用户名: 密码: 验证码:
低层建筑冷弯薄壁型钢结构构件的试验与理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
关于冷弯薄壁型钢结构的研究及应用在国内外已经十分广泛,并取得一定的成果。当然,仍有些亟待解决的问题,如各国规范中给出的截面特性均缺少屈曲理论应用所需要的扭转截面特性参数,如圣维南扭转常数J,扭曲扭转(或翘曲)常数Cw,剪切轴心的位置(x0),有效截面模量Se,整体屈曲、局部屈曲、畸变屈曲的相关性等,都没有非常明确、通用的设计计算方法,工程设计中很难去求解。
     目前冷弯薄壁型钢住宅结构形式有很多种,如北美、日本、澳大利亚等国选用的材料和截面形式也不尽相同。但却大同小异,基本上按照一定的模数间距布置钢龙骨、支撑体系,骨架两侧覆板和保温隔热材料以及面层装饰材料,形成可靠的“密肋型结构体系”
     值得一提的是澳大利亚迈特冷弯薄壁型钢结构住宅系统,有一个显著特点即高强度、超薄壁。所有构件均是标准截面,如杆件为带卷边的C形截面杆,其尺寸均为40×90,厚度从0.55mm到1.15mm不等。可以通过分析一个杆件,即可概括结构构件的受力特性。
     高强度、超薄壁构件的应用可大为减轻结构自重,但又带来了新的问题,如材料性能、畸变屈曲的确定、各种屈曲模式的相关性等。我国现行《冷弯薄壁型钢结构技术规范》规定材料的强度最高位Q345,主要承重结构构件的壁厚不宜小于2mm。表明这种高强、超薄壁结构无论结构设计计算或施工组装均有其自身的鲜明特征。
     为解决工程应用中的迫切需要,本文试图通过试验研究、分析,并通过系列理论推导和仿真分析,推荐符合工程师应用的公式,方便快捷实用的表格。
     本文选用上海宝钢蓝璀公司生产的G550级高强钢材进行材性试验,得出了G550级钢材的应力-应变特性,给出了试件材料的主要材性指标。
     通过不同连接形式、不同抽芯铆钉的连接试件的多组试验,研究相应的受力特征、破坏形态和极限承载力,并经理论分析计算结果进行对比,获得了高强超薄壁冷弯型钢结构中拉铆钉连接的破坏模式和承载力计算公式。
     通过理论推导,得出标准截面构件不同长度、不同受力情况可能的屈曲模式、屈曲应力和屈曲后强度,给出了复杂截面构件的屈曲应力。
     通过三榀桁架梁的试验和详尽分析,以及多榀桁架梁的有限元分析,明确了桁架梁的破坏过程以及破坏形态,给出了不同跨度、不同高度桁架梁的容许荷载表格。
     通过竖向荷载和水平荷载同时作用下K型支撑墙架的试验,分析研究该墙架的破坏形态、受力特征以及承载能力。实验表明墙架柱首先出现畸变屈曲,然后柱脚出现受压破坏或受拉破坏。进而通过试验观察、分析总结了墙架承载能力的验算公式。
     以上研究成果,部分纳入了湖北省地方标准《低层住宅冷弯薄壁型钢结构技术规程》,本人有幸参编。这也是国内首次颁布针对高强超薄壁结构的技术标准。
Although the research and application of the cold-formed thin-walled steel structures has been extended widely and the remarkable achievements in this field have been gained, some key problems have not been solved. As known, some sectional characteristic parameters needed by the analysis of critical buckling stress are not clearly definited in the specifications, including the Saint-Venant torsion constant of the cross section (J), torsional warping constant of the cross section (Cw), location of shear axis (x0), elastic modulus for effective section calculated by a stress relative to the extreme compression strain (Se), and the correlativity between global buckling, local buckling and distortional buckling. It is very difficult to calculate above parameters definitely in engineering design.
