C]. St Louis, MI,USA ,1981
    [15] FitzSimons, Neal. Techniques for investigating structural reliability[A]. Proceedings of the Symposium on Probabilistic Methods in Structural Engineering[C]. St Louis, MI, USA ,1981
    [16] Meyer, C., Arzoumanidis S.G., Shinozuka M. Earthquake reliability of reinforced concrete buildings[A]. Proceedings of the Symposium on Probabilistic Methods in Structural Engineering[C]. St Louis, MI, USA ,1981
    [17]魏琏,谢君斐.中国工程抗震研究四十年(1949~1989) [M].北京:地震出版社,1989:21-23
    [18]陈寿梁,魏琏.抗震防灾对策[M].郑州:河南科学技术出版社,1988:17
    [19] TJ23277.工业与民用建筑抗震鉴定标准(试行) [S].北京:中国建筑工业出版社,1975
    [20]陈时军.地震安全性评价的重要意义[EB]. http://www.eqsd.gov.cn/zj/cheng.htm(山东防灾减灾信息网专家论坛)
    [21]工业与民用建筑抗震加固技术措施编写组.工业与民用建筑抗震加固技术措施[M].北京:地震出版社,1986
    [22]冶金建筑抗震加固技术措施[S].北京:冶金工业出版社,1979
    [23] GB50023295,建筑抗震鉴定标准[S].北京:中国建筑工业出版社,1995
    [24] JGJ116298,建筑抗震加固技术规程[S].北京:中国建筑工业出版社,1995
    [25]袁海军.钢筋混凝土结构检测鉴定中的若干问题[J].建筑科学,2001,17(6):33-35
    [26]张熙光,王骏孙,刘惠珊.建筑抗震鉴定加固手册[M].北京:中国建筑工业出版社,2001:99-104
    [27]丁洁民.结构加固技术应用浅析[J].理财世界,2009,(2):51-53
    [28]四川大学,四川省建科院,请华大学.单层钢筋混凝土结构厂房破损评估专家系统的研究[R].四川省科技进步二等奖,1989
    [29]秦权.评定现有建筑物可靠性的专家系统[A].工程结构可靠性—中国土木工程学会桥梁及结构工程学会结构可靠度委员会第二届学术交流会议论文集[C],1991:1001-1006
    [30]王铁梦,王跃.工程结构裂缝控制[M].北京:中国建筑出版社,2003:132-134
    [31]王黎怡,林江.建筑结构可靠性的模糊评价模型[J].福建工程学院学报,2005,3(3):255-257
    [32]李云贵,赵国藩.结构体系可靠度的近似计算方法[J].土木工程学报,1993,26(5):70-76
    [33]贡金鑫.结构体系可靠度计算的一种近似方法[J].四川建筑科学研究,1992,(3):1-7
    [34] Feng Y.S. A Method for computing Structural System Reliability with High Accuracy[M], 1989:132-137
    [35]赵鹏飞.在役结构构件可靠指标的求法[J].工业建筑,1997,27(12):40-43
    [36]李清富,刘晨辉.基于主观概率的结构破损状况评估[J].工业建筑,1995,25(8):3-7,46
    [37]李广平,吴伟衡.既有建筑物楼板结构和地基基础承载力检测技术的探讨[J].建筑结构,2002,32(11):29-31
    [38]陈理达.结构砼强度检测技术及水工结构砼强度推定方法的探讨[J].广东水利水电,1994,(2):45-48
    [39]胡长青,王宣林.火灾后混凝土结构的检测与修复探讨[J].山西建筑,2004,30(3):15-16
    [40]邢安仕.矿区建筑物损坏的识别方法[J].煤矿开采,1995,(1):18-21
    [41]孙永民,陆建勇.某框架结构火灾检测鉴定与处理[J].西安建筑科技大学学报(自然科学版),2005,37(3):370-374
    [42]张小云.框架结构安全性鉴定及抗震性能评估[J].福建工程学院学报,2005,3(3):235-237,242
    [43]张小云.某大戏院结构安全性鉴定及抗震性能评估[J].福建建筑,2005,(2):46-48
    [44] Brown C.B. The Fuzzy Safety Measure[J]. Journal of Enginerring Mechanic Division, ASCE, 1980, 106(4)
