用户名: 密码: 验证码:
躯体神经—内脏神经吻合重建大鼠勃起功能的可行性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分躯体神经-内脏神经吻合后神经再生研究
     目的:应用神经追踪技术及形态学方法研究躯体神经-内脏神经显微吻合后神经的再生情况。
     方法:取成年雄性SD大鼠(250~300g)33只,随机分为3组:假手术组、神经切断组、神经吻合组(每组11只)。假手术组,打开椎管后只分离出左侧腰4前根(L4VR)、双侧腰6前根(L6VR)及骶1前根(S1VR)而不切断。神经切断组,分离出左侧L4VR、双侧L6VR及S1VR并切断。神经吻合组,分离出左侧L4VR、双侧L6VR及S1VR切断后,左侧L4VR与左侧L6VR行端端显微吻合。术后16周,假手术组、神经切断组、神经吻合组各取6只大鼠行逆行追踪研究,左侧盆神经节内注射荧光金(FG),大鼠再存活一周后取脊髓切冰冻切片,在荧光显微镜下观察FG阳性神经元数目与分布。3组再各取剩余5只大鼠,分离出5mm L6VR神经段,行半薄切片甲苯胺蓝染色及透射电镜超微结构观察。
     结果:逆行神经追踪结果显示,假手术组,大鼠脊髓左侧L6及S1脊髓节段的中间外侧柱(SPN)可以看到FG阳性神经元。神经切断组,大鼠各个脊髓节段均未见FG阳性标记神经元。神经吻合组,左侧L4脊髓前角可以见到FG阳性神经元。假手术组L6及S1脊髓SPN内FG阳性神经元数目分别为13.2±1.3和4.8±0.5。神经吻合组L4脊髓前角FG阳性神经元为7.9±1.1。神经吻合组FG阳性神经元数目显著多于神经切断组(p <0.05)。半薄切片甲苯胺蓝染色显示,假手术组可见大量正常的有髓神经纤维,有髓神经纤维数量为784±45。神经切断组轴突崩解、变性,未见到正常神经纤维。神经吻合组可见大量有髓神经纤维再生,有髓神经纤维数量为510±53。假手术组及神经吻合组有髓神经纤维数量均显著多于神经切断组(p <0.05)。神经超微结构示,假手术组大鼠L6VR内可见大量发育成熟的有髓轴突,轴突髓鞘较厚。神经切断组未见到正常形态的有髓神经纤维。神经吻合组大鼠L6VR可见大量的有髓神经纤维再生,轴突髓鞘较厚,致密,轴浆丰富。
     结论:逆行神经追踪、半薄切片甲苯胺蓝染色及电镜超微结构研究证明躯体神经—内脏神经通过端端吻合可以实现神经再生,再生的神经纤维可以长入并取代内脏神经(L6VR)。
     第二部分躯体神经-内脏神经吻合对大鼠勃起功能影响研究
     目的:验证躯体神经-内脏神经端端吻合后再生的神经能否发挥功能,引发阴茎勃起。
     方法:取雄性SD大鼠(体重250~300g)30只,随机分为3组(每组10只):假手术组,只分离出神经而不切断;神经切断组,双侧L6VR、S1VR及左侧L4VR切断;神经吻合组,双侧L6VR、S1VR及左侧L4VR切断后,左侧L4VR与左侧L6VR行端端显微吻合。术后16周,假手术组、神经切断组、神经吻合组大鼠行海绵体内压力(ICP)测定,三组分别电刺激L6VR、L6VR断端及L4VR,同时记录阴茎海绵体内压力及动脉压力。
     结果:电刺激时,假手术组达到的最大海绵体压力(ICPmax)为72.7±2.5mmHg,海绵体压升高值(ICP increase)为60.5±3.3mmHg,海绵体压力升高值与平均动脉压比值(ICP/MAP)为0.68±0.03。神经切断组ICP max为17.1±0.9mmHg,ICP increase为2.7±0.5mmHg,ICP/MAP为0.03±0.01。神经吻合组ICP max为39.4±2.7mmHg,ICP increase为26.7±3.0mmHg,ICP/MAP为0.31±0.04。假手术组和神经吻合组ICPmax、ICP increase及ICP/MAP均显著高于神经切断组(p <0.05)。
     结论:大鼠躯体神经—内脏神经反射通路建立后,刺激L4VR可以导致海绵体内压力的升高,证实躯体神经不但能够长入并取代内脏神经,再生的神经还能发挥功能,引发阴茎勃起。
     第三部分躯体神经-内脏神经吻合重建大鼠勃起功能后阴茎NOS表达及组织学改变
     目的:探讨躯体神经—内脏神经反射通路建立后,大鼠阴茎NOS表达情况及组织学改变。
     方法:假手术组、神经切断组、神经吻合组大鼠(各10只)行海绵体测压后剪刀取下阴茎组织,取一部分用4%多聚甲醛固定,石蜡包埋,切片行Masson染色,观察阴茎平滑肌与胶原纤维的变化;另一部分用4%多聚甲醛固定后置入30%蔗糖脱水,冰冻切片行NADPH-黄递酶染色及nNOS免疫荧光染色,检测阴茎组织中NOS阳性神经纤维表达量。
     结果:阴茎组织Masson染色后平滑肌和胶原纤维分别呈红色和蓝色。假手术组大鼠平滑肌与胶原纤维比值为0.109±0.008,神经切断组为0.043±0.005,神经吻合组为0.089±0.007。假手术组和神经吻合组大鼠平滑肌与胶原纤维比值显著高于神经切断组(P<0.05)。假手术组大鼠阴茎背神经中可见大量NADPH阳性神经纤维表达。神经切断组NADPH阳性神经纤维表达数量显著下降。神经吻合组NADPH阳性神经纤维表达量显著高于神经切断组(P<0.05)。假手术组阴茎背神经中nNOS阳性神经纤维所占比例为0.014±0.002。与假手术组相比,神经切断组阴茎背神经中nNOS阳性神经纤维所占比例明显降低(p <0.05)。神经吻合组阴茎背神经中nNOS阳性神经纤维所占比例为0.009±0.001,显著高于神经切断组(p <0.05)
     结论:躯体神经—内脏神经反射通路的建立显著改善大鼠阴茎组织内平滑肌与胶原纤维比值,抑制阴茎的纤维化,增加阴茎组织中NOS阳性神经纤维的表达。
PartⅠ Neural regeneration research after anastomosis ofautonomic nerve and somatic nerve
     Objective: To investigate the neural regeneration through retrograde tracing andmorphological studies after anastomosis of autonomic nerve and somatic nerve.