     At present, the cold-formed thin wall steel structures for residential buildings have various types. In the North America, Japan and Australia, the steel materials, section form of members and structural system are different. Even so, they are of similar composition of the structure, in which the steel keels are arranged basically according to-certain module spacing, different support systems are appranged between the steel keels, the structure-plate, the heat preservation thermal insulation material, as well as the surface layer decoration material are installed in turn on the both sides of keel skeletons. All these components forms an extremely reliable "structural system of the dense ribs".
     The cold-formed thin wall steel structures applied to residential building systems in Australia are different from that of other systems. They have two remarkable features:high strength of material and ultra thin wall of member section. All members have uniform cross section that is common C-shape section with the sectional sizes of 40mm×90mm and the wall thickness ranged from 0.55mm to 1.15mm. The advantage of using uniform member sections is that the mechanical behaviors of structural members can be summarized through the analysis of an element.
     The high strength thin wall component brings new problems, such as material properties, buckling distortion and the relevant of all buckling mode and so on.
     In order to solve urgent need in the project application, this article tries to build design formula and form which can be easily and conveniently used through the experimental study, theoretical and the simulation analysis.
     In this paper, G550 high-strength steel which Shanghai Baoshan Iron and Steel LanCui Co. produced was used. The stress-strain relationship of grade G550 steel and other properties have been obtained.
     High-strength cold-formed thin wall steel structure pull rivet failure mode and bearing capacity formula have been obtained through different connected forms, different diameter blind rivets to connect multiple sets of test specimens, by their own force characteristics, failure modes and ultimate strength, and the theoretical analysis and calculation results were compared, the first time in our country are given.
     Through accurate experiment and exhaustive analysis which carries on to three girder trusses, as well as 29 girder truss finite element analysis, gave allowed load form about different span, different girder truss given for the first time in our country。
     Through K-brace wall framing test under both vertical load and horizontal load, the wall framing failure mode, mechanical characteristics and bearing capacity have been studied. Wall frame column local buckling occurs first, then column foot appears damaged or destroyed by the pull and pressure. The calculation and analysis of the ultimate bearing capacity of the wall frame is summarized.
引文
1.李开禧.弹性薄壁杆件翘曲[M].北京:中国建筑工业出版社,1990
    2.S.铁摩辛柯,J.盖尔著.材料力学[M].胡人礼译.北京:科学出版社,1978