    [45] Blockey D.I. The Role of Fuzzy Sets in Civil Engineering[J]. Fuzzy Sets and Systems,1979,(2)
    [46] Yao, James. Safely and Reliability of Existing Structures[M]. Pitman Advanced Publ Program (Surv in Struct Eng and Struct Mech, 2), Boston, MA, USA, 1985:77-79
    [47]荀志远.工业厂房可靠度评估的一种新方法[J].建筑技术开发,2003,(8):34-37
    [48]王晓鸣,李桂青.既有住宅的可靠性分析与评价[J].武汉工业大学学报,1999,21(6):43-46
    [49]陈少杰,顾祥林,张伟平.层次分析法在既有建筑结构体系可靠性评定中的应用[J].结构工程师,2005,21(2):31-35
    [50]柳承茂,刘西拉.结构安全性综合评估方法的研究[J].四川建筑科学研究,2004,30(4):46-48,58
    [51]夏长春,刘西拉.钢筋混凝土单厂破损评估专家系统(RACODE-I)[J].计算结构力学及其应用,1989,6(2):64-71
    [52]杨义龙,李思明.不同目标使用期结构鉴定与加固相关问题探讨[J].山西建筑,2009.35(6):9-10
    [53] DG/TJ08-804-2005,上海市工程建设规范《既有建筑物结构检测与评定标准》[S].上海:上海市建设工程标准定额管理总站,2005
    [54]梁坦.建筑物可靠性鉴定与加固改造的发展[J].四川建筑科学研究,1994,(3) :35-41
    [55]戴国莹.建筑结构抗震鉴定技术的发展[J].工程抗震,1996,(4):8-11
    [56]贡金鑫,赵国藩,柳林.钢筋混凝土轴心受压构件加固后的可靠度分析[J].建筑结构,2000,30(3):29-33
    [57]张宇,李思明.粘钢加固钢筋混凝土梁可靠性分析[J].湖南大学学报(自然科学版),2005,32 (6):11-14
    [58]赵军.预应力CFRP布加固混凝土梁可靠性研究[J].桂林工学院学报,2005,25 (2):166-168
    [59]朱剑俊.碳纤维加固钢筋混凝土受弯构件研究及可靠性分析[D].浙江:浙江工业大学硕士论文,2003
    [60]张敬书.我国抗震鉴定和加固技术的发展[J].工程抗震与加固改造,2004,(5):33-39
    [61]高剑平,潘景龙,王凤来等.地震区加层房屋鉴定和设计标准探讨[J].低温建筑技术,2003,(6):37-38
    [62]卢木,王娴明.结构耐久性多层次综合评定[J].工业建筑,1998,28(1):1-4,8
    [63] Littlejohn G.S. Technical growing-l[J], Ground Enginerring, 1985, (4):45-51
    [64]宋中南.我国混凝土结构加固修复业技术现状与发展对策[J].混凝土,2002,(10):10-11,17
    [65]赵国藩,贡金鑫,赵尚传.我国土木工程结构可靠性研究的一些进展[J] .大连理工151大学学报,2000,40(3):253-258
    [66]张欣.现有结构可靠性鉴定评述[J].四川建筑,2005,25(4):68-69
    [67]赵国藩,李云贵.混凝土结构正常使用极限状态的可靠度分析[A].工程结构可靠性——中国土木工程学会桥梁及结构工程学会第七届学术会议论文集[C],1987:55-60
    [68]王光远.结构服役期间的动态可靠度及其维修理论初探[J],哈尔滨建筑工程学院学报1990,(2) :1-9
    [69]沈崇棠,刘鹤年.非牛顿流体力学及其应用[M].北京:离等教育出版社,1989:77-79
    [70]李继华,林忠平,李明顺.建筑结构概率极限设计[M].北京:中国建筑工业出版社,1990:58-61
    [71]李国强,李进军.框架结构体系可靠度计算的随机抽样半解析法[A].中国土木工程学会第九届年会论文集[C].北京:中国建筑工业出版社,2000:47-50
    [72]龚云平.通用设计表达式中荷载与抗力分项系数的研究[D].西安:西安建筑科技大学硕士学位论文,2006
    [73]姚继涛等.既有结构荷载分析的特点和基本原则[A].全国第四届工程结构可靠性学术会议论文集[C].北京:地震出版社,1995:35-39
    [74]吴世伟,结构可靠度分析[M],北京:人民交通出版社,1990:38-41
    [75]欧进萍,刘学东,王光远.既有结构安全度评估的环境荷载标准研究[J].工业建筑,1995,25(8):11-16
    [76]蔡德庄,陆东尧.恒载的统计分析[J],冶金建筑,1982,(3) :55-38
    [77]朱瑞兆.风压计算的研究[M].北京:科学出版社,1981:25-28