     Methods: Thirty-three adult male SD rats (250~300g) were randomly divided into threegroups: sham group, neurotomy group and anastomosis group. In sham group, left L4ventral root (VR) and bilateral L6-S1VR were detached and left intact. In neurotomy group,the left L4VR and bilateral L6-S1VR were detached and then transected. In anastomosisgroup, the left L4VR and bilateral L6-S1VR were transected, and the proximal stump ofthe left L4VR was anastomosed to the distal stump of the left L6VR.16weeks afteroperation,6rats from sham group, neurotomy group and anastomosis group, respectively,were used for retrograde tracing study.
     The fluorogold (FG) was injected into the left major pelvic ganglion (MPG) of the rats.7days later, the rats were put to death, and frozen sections of spinal cord were obtained. Thenumbers and distribution of FG-positive neurons were observed using a fluorescencemicroscope.5mm long nerve segments of the L6VR were harvested from the remainingfive rats in each group, and used for semi-thin sections stained with toluidine blue andultrastructural study.
     Results: FG labeled neurons were mainly observed in the intermediolateral cell columnregion of the L6-S1spinal cord in sham group. However in anastomosis group, FG labeledneurons were observed in the ventral horn of the L4spinal cord segment. No FG-labeledneurons appeared in any segment of the spinal cord in neurotomy group. In sham group, thenumber of FG labeled neurons in L6and S1spinal cord segments was13.2±1.3and4.8±0.5respectively. In anastomosis group, the number of FG labeled neurons in the ventralhorn of the L4spinal cord segment was7.9±1.1. The number of FG labeled neurons in anastomosis group was significantly higher than that in neurotomy group (p <0.05).semi-thin sections of the L6VR in sham group showed a large number of normalmyelinated nerve fibers, and the number of myelinated nerve fibers was784±45. Nonormal nerve fibers were identified in neurotomy group. In anastomosis group, a great dealof myelinated nerve fiber regeneration was observed, and the number of myelinated nervefibers was510±53. The number of myelinated nerve fibers in the sham group andanastomosis group was significantly higher than that in neurotomy group (p <0.05). Inultrastructural study, a large number of mature myelinated axons was observed at L6VR insham group. No normal myelinated nerve fibers was detected in neurotomy group. A greatdeal of myelinated nerve fiber regeneration was observed at L6VR in anastomosis group,and the myelin sheaths of the regenerated nerve fibers were thick and dense.