    3.徐芝纶编.弹性力学,上、下册[M].北京:人民教育出版社,1979
    4.A.捷列斯维克著,何福照范勇坚译。薄壁杆件理论[M].北京:人民交通出版社,1987
    5.黄剑源.薄壁结构的扭转分析(上)[M].北京:中国铁道出版社,1983
    6. Eduard Ventsel,Theodor Krauthammer. Thin plates and shells: theory, analysis, and applications[M]. New York, Marcel dekker inc.,2003
    7. J. N. REDDY. Theory and analysis of elastic plates and shells.Second edition. [M].CRC press,1999
    8. Von karman T, Sechler E E, Donnel L H. Strength of thin plates in compression[M].ASME,1932,54
    9.湖北省地方标准.DB42/T483-2008.低层住宅冷弯薄壁型钢结构技术规程[S].武汉,2008
    10.中华人民共和国国家标准.GB50018-2002.冷弯薄壁型钢结构技术规范[S].北京:中国计划出版社,2002
    11.C.P汉斯著.结构杆件的弯曲与扭转[M].常岭、吴绍本译校.北京:人民铁道出版社,1981
    12.陈绍蕃.钢结构稳定设计指南[M].北京:中国建筑工业出版社,2004
    13.莫绍中,郑世派.应用弹性力学[M].北京:中国铁道出版社,1981
    14.范祖尧,郁永熙主编.结构力学[M].北京:机械工业出版社,1979
    15.龙驭球.弹性地基梁的计算[M].北京:人民教育出版社,1981
    16.薛发,刘定荣.冷弯薄壁型钢住宅体系及其在中国的应用和发展[J].第七届全国现代结构工程学术研讨会,2007
    17.龙驭球、辛克贵.多边形截面框筒结构的能量解法[J].北京:建筑结构学报,1985(3)
    18.包世华,方鄂华主编.高层建筑结构设计.第2版[M].北京:清华大学出版社,1990
    19.吕烈武等.钢结构构件稳定理论[M].北京:中国建筑工业出版社,1983
    20.周坚.论闭口薄壁杆件约束扭转乌曼斯基理论中p的几何意义[J].北京:结构力学及弹性力学教学与教材研究.1986(2)
    21.周坚.用缀板加强的开口截面薄壁杆件的约束扭转分析[J].北京:北京轻工业学院学报,1986(2)
    22. Heidebrecht A. C, Stafford Smith, Approximate Analysis of Open Section Shear Walls Subject to Torsional Loading [J]. Journal of the Structural Division, Proc. ASCE. Vol.99, No. STI2, Dec,1973
    23.蒋路,卷边冷弯薄壁型钢轴压柱畸变屈曲的试验和理论分析[D].西安:西安建筑科技大学,2007
    24.F.柏拉希著,同济大学钢木结构教研室译.金属结构的屈曲强度(上、下册)[M].科学出版社.1965
    25.苏明周,陈绍蕃.卷边槽钢梁受压翼缘畸变屈曲时的屈曲系数[J].西安:西安建筑科技大学学报,1997,29(2)
    26.陈绍蕃,苏明周,冷弯型钢擦条的有效截面[J].北京:建筑结构学报,2003,24(6)
    27.陈绍蕃.卷边槽钢的局部相关屈曲和畸变屈曲[J].北京:建筑结构学报,2002,23(1)
    28.张兆宇.冷弯薄壁C形槽钢畸变屈曲的试验研究[D].杭州:浙江大学,2005
    29.柳胜华,何保康.均匀受压卷边槽形截面的畸变屈曲性能分析[J].北京:工业建筑,2004年增刊.
    30.王春刚,张耀春,张壮南.冷弯薄壁斜卷边槽钢受压构件的承载力试验研究[J].北京:建筑结构学报.2006,(27)3:1-9.
    31.吴金秋,童根树.不同斜卷边擦条的局部屈曲和畸变屈曲[J].北京:钢结构,2006,21(5):70-73.
    32. AISI S100-2007. North American Specification for the Design of Cold-Formed Steel Structural Members[S]. American Iron and Steel Institute, Washington DC, 2007
    33. AISI S100-2007-C. Commentary on North American Specification for the Design of Cold-Formed Steei Structural Members[S]. American Iron and Steel Institute, Washington DC,2007
    34. Davies JM, Jiang C. Design of thin-walled beams for distortional buckling[C]. In:13th Int. Specialty Conf. on Cold-Formed Steel Structures, St. Louis, Missouri, 1996:141-53
    35. Commentary of Design of Cold-Formed Steel Structural Members using the Direct Strength Method, Appendix 1 of the NAS[S].,2004.
    36.周天华,何保康,周绪红等.高强冷弯薄壁型钢轴压短柱受力性能试验研究[J].西安:建筑科学与工程学报,2005,22(3):36-44.
    37.周天华,何保康,周绪红等.高强冷弯薄壁型钢轴压长柱受力性能试验研究[J].西安:建筑科学与工程学报,2005,22(4):65-71.
    38.何保康,蒋路,姚行友等.高强冷弯薄壁型钢卷边槽形截面轴压柱畸变屈曲试验研究[J].北京:建筑结构学报,2006,27(3):10-17.
    39.中华人民共和国国家标准.GB/T2282002.金属材料一室温拉伸试验方法[S].ISO 6892:1998.22(1):43-46.
    40. Yu, Wei-Wen. Cold-Formed Steel Design,3rd Edition[M]. John Wiley interscience press,2002.
    41.陈绍蕃.钢结构.第二版[M].北京.中国建筑工业出版社,1993.
    42.周天华,周绪红,何保康等.G550级高强薄板钢材的材性及应用[J].西安:建筑科学与工程学报,2005,22(2):43-46.