    [78]陈英俊,于希哲.风荷载计算[M].北京:中国铁道出版社,1998:87-89
    [79]杨伟军,赵传智.土木工程结构可靠度理论与设计[M].北京:人民交通出版社,2000:72-80
    [80]高小旺,鲍霭斌.地震作用的概率模型及其统计参数[J].地震工程与工程振动,1985,(1):13-22
    [81]李桂青,李秋胜.工程结构时变可靠度理论及其应用[M].北京:科学出版社,2001:49-51
    [82]顾祥林,许勇,张伟平.既有建筑结构构件的安全性分析[J].建筑结构学报,2004,25(6):117-122
    [83]黄炎生,邓浩,罗仁志.基于分项系数法的既有框架结构可靠性评估[J].华南理工大学学报(自然科学版),2008,36(12),34-37
    [84]周大平,彭邦河.既有建筑结构鉴定表达式各分项系数的确定[J].科技信息,2008,(15),132-133
    [85]段忠东,欧进萍.基于概率疲劳累积损伤理论的构件抗力衰减分析[J].哈尔滨建筑大学学报,1996,29(1):1-8
    [86]余安东,叶润修.建筑结构的安全性与可靠性[M].上海:上海科学技术文献出版社,1986:87-89
    [87]牛荻涛,王庆霖等.既有结构抗力的概率模型及其统计参数[J].西安建筑科技大学学报,1997,29(4):355-359
    [88]牛荻涛,王庆霖.一般大气环境下混凝土强度经时变化模型[J].工业建筑,1995,25(6):36-38
    [89]牛荻涛,王庆霖,王林科.一般大气环境混凝土中钢筋锈蚀量的估计[J].工程力学,1997,14(1):92-99
    [90]牛荻涛,陈亦奇,于澎.混凝土结构的碳化模型与碳化寿命分析[J].西安建筑科技大学学报,1995,27(4):365-369
    [91]牛荻涛,王林科,王庆霖.氧气在混凝土中的扩散系数的确定[J].西安建筑科技大学学报,1996,28(1):6-9
    [92]张平生,卢梅.锈损钢筋的力学性能[J].工业建筑,1995,25(9):41-44
    [93]桂青,李秋胜.工程结构时变可靠度理论及其应用[M].北京:科学出版社,2001:29-31
    [94]赵挺生.建筑结构不同设计表达式的可靠度分析[J].四川建筑科学研究,1996,(3):20-22,71
    [95]邸小坛.既有建筑结构可靠性评定原则[A].第7届全国建筑物鉴定与加固改造学术会议论文集[C],2004
    [96] ISO 2394, General principles on reliability for structures [S], 1998
    [97] ISO 13822, Bases for design of structures-Assessment of existing structures[S], 2003
    [98]张俊芝.服役工程结构可靠性理论及其研究[M].北京:中国水利水电出版社,2007:159
    [99]尚伟.既有多层钢筋混凝土建筑结构的可靠性鉴定[D] .武汉:武汉水利电力大学博士学位论文,1997
    [100]张誉,李立树.旧房可靠性的模糊综合评判[J].建筑结构学报,1997,18(5):12-21
    [101]黄华梁,赵刚.系统可靠性的失效模式影像模糊评估分析[J].广西大学学报(自然科学版),2002,27(2):104-108
    [102]张克纯,陆洲导,项凯.改进的模糊Modular神经网络在既有建筑可靠性鉴定中的应用[J].结构工程师,2007,23(6):37-42
    [103] Saaty T.L. The analytic hierechy process[M], New York:Hill, 1980:27-29
    [104]王莲芬,许树柏.层次分析法引论[M].北京:中国人民大学出版社,1990:36-38
    [105]顾祥林,陈少杰,张伟平.既有建筑结构体系可靠性评估实用方法[J] .结构工程师,2008,23(4),12-17
    [106]宋毅,霍达.现代系统工程学基础[M].北京:中国科学技术出版社,1992:56-60
    [107]吕跃进,谭菊莹.层次分析法建模中的结构问题[J].广西大学学报(自然科学版),2003,28(Sup.),58-61
    [108]郑华彬,应用分层面的观点进行大跨度桥梁施工控制[J],广东土木与建筑,2006,(9),47-50
    [109]张喜德,韦树英,彭修宁.运用复杂性科学的思维方式研究钢筋混凝土耐久性[J] .工业建筑,2003,33(4):60-62
    [110]阎培渝,廉慧珍.用整体论方法分析混凝土的早期开裂及其对策[J].建筑技术,2003,34(1):15-18
    [111]覃维祖.混凝土结构耐久性的整体论[J].建筑技术,2003,34(1):19-22
    [112]禹智涛,韩大建.既有钢筋混凝土桥梁碳化可靠度评估方法[J].南理工大学学报(自然科学版),2004,32(2):50-53.