     Conclusion: Retrograde tracing, semi-thin sections stained with toluidine blue andultrastructural studies have shown that nerve regeneration can be achieved throughend-to-end anastomosis of autonomic nerve and somatic nerve, and regenerated nervefibers can grow into and replace autonomic nerve (L6VR).
     Part II The effect of anastomosis of autonomic nerve andsomatic nerve on erectile function
     Objective: To investigate whether the regenerated nerve could control penile erection afteranastomosis of autonomic nerve and somatic nerve.
     Methods: Thirty adult male SD rats (250~300g) were randomly divided into three groups:sham group, sham operation; neurotomy group, transection of left L4VR and bilateralL6-S1VR; anastomosis group, transection of left L4VR and bilateral L6-S1VR andsurgical anastomosis of left L4VR to L6VR.16weeks after operation, intracavernouspressure (ICP) measurement was performed in sham group, neurotomy group andanastomosis group respectively. Electrostimulation was carried out using a bipolar stainlesssteel electrode by hooking intact L6VR in sham group, transected L6VR in neurotomygroup, L4VR in anastomosis group, and the ICP and mean arterial pressure (MAP) weremeasured at the same time.
     Results: When the left L6VR was stimulated in sham group, the ICP max, ICP increaseand ICP/MAP ratio was72.7±2.5mmHg,60.5±3.3mmHg and0.68±0.03respectively.However in neurotomy group, no obvious ICP change was observed. When the left L4VRwas stimulated in anastomosis group, the ICP max, ICP increase and ICP/MAP ratio was39.4±2.7mmHg,26.7±3.0mmHg and0.31±0.04respectively. The the ICP max, ICPincrease and ICP/MAP ratio in anastomosis group presented a significantly increasecompared to neurotomy group (P <0.05), but was obviously lower than that of sham group(P<0.05).
     Conclusion: Stimulation on the left L4VR proximal to the anastomosis resulted inincreased ICP after the establishment of the somatic-autonomic reflex pathways, whichindicated that not only the somatic nerve was able to regenerate and grow into theautonomic nerve, but also regenerated nerve can lead to penile erection.
     Part III NOS expression and histological changes of penis inrats after reconstruction of erectile function throughanastomosis of autonomic nerve and somatic nerve
     Objective: To investigate NOS expression and histological changes of penis in rats afteranastomosis of autonomic nerve and somatic nerve.
     Methods: The penile tissues were removed from the rats in sham group, neurotomy groupand anastomosis group respectively after evaluation of erectile function. Following routinedehydration, one part of penile tissues were cut into paraffin sections, and stained byMasson staining that differentially stains smooth muscle cells (red staining) and collagenfibers (green staining). Another part of the penile tissues were fixed in4%formalin, anddehydrated in30%sucrose. The frozen sections were stained by NADPH diaphorase andimmunofluorescence, and the expression of NOS positive nerve fibers were detected in thepenile tissues.
     Results: Following Masson staining, smooth museles were stained with red, and collagenwith blue. The ratio of smooth museles to collagen fibers was0.109±0.008in sham group,0.043±0.005in neurotomy group and0.089±0.007in anastomosis group respectively.Which was much lower than that in sham group The ratio of smooth museles to collagenfibers in sham group and anastomosis group were much higher than that in sham group (P<0.05). A large number of NADPH-positive nerve fibers was observed in the penile dorsalnerves in sham group. The number of NADPH-positive nerve fibers decreased significantlyin neurotomy group. The number of NADPH-positive nerve fibers in anastomosis groupwas significantly higher than that in neurotomy group (P <0.05). The nNOS positive nervefibers/dorsal nerve was0.014±0.002in sham group. The nNOS positive nervefibers/dorsal nerve was significantly lower in neurotomy group than that in sham group (p<0.05). The nNOS positive nerve fibers/dorsal nerve in anastomosis group was0.009± 0.001, which was much higher than that in neurotomy group (p <0.05).
     Conclusion: The ratio of smooth museles to collagen fibers in the penile tissues of the ratswas significantly improved, and the expression of NOS positive nerve fibers increased afterthe establishment of the somatic-autonomic reflex pathways.
引文
1. Racial/ethnic differences in the birth prevalence of spina bifida-United States,1995-2005. MMWR Morb Mortal Wkly Rep2009,57(53):1409-1413.
    2. Chen G, Pei LJ, Huang J, et al. Unusual patterns of neural tube defects in a high riskregion of northern China. Biomed Environ Sci2009,22(4):340-344.
    3. Vinck A, Nijhuis-van der Sanden MW, Roeleveld NJ, et al. Motor profile andcognitive functioning in children with spina bifida. Eur J Paediatr Neurol2010,14(1):86-92.