    43.诸葛耿华,王彦敏.冷弯薄壁型钢龙骨式结构低层住宅体系[J].北京:建筑结构,2006,22(1):43-46.
    44. B.W.Schafer. Col-formed steel behavior and design: analytical and numerical modeling of elements and members with longitudinal stiffeners[D]. Cornell University,1997.
    45. J.M. Davies. Recent research advances in cold-formed steel structures[J]. Journal of constructional steel research.2000,55(3):267-288.
    46. Schafer, B. W. Elastic buckling analysis of thin walled members by finite strip analysis[J]., CUFSM v2.6.
    47.蒋路,何保康.冷弯薄壁型钢构件畸变屈曲试验和理论研究综述及分析[J].北京:钢结构,2006,21(5):45-49.
    48. Lau, S.C.W. and Hancock, GJ., Inelastic buckling of channel columns in the distortional mode. Thin-walled structures,1990,10(1):59-84.
    49. Kwon, Y.B., and Hancock, GJ. Strength tests of cold-formed channel sections undergoing local and distortional buckling. Jour. Struck.Eng.117(2):1786-1803.
    50. Demao Yang, Hancock, G J. Compression tests of high strength steel channel columns with interaction between local and distortional buckling. Journal of Structural Engineering,2004,130(12):1954-1963
    51. R.Serrette and T.Pekoz. Bending strength of standing seam roof panels[J]. Thin-walled Structures,1997 (27)1:55-64.
    52. Jurgen Beque & Kim Rasmussen, Numerical Investigation and Design Methods for Stainless Steel Columns failing by Interaction of Local and Overall Buckling, [R].Sydney:Sydney University,2008.
    53. Derrick C Y Yap & Gregory J Hancock. Experimental Study of High Strength Cold-Formed Stiffened Web Steel Sections, [R].Sydney:Sydney University,2008.
    54. Cao Hung Pham & Gregory J Hancock, Experimental Investigation of High Strength Cold-Formed C-Section in Combined Bending and Shear, [R],Sydney: Sydney University,2008.
    55. Tayakorn Chandrangsu & Kim JR Rasmussen, Investigation of Geometric Imperfections of Support Scaffold Systems, [R].Sydney:Sydney University,2009.
    56.陈绍蕃.陈绍蕃论文集[M].西安:西安建筑科技大学出版社,2004
    57.陈绍蕃.冷弯型钢板件相关屈曲和极限承载力[J].上海:建筑钢结构进展,4(11),2002
    58. Billio G. Mazzolani FM. Theory and design of steel structures[M]. Chapman and Hall,1983
    59.陈绍蕃.T形截面压杆的腹板局部屈曲[J].北京:钢结构,16(2),2001
    60.陈绍蕃.卷边槽钢的局部相关屈曲和畸变屈曲[J].北京:建筑结构学报,23(1),2002
    61. Chen SF and Su MZ. Out-of-plane buckling and bracing requirement in double angle trusses. Steel and Composite Struct. An Internl J.3(4),2003
    62.陈绍蕃.角钢、剖分T型钢压杆的弯扭屈曲(1)[J].北京:钢结构,15(4),2000
    63.周绪红,王世纪.薄壁杆件稳定理论及其应用[M].北京:科学出版社,2009
    64. Deborah G Hegarty, Comparison of Structural Design Actions Part 4: Earthquake Actions in Australia AS1170.4-1993 & 2007, [R].Sydney: Sydney University,2009.
    65. N S Trahair, Lateral-Distortional Buckling of Monorails, [R].Sydney:Sydney University,2009
    66. B Gilbert & KJR Rasmussen, Stiffness tests, failure tests and load transfer in steel drive-in storage racks,[R].Sydney: Sydney University,2009.
    67. B Gilbert, KJR Rasmussen & H Zhang, Impact tests, parametric impact studies and design impact forces on drive-in steel storage racks, [R].Sydney:Sydney University,2009
    68. Cao Hung Pham & Gregory J Hancock, Numerical Simulation of High Strength Cold-Formed Purlins in Combined Bending and Shear, [R].Sydney:Sydney University,2009.