    [113]韩大建,杨炳尧,颜全胜.用人工神经网络方法评估桥梁缺损状况[J].华南理工大学学报(自然科学版),2004,32(9):72-75.
    [114] Yuan B., Zheng H.B. A Probe in Seismic strengthening Techniques of the Structures Based on the Integrity Theory[A], Proceeding of the International Symposium on Innovation & Sustainability of Structure in Civil Engineering[C], 2009, (2):1475-1480
    [115]陆瑞明,郑华彬,滕康等.运用整体性理论研究建筑物加固改造和病害处理技术[R].广东省建筑科学研究院科技成果[G],2004
    [116]郑华彬,韩大建,陆瑞明.结构加固改造和病害处理技术的整体性理论及其应用[J].华南理工大学学报(自然科学版),2006,34(02):118-123
    [117]郑华彬,韩大建,陆瑞明.某高层超长圆弧外墙开裂和外倾的分析与处理[J].工程质量,2006,(Sup.):96-101
    [118] Hong L., Foschi R.O. An inverse reliability method and its application[J]. Structural Saftey, 1998, (20):257-270
    [119] Zoltan Sadovasy. An inverse reliability method and its application[J]. Structural Saftey. 2000, (22):97-102
    [120] Ang, Lee. Cost optimal design of RC building Reliability[J]. Engineering and System Safty. 2001, (73):233-238
    [121]李涛.既有结构可靠度评估方法及加固设计研究[D].广州:华南理工大学硕士学位论文,2007
    [122]郑华彬.剪力墙连梁设计建议和配筋算法编程[J].广东土木与建筑,2005,(6):29-31
    [123]郑华彬,黄炎生,张建华.钢筋混凝土结构加固软件包研制[A].杭州:第十四届全国工程设计计算机应用学术会议[C],2008:507-510
    [124] GB50011-2001.建筑抗震设计规范[S].北京:中华人民共和国住房和城乡建设部,2002
    [125] GB50010-2002.混凝土结构加固设计规范[S].北京:中华人民共和国建设部,2002
    [126]王二磊.高速公路桥涵后加固的可靠性研究[D].武汉:武汉理工大学硕士论文,2004
    [127]贡金鑫,赵国藩.钢筋混凝土轴心受压构件加固后的可靠度分析[J].建筑结构,2000,30(3):29-33
    [128]梁德飞.轴心受压构件加固后的可靠性分析[D].广州:华南理工大学硕士学位论文,2008
    [129]沈在康.混凝土结构设计新规范应用讲评[M].北京:中国建筑工业出版社,1993:24-30
    [130] Cardoso, Almeida, Dias, et al. Structural reliability analysis using Monte Carlo simulation and neural networks[J]. Advances in Engineering Software, 2008, (39):505-513
    [131]赵国藩,金伟良,贡金鑫.结构可靠度理论[M].北京:中国建筑工业出版社,2000:79-80
    [132]郑华彬,韩大建,黄炎生等.粘贴钢板法加固轴心受压柱的可靠度分析[J],科学技术与工程,2010,10(7):1797-1801
    [133] Zheng H.B., Han D.J., Huang Y.S., et al. Reliability Analysis Of Axially Compressed Columns Reinforced By Section Reinforcemen[A], Proceedings of International Symposium on Innovation & Sustainability of Structures in Civil Engineering[C], GuangZhou, China, 2009, (1):481-487

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700