    4. Nanigian DK, Nguyen T, Tanaka ST, et al. Development and validation of the fecalincontinence and constipation quality of life measure in children with spina bifida. JUrol2008,180(4Suppl):1770-1773; discussion1773.
    5. Game X, Moscovici J, Game L, et al. Evaluation of sexual function in young menwith spina bifida and myelomeningocele using the International Index of ErectileFunction. Urology2006,67(3):566-570.
    6. Palmer JS, Kaplan WE, Firlit CF. Erectile dysfunction in spina bifida is treatable.Lancet1999,354(9173):125-126.
    7. Selzman AA, Elder JS, Mapstone TB. Urologic consequences of myelodysplasiaand other congenital abnormalities of the spinal cord. Urol Clin North Am1993,20(3):485-504.
    8. Xiao CG. Reinnervation for neurogenic bladder: historic review and introduction ofa somatic-autonomic reflex pathway procedure for patients with spinal cord injuryor spina bifida. Eur Urol2006,49(1):22-28; discussion28-29.
    9. Xiao CG, Godec CJ. A possible new reflex pathway for micturition after spinal cordinjury. Paraplegia1994,32(5):300-307.
    10. Xiao CG, Du MX, Dai C, et al. An artificial somatic-central nervoussystem-autonomic reflex pathway for controllable micturition after spinal cordinjury: preliminary results in15patients. J Urol2003,170(4Pt1):1237-1241.
    11. Xiao CG, Du MX, Li B, et al. An artificial somatic-autonomic reflex pathwayprocedure for bladder control in children with spina bifida. J Urol2005,173(6):2112-2116.
    12. Peters KM, Girdler B, Turzewski C, et al. Outcomes of lumbar to sacral nervererouting for spina bifida. J Urol2010,184(2):702-707.
    13. Rampin O, Bernabe J, Giuliano F. Spinal control of penile erection. World J Urol1997,15(1):2-13.
    14. Lepor H, Gregerman M, Crosby R, et al. Precise localization of the autonomicnerves from the pelvic plexus to the corpora cavernosa: a detailed anatomical studyof the adult male pelvis. J Urol1985,133(2):207-212.
    15. Mauroy B, Demondion X, Drizenko A, et al. The inferior hypogastric plexus (pelvicplexus): its importance in neural preservation techniques. Surg Radiol Anat2003,25(1):6-15.
    16. Clausen N, Wolloscheck T, Konerding MA. How to optimize autonomic nervepreservation in total mesorectal excision: clinical topography and morphology ofpelvic nerves and fasciae. World J Surg2008,32(8):1768-1775.
    17. Cornette L, Verpoorten C, Lagae L, et al. Tethered cord syndrome in occult spinaldysraphism: timing and outcome of surgical release. Neurology1998,50(6):1761-1765.
    1. Kilvington B. Report C. An Investigation on the Regeneration of Nerves, withRegard to Surgical Treatment of Certain Paralysis. Br Med J1907,1(2417):988-990.
    2. Xiao CG, Godec CJ. A possible new reflex pathway for micturition after spinal cordinjury. Paraplegia1994,32(5):300-307.
    3. Venkataramana NK. Spinal dysraphism. J Pediatr Neurosci2011,6(Suppl1):S31-40.
    4. Selzman AA, Elder JS, Mapstone TB. Urologic consequences of myelodysplasiaand other congenital abnormalities of the spinal cord. Urol Clin North Am1993,20(3):485-504.
    5. Dorner S. Sexual interest and activity in adolescents with spina bifida. J ChildPsychol Psychiatry1977,18(3):229-237.
    6. Sandler AD, Worley G, Leroy EC, et al. Sexual function and erection capabilityamong young men with spina bifida. Dev Med Child Neurol1996,38(9):823-829.
    7. Game X, Moscovici J, Game L, et al. Evaluation of sexual function in young menwith spina bifida and myelomeningocele using the International Index of ErectileFunction. Urology2006,67(3):566-570.
    8. Palmer JS, Kaplan WE, Firlit CF. Erectile dysfunction in patients with spina bifidais a treatable condition. J Urol2000,164(3Pt2):958-961.
    9. Palmer JS, Kaplan WE, Firlit CF. Erectile dysfunction in spina bifida is treatable.Lancet1999,354(9173):125-126.
    10. Xiao CG. Reinnervation for neurogenic bladder: historic review and introduction ofa somatic-autonomic reflex pathway procedure for patients with spinal cord injuryor spina bifida. Eur Urol2006,49(1):22-28; discussion28-29.