    69. NS Trahair, Distortional Buckling of Overhanging Monorails, [R].Sydney: Sydney University,2009
    70. Cao Hung Pham & Gregory J Hancock, Experimental Investigation of High Strength Cold-Formed SupaCee Sections in Combined Bending and Shear, [R].Sydney:Sydney University,2009
    71. Schafer, B.W., Sarawit, A., Pekoz, T. Complex edge stiffeners for thin-walled members. [J]. Journal of Structural Engineering.2006,132 (2) 212-226.
    72. Schafer, B.W., Pekoz, T. Laterally Braced Cold-Formed Steel Flexural Members with Edge Stiffened Flanges[J]. Journal of Structural Engineering.1999,125 (2) 118-127.
    73. Schafer, B.W., Pekoz, T. "Cold-Formed Steel Members with Multiple Longitudinal Intermediate Stiffeners in the Compression Flange." [J]. ASCE, Journal of Structural Engineering,1998,124 (10):1175-1181.
    74. Yu, C., Schafer, B.W. "Distortional buckling tests on cold-formed steel beams." [J].ASCE, Journal of Structural Engineering.2006,132 (4) 515-528.
    75. Schafer.B.W. Local, distortional and Euler buckling of thin-walled columns[J]. Journal of Structural Engineering.2002,128(3):289-299
    76. Lau, Hancock, GJ. Distortional buckling formulas for channel columns[J]. Journal of Structural Engineering.1987,113(5):1063-1078.
    77. Hancock, GJ. Design for distortional buckling of flexural members[J] Thin-Walled Structures,1997,27(1):3-12
    78. J. G. Teng, J. Yao and Y. Zhao. Distortional buckling of channel beam-columns[J]. Thin-Walled Structures,2003,41(7):595-617.
    79. Australian/New Zealand Standard. AS/NZS4600, Cold-Formed Steel Structures [S]. Australian,1996.
    80. Cheung, Y.K. Finite strip method in structural analysis[M]. Pergamon press, New York,1976.
    81. Hancock, CzJ. Local, Distortional, and lateral buckling of I-beams[J]. Journal of the structural division.1978, (104)11:1787-1798.
    82. Hancock, Distortional buckling of I-beams[J] Journal of the structural division.1981, (107)2:355-370.
    83. Hancock, G J. Distortional buckling of steel storage rack columns[J]. Journal of the structural division.1985, (111)12:2770-2783.
    84. Papangelis, J.P., Hancock, G.J. THIN-WALL2.0[J].Centre of advanced structural engineering, Department of civil engineering, University of Sydney.
    85. Schardt, R. Lateral torsional and distortional buckling of channel and hat-sections[J] .Journal of constructional steel research.1994, (31)2-3:243-265.
    86. Davies, J.M., Leach, P. First-order generalized beam theory[J]. Journal of Constructional Steel Research, Elsevier.1994,31 (2-3) 187-220.
    87. Davies, J.M., Leach, P., Heinz, D. (1994). Second-order generalized beam theory [J]. Journal of Constructional Steel Research, Elsevier.1994,31 (2-3) 221-241.
    88. Silvestre, N., Camotim, D. First-order generalised beam theory for arbitrary orthotropic materials [J]. Thin-Walled Structures,2002,40 (9) 755-789.
    89. Silvestre, N., Camotim, D. Second-order generalised beam theory for arbitrary orthotropic materials[J]. Thin-Walled Structures,2002,40 (9) 791-820.
    90. Sridharan, S. A semi-analytical method for the post-local-torsional Buckling Analysis of Prismatic Plate Structures. [J]. Int Jour Num Mesh in Engg,18:1685-1697.
    91. Chafer B.W. Cold-formed steel design by direct strength method, bye-bye effective width. Proceedings[C].2003 Annual Technical Session SSRC,357-377.
    92.何保康,周天华.冷弯型钢截面局部屈曲和AISI规范计算有效宽度的统一法则.[J].北京:建筑钢结构进展,2005,7(4).