    11. Xiao CG, Du MX, Li B, et al. An artificial somatic-autonomic reflex pathwayprocedure for bladder control in children with spina bifida. J Urol2005,173(6):2112-2116.
    12. Peters KM, Girdler B, Turzewski C, et al. Outcomes of lumbar to sacral nervererouting for spina bifida. J Urol2010,184(2):702-707.
    13. Gao WS, Dong CJ, Li SQ, et al. Re-innervation of the bladder through end-to-sideneurorrhaphy of autonomic nerve and somatic nerve in rats. J Neurotrauma2012,29(8):1704-1713.
    14. Nuding SC, Nadelhaft I. Bilateral projections of the pontine micturition center tothe sacral parasympathetic nucleus in the rat. Brain Res1998,785(2):185-194.
    15. Nadelhaft I, Booth AM. The location and morphology of preganglionic neurons andthe distribution of visceral afferents from the rat pelvic nerve: a horseradishperoxidase study. J Comp Neurol1984,226(2):238-245.
    16.肖传国,李兵.人工体神经-内脏神经吻合后神经纤维再生过程的光镜电镜观察.中华实验外科杂志2002,19(6):571-572.
    17. Dong C, Gao W, Jia R, et al. Reconstruction of anorectal function throughend-to-side neurorrhaphy by autonomic nerves and somatic nerve in rats. J Surg Res2013,180(2):e63-71.
    1. Palmer JS, Kaplan WE, Firlit CF. Erectile dysfunction in spina bifida is treatable.Lancet1999,354(9173):125-126.
    2. Rizio N, Tran C, Sorenson M. Efficacy and satisfaction rates of oral PDE5is in thetreatment of erectile dysfunction secondary to spinal cord injury: a review ofliterature. J Spinal Cord Med2012,35(4):219-228.
    3. Yamada S, Won DJ, Yamada SM. Pathophysiology of tethered cord syndrome:correlation with symptomatology. Neurosurg Focus2004,16(2):E6.
    4. Game X, Moscovici J, Game L, et al. Evaluation of sexual function in young menwith spina bifida and myelomeningocele using the International Index of ErectileFunction. Urology2006,67(3):566-570.
    5. Sawyer SM, Roberts KV. Sexual and reproductive health in young people withspina bifida. Dev Med Child Neurol1999,41(10):671-675.
    6. Verhoef M, Barf HA, Vroege JA, et al. Sex education, relationships, and sexualityin young adults with spina bifida. Arch Phys Med Rehabil2005,86(5):979-987.
    7. Palmer JS, Kaplan WE, Firlit CF. Erectile dysfunction in patients with spina bifidais a treatable condition. J Urol2000,164(3Pt2):958-961.
    8. Xiao CG. Reinnervation for neurogenic bladder: historic review and introduction ofa somatic-autonomic reflex pathway procedure for patients with spinal cord injuryor spina bifida. Eur Urol2006,49(1):22-28; discussion28-29.
    9. Xiao CG, Godec CJ. A possible new reflex pathway for micturition after spinal cordinjury. Paraplegia1994,32(5):300-307.
    10. Xiao CG, Du MX, Li B, et al. An artificial somatic-autonomic reflex pathwayprocedure for bladder control in children with spina bifida. J Urol2005,173(6):2112-2116.
    11. Keast JR. Remodelling of connections in pelvic ganglia after hypogastric nervecrush. Neuroscience2004,126(2):405-414.
    12. Ryu JK, Song SU, Han JY, et al. Establishment of penile fibrosis model in a ratusing mouse NIH3T3fibroblasts expressing transforming growth factor beta1. BiolReprod2005,72(4):916-921.
    1. Ignarro LJ, Bush PA, Buga GM, et al. Nitric oxide and cyclic GMP formation uponelectrical field stimulation cause relaxation of corpus cavernosum smooth muscle.Biochem Biophys Res Commun1990,170(2):843-850.
    2. Lue TF. Erectile dysfunction. N Engl J Med2000,342(24):1802-1813.
    3. Podlasek CA, Gonzalez CM, Zelner DJ, et al. Analysis of NOS isoform changes ina post radical prostatectomy model of erectile dysfunction. Int J Impot Res2001,13Suppl5:S1-15.
    4. Jung GW, Kwak JY, Kim IH, et al. The role of growth factor on regeneration ofnitric oxide synthase (NOS)--containing nerves after cavernous neurotomy in therats. Int J Impot Res1999,11(4):227-235.
    5. Fandel TM, Albersen M, Lin G, et al. Recruitment of intracavernously injectedadipose-derived stem cells to the major pelvic ganglion improves erectile functionin a rat model of cavernous nerve injury. Eur Urol2012,61(1):201-210.
    6. Jin HR, Chung YG, Kim WJ, et al. A mouse model of cavernous nerveinjury-induced erectile dysfunction: functional and morphological characterizationof the corpus cavernosum. J Sex Med2010,7(10):3351-3364.
    7. Lee CH, Kim HS, Goo MJ, et al. Chronic administration of udenafil, a selectivephosphodiesterase type5inhibitor, promotes erectile function recovery in an animalmodel of bilateral cavernous nerve crush injury. J Sex Med2011,8(5):1330-1340.
    8. Shen ZJ, Jin XD, Chen ZD, et al. Effect of aging on penile ultrastructure. Asian JAndrol2001,3(4):281-284.
    9. Ferrini MG, Kovanecz I, Sanchez S, et al. Long-term continuous treatment withsildenafil ameliorates aging-related erectile dysfunction and the underlying corporalfibrosis in the rat. Biol Reprod2007,76(5):915-923.
    10. El-Sakka A, Yen TS, Lin CS, et al. Traumatic arteriogenic erectile dysfunction: a ratmodel. Int J Impot Res2001,13(3):162-171.
    11. Albersen M, Fandel TM, Zhang H, et al. Pentoxifylline promotes recovery oferectile function in a rat model of postprostatectomy erectile dysfunction. Eur Urol2011,59(2):286-296.
    12. Lee CH, Shin JH, Ahn GJ, et al. Udenafil enhances the recovery of erectile functionand ameliorates the pathophysiological consequences of cavernous nerve resection.J Sex Med2010,7(7):2564-2571.
    13. Tamura M, Kagawa S, Tsuruo Y, et al. Localization of NADPH diaphorase andvasoactive intestinal polypeptide-containing neurons in the efferent pathway to therat corpus cavernosum. Eur Urol1997,32(1):100-104.
    14. Ding YQ, Wang YQ, Qin BZ, et al. The major pelvic ganglion is the main source ofnitric oxide synthase-containing nerve fibers in penile erectile tissue of the rat.Neurosci Lett1993,164(1-2):187-189.
    15. Keast JR. A possible neural source of nitric oxide in the rat penis. Neurosci Lett1992,143(1-2):69-73.
    16. Hu W, Cheng B, Liu T, et al. Erectile function restoration after repair of excisedcavernous nerves by autologous vein graft in rats. J Sex Med2010,7(10):3365-3372.
    1.Rampin O, Bernabe J, Giuliano F. Spinal control of penile erection. World J Urol1997,15(1):2-13.
    2. Giuliano F, Rampin O. Central neural regulation of penile erection. NeurosciBiobehav Rev2000,24(5):517-533.
    3. Burnett AL. Neuroprotection and nerve grafts in the treatment of neurogenicerectile dysfunction. J Urol2003,170(2Pt2):S31-34; discussion S34.
    4. Burnett AL. Erectile dysfunction. J Urol2006,175(3Pt2):S25-31.
    5. Brown DJ, Hill ST, Baker HW. Male fertility and sexual function after spinal cordinjury. Prog Brain Res2006,152:427-439.
    6. Game X, Moscovici J, Game L, et al. Evaluation of sexual function in young menwith spina bifida and myelomeningocele using the International Index of ErectileFunction. Urology2006,67(3):566-570.
    7. Mulhall JP, Morgentaler A. Penile rehabilitation should become the norm for radicalprostatectomy patients. J Sex Med2007,4(3):538-543.
    8. Wang R. Penile rehabilitation after radical prostatectomy: where do we stand andwhere are we going? J Sex Med2007,4(4Pt2):1085-1097.
    9. Stien R.[Sexual dysfunction in men with spinal injuries]. Tidsskr Nor Laegeforen2008,128(4):453-456.
    10. Burguera JA, Garcia Reboll L, Martinez Agullo E.[Sexual dysfunction inParkinson's disease]. Neurologia1994,9(5):178-181.
    11. Lue TF. Neurogenic erectile dysfunction. Clin Auton Res2001,11(5):285-294.
    12. Awad A, Alsaid B, Bessede T, et al. Evolution in the concept of erection anatomy.Surg Radiol Anat2011,33(4):301-312.
    13. Marson L, Platt KB, McKenna KE. Central nervous system innervation of the penisas revealed by the transneuronal transport of pseudorabies virus. Neuroscience1993,55(1):263-280.
    14. Ignarro LJ, Bush PA, Buga GM, et al. Nitric oxide and cyclic GMP formation uponelectrical field stimulation cause relaxation of corpus cavernosum smooth muscle.Biochem Biophys Res Commun1990,170(2):843-850.