    93. Hancock CJ., et al. Cold-formed steel structures to the AISI Specification[M]. Marcel Dekker, New York,2001.
    94. Sarawit,A.and T.Pekoz. Notional load method for industrial steel storage racks[J]. [J].thin-walled structures,Elserier,Vol.44,No.12,2006.
    95. Design of Cold-Formed Steel Structural Members using the Direct Strength Method, Appendix 1 of the North American Specification for the Design of cold-formed Members, [S].2004.
    96. Timonshenko,S.P and Gere,J.M.,Theory of elastical Stability[M]. McGraw-Hill, New York,1959.
    97. Desmond, T.P., Pekoz, T. and Winter, G., Edge stiffeners for thin-walled members[J]. Journal of structural engineering, Vol.107, No.ST2,1981.
    98. B.W. Schafer, T. Pekoz. Computational modeling of cold-formed steel:characterizing geometric imperfections and residual stresses[J]. Journal of constructional steel research 47(1998):193-210.
    99. Lau SCW. Distortional buckling of thin-walled columns[D].University of Sydney. Sydney, Australia,1988.
    100. Bernard, E.S. Flexural behavior of cold-formed profiled steel decking[D]. Unversity of Sydney. Sydney, Australia,1993.
    101. Riks E., An incremental approach to the solution of snapping and buckling problems[J]. Int. J. Solids Structures, Vol.15,529-551,1979.
    102.何保康,郭丽峰等.轻钢密墙架柱墙体抗剪性能试验研究[J].北京:建筑结构增刊,2004:338-341.
    103.郭丽峰.轻钢密墙架柱墙体的抗剪性能研究[[D].西安:西安建筑科技大学,2004.
    104.夏冰青.轻钢龙骨复合承载体系结构性能研究[[D].南京:南京工业大学,2003.
    105.夏冰青,董军.轻钢龙骨复合承载墙体抗侧性能的有限元分析[J].建筑结构增刊,2004:334-337.
    106.周天华,石宇,何保康等.冷弯型钢组合墙体抗剪承载力试验研究[J].西安建筑科技大学学报,200638(1):83-88.
    107.石宇.低层冷弯薄壁型钢结构住宅组合墙体抗剪承载力研究[D].西安:长安大学,2005.
    108.周绪红,石宇,周天华,狄瑾.冷弯薄壁型钢结构住宅组合墙体受剪性能研究[J].建筑结构学报,2006,27(3):42-47.
    109.聂少锋.冷弯型钢立柱组合墙体抗剪承载力简化计算方法研究[D].西安:长安大学,2006.
    110.李明昭、周竟欧.有限元法计算n室薄壁断面可畸变直箱结构的自振频率.[J].上海:同济大学学报,1987
    111.张士锋.桥梁设计理论-荷载横向分布、弯桥、有效宽度及剪力滞后[M].北京:人民交通出版社,1984
    112.李惠生,张罗溪.曲线梁桥结构分析[M].北京:中国铁道出版社,1992
    113.李明昭,周竞欧.薄壁杆结构计算[M].北京:高等教育出版社,1992
    114.刘开国.高层建筑结构的能量变分解[J].北京:建筑结构学报,1982(3)
    115.张吉平.框筒结构的动力特性研究[D].北京:清华大学,1981
    116.段小廿.简体结构的动力特性与弹塑性地震反应分析[D].北京:清华大学,1986
    117.龚耀清.弹性地基上高层建筑结构及半解析法研究[D].北京:清华大学, 1999;
    118. Trahair N S, Braford M A. The behavior and design of steel structures.2nd ed [M]. London:Chapman and Hall,1998.
    119. British Standards Institution. Structural use of steel work in building, Part 5[S]., Code of practice for design of cold formed section.1987.
    120. NAS2004. North American specification for the design of cold-formed steel structural members[S].American Iron and steel Institute, Canadian Standard Association.2004.
    121.陈骥.钢结构稳定理论与设计[M].北京:科学出版社.2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700