    15. Lue TF. Erectile dysfunction. N Engl J Med2000,342(24):1802-1813.
    16. Rees PM, Fowler CJ, Maas CP. Sexual function in men and women withneurological disorders. Lancet2007,369(9560):512-525.
    17. Palmer JS, Kaplan WE, Firlit CF. Erectile dysfunction in spina bifida is treatable.Lancet1999,354(9173):125-126.
    18. Rizio N, Tran C, Sorenson M. Efficacy and satisfaction rates of oral PDE5is in thetreatment of erectile dysfunction secondary to spinal cord injury: a review ofliterature. J Spinal Cord Med2012,35(4):219-228.
    19. Mulhall JP, Muller A, Donohue JF, et al. The functional and structural consequencesof cavernous nerve injury are ameliorated by sildenafil citrate. J Sex Med2008,5(5):1126-1136.
    20. Lombardi G, Nelli F, Celso M, et al. Treating erectile dysfunction and centralneurological diseases with oral phosphodiesterase type5inhibitors. Review of theliterature. J Sex Med2012,9(4):970-985.
    21. Wespes E, Amar E, Hatzichristou D, et al. EAU Guidelines on erectile dysfunction:an update. Eur Urol2006,49(5):806-815.
    22. Montague DK, Jarow JP, Broderick GA, et al. Chapter1: The management oferectile dysfunction: an AUA update. J Urol2005,174(1):230-239.
    23. Zippe CD, Jhaveri FM, Klein EA, et al. Role of Viagra after radical prostatectomy.Urology2000,55(2):241-245.
    24. Zagaja GP, Mhoon DA, Aikens JE, et al. Sildenafil in the treatment of erectiledysfunction after radical prostatectomy. Urology2000,56(4):631-634.
    25. Palmer JS, Kaplan WE, Firlit CF. Erectile dysfunction in patients with spina bifidais a treatable condition. J Urol2000,164(3Pt2):958-961.
    26. Maytom MC, Derry FA, Dinsmore WW, et al. A two-part pilot study of sildenafil(VIAGRA) in men with erectile dysfunction caused by spinal cord injury. SpinalCord1999,37(2):110-116.
    27. Giuliano F, Hultling C, El Masry WS, et al. Randomized trial of sildenafil for thetreatment of erectile dysfunction in spinal cord injury. Sildenafil Study Group. AnnNeurol1999,46(1):15-21.
    28. Hultling C, Giuliano F, Quirk F, et al. Quality of life in patients with spinal cordinjury receiving Viagra (sildenafil citrate) for the treatment of erectile dysfunction.Spinal Cord2000,38(6):363-370.
    29. Zesiewicz TA, Helal M, Hauser RA. Sildenafil citrate (Viagra) for the treatment oferectile dysfunction in men with Parkinson's disease. Mov Disord2000,15(2):305-308.
    30. Hussain IF, Brady CM, Swinn MJ, et al. Treatment of erectile dysfunction withsildenafil citrate (Viagra) in parkinsonism due to Parkinson's disease or multiplesystem atrophy with observations on orthostatic hypotension. J Neurol NeurosurgPsychiatry2001,71(3):371-374.
    31. Raffaele R, Vecchio I, Giammusso B, et al. Efficacy and safety of fixed-dose oralsildenafil in the treatment of sexual dysfunction in depressed patients withidiopathic Parkinson's disease. Eur Urol2002,41(4):382-386.
    32. Quinlan DM, Nelson RJ, Walsh PC. Cavernous nerve grafts restore erectile functionin denervated rats. J Urol1991,145(2):380-383.
    33. Ball RA, Richie JP, Vickers MA, et al. Microsurgical nerve graft repair of theablated cavernosal nerves in the rat. J Surg Res1992,53(3):280-286.
    34. Walsh PC. Nerve grafts are rarely necessary and are unlikely to improve sexualfunction in men undergoing anatomic radical prostatectomy. Urology2001,57(6):1020-1024.
    35. Kim ED, Scardino PT, Hampel O, et al. Interposition of sural nerve restoresfunction of cavernous nerves resected during radical prostatectomy. J Urol1999,161(1):188-192.
    36. Kim ED, Nath R, Kadmon D, et al. Bilateral nerve graft during radical retropubicprostatectomy:1-year followup. J Urol2001,165(6Pt1):1950-1956.
    37. Burgers JK, Nelson RJ, Quinlan DM, et al. Nerve growth factor, nerve grafts andamniotic membrane grafts restore erectile function in rats. J Urol1991,146(2):463-468.
    38. Ball RA, Lipton SA, Dreyer EB, et al. Entubulization repair of severed cavernousnerves in the rat resulting in return of erectile function. J Urol1992,148(1):211-215.
    39. Te AE, Santarosa RP, Koo HP, et al. Neurotrophic factors in the rat penis. J Urol1994,152(6Pt1):2167-2172.
    40. Dahiya R, Chui R, Perinchery G, et al. Differential gene expression of growthfactors in young and old rat penile tissues is associated with erectile dysfunction. IntJ Impot Res1999,11(4):201-206.
    41. Jung GW, Spencer EM, Lue TF. Growth hormone enhances regeneration of nitricoxide synthase-containing penile nerves after cavernous nerve neurotomy in rats. JUrol1998,160(5):1899-1904.
    42. Sezen SF, Hoke A, Burnett AL, et al. Immunophilin ligand FK506isneuroprotective for penile innervation. Nat Med2001,7(10):1073-1074.
    43. Sezen SF, Lagoda G, Burnett AL. Role of immunophilins in recovery of erectilefunction after cavernous nerve injury. J Sex Med2009,6Suppl3:340-346.
    44. Park K, Ahn KY, Kim MK, et al. Intracavernosal injection of vascular endothelialgrowth factor improves erectile function in aged rats. Eur Urol2004,46(3):403-407.
    45. Bochinski D, Lin GT, Nunes L, et al. The effect of neural embryonic stem celltherapy in a rat model of cavernosal nerve injury. BJU Int2004,94(6):904-909.
    46. Kim Y, de Miguel F, Usiene I, et al. Injection of skeletal muscle-derived cells intothe penis improves erectile function. Int J Impot Res2006,18(4):329-334.
    47. Woo JC, Bae WJ, Kim SJ, et al. Transplantation of muscle-derived stem cells intothe corpus cavernosum restores erectile function in a rat model of cavernous nerveinjury. Korean J Urol2011,52(5):359-363.
    48. Albersen M, Fandel TM, Lin G, et al. Injections of adipose tissue-derived stem cellsand stem cell lysate improve recovery of erectile function in a rat model ofcavernous nerve injury. J Sex Med2010,7(10):3331-3340.
    49. You D, Jang MJ, Lee J, et al. Comparative analysis of periprostatic implantation andintracavernosal injection of human adipose tissue-derived stem cells for erectilefunction recovery in a rat model of cavernous nerve injury. Prostate2013,73(3):278-286.
    50. Abdel Aziz MT, El-Haggar S, Mostafa T, et al. Effect of mesenchymal stem cellpenile transplantation on erectile signaling of aged rats. Andrologia2010,42(3):187-192.
    51. You D, Jang MJ, Lee J, et al. Periprostatic implantation of human bonemarrow-derived mesenchymal stem cells potentiates recovery of erectile functionby intracavernosal injection in a rat model of cavernous nerve injury. Urology2013,81(1):104-110.
    52. Linet OI, Ogrinc FG. Efficacy and safety of intracavernosal alprostadil in men witherectile dysfunction. The Alprostadil Study Group. N Engl J Med1996,334(14):873-877.
    53. Rooney M, Pfister W, Mahoney M, et al. Long-term, multicenter study of the safetyand efficacy of topical alprostadil cream in male patients with erectile dysfunction.J Sex Med2009,6(2):520-534.
    54. Dinsmore WW, Gingell C, Hackett G, et al. Treating men with predominantlynonpsychogenic erectile dysfunction with intracavernosal vasoactive intestinalpolypeptide and phentolamine mesylate in a novel auto-injector system: amulticentre double-blind placebo-controlled study. BJU Int1999,83(3):274-279.
    55. Flynn RJ, Williams G. Long-term follow-up of patients with erectile dysfunctioncommenced on self injection with intracavernosal papaverine with or withoutphentolamine. Br J Urol1996,78(4):628-631.
    56. Chao R, Clowers DE. Experience with intracavernosal tri-mixture for themanagement of neurogenic erectile dysfunction. Arch Phys Med Rehabil1994,75(3):276-278.
    57. Denil J, Ohl DA, Smythe C. Vacuum erection device in spinal cord injured men:patient and partner satisfaction. Arch Phys Med Rehabil1996,77(8):750-753.
    58. Lewis RW. Long-term results of penile prosthetic implants. Urol Clin North Am1995,22(4):847-856.
    59. Thomalla JV, Thompson ST, Rowland RG, et al. Infectious complications of penileprosthetic implants. J Urol1987,138(1):65-67.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700