用户名: 密码: 验证码:
用于蛋白检测的生物条码技术与方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前癌症是发达国家和大多数发展中国家一个主要的健康问题。每年约有1200万人诊断为肿瘤,其中近800万人死亡。肿瘤治疗的重点在于及早明确诊断,而诊断的关键在于肿瘤在其早期就可被发现与诊断。早期肿瘤的治疗效果要明显优于中晚期肿瘤,同时费用也较中晚期肿瘤明显降低。人们一直在探索、寻求并希望获得肿瘤出现前或是刚刚发生时的标志,借以对肿瘤给予有效、及时的诊断与治疗。相对于肿瘤发生的组织学的改变,肿瘤标志物已成为肿瘤早期诊断和治疗有效的依据。因此目前肿瘤标志物是肿瘤早期诊断有效的客观指标之一已为人所共识。
     目前认为肿瘤标志物分为三类,第一种是血清标志物,第二种是细胞标志物,第三种为分子与遗传标志。肿瘤标志物检测方法有酶联免疫法、放射免疫法、免疫荧光测定、放射免疫显像、自动化免疫分析和免疫组化以及目前多用于生物学领域的分子生物学技术等等。但现有的这些检测方法灵敏度尚难以达到在肿瘤早期即发现某些肿瘤标志物含量或水平增高或异常,而多是在肿瘤发展到一定程度或阶段才检测到某些肿瘤标志物水平或含量的异常;或是难以进行高通量的检测;或因检测方法价格昂贵难以进行大规模的普查与重点筛查。
     目前以寡核苷酸链为基础的生物条码技术的研究与应用非常广泛。生物条码可以以指数级扩增信号,从而提高检测的灵敏度。目前生物条码结合比色、银染以及电化学发光等技术研究发展迅猛。灵敏度也较上述常用检测方法有明显提高。基因芯片的特点是具备高通量,同时可检测多个指标。将生物条码技术的高灵敏度与基因芯片的高通量相结合针对肿瘤标志物的水平或含量进行检测,在现有基础上对肿瘤的早期诊断具有重要的意义。
     本研究应用生物条码与基因芯片对蛋白抗原IgG的水平进行检测。不但可以提高检测的灵敏度,还可以具有检测高通量的特点,可使多个靶标同时得以检测,提高了检测效率。通过本研究可以为针对多个包括蛋白类的指标的检测方法与技术的研究铺垫良好的基础。
     本论文具体研究内容如下:
     一、分子信标的研究与应用
     分子信标是一种特殊的生物条码。是一种设计精妙的新型荧光标记的核酸探针。特殊的发夹结构使其具有很强的特异性识别靶序列的能力。目前分子信标已成为分子生物学和生物技术中一种应用广泛的研究工具。本研究设计了三条不同序列的分子信标。通过应用不同序列的分子信标检测待测蛋白抗原浓度,其测定最小值达到6.67 fM(1 pg/ml)。上述研究证实了应用分子信标技术测定蛋白抗原浓度的可行性、灵敏度以及特异性。
     二、量子点的研究与应用
     量子点又称为半导体纳米微晶体,是一种由Ⅱ-Ⅵ族或Ⅲ-Ⅴ族元素组成的稳定的、可溶于水、尺寸在2-20 nm之间的纳米晶粒。目前量子点作为荧光探针在各领域的研究中应用非常广泛。与传统的荧光探针相比,量子点优势显著。本研究应用量子点标记生物条码对待测蛋白抗原进行检测,结果稳定可靠。可知测定待测蛋白抗原IgG的浓度最小值为333.5 fM(50 pg/ml)。但尚存在偶联定量的问题。需要进一步研究与探索。
     三、寡核苷酸生物条码的研究与应用
     自行设计三条不同序列,各由60个碱基组成,用于制备基因芯片用单链DNA生物条码,并由此产生与之部分碱基序列完全互补的三条序列不同的,各由40个碱基组成的单链DNA生物条码。应用待测蛋白抗原IgG的单克隆抗体标记粒径为2-3μm,C3间隔臂胺基修饰的的磁性微球;40个碱基组成的单链DNA生物条码5’端标记荧光素Cy3,3’端标记巯基。然后应用上述双标记的单链DNA生物条码与待测蛋白抗原IgG的多克隆抗体双标记自行制备,粒径为13 nm的纳米金颗粒。通过测定标记荧光素的生物条码的荧光强度,可知测定待测蛋白抗原IgG的最小浓度值为133.4 fM(20 pg/ml)。上述研究证实了应用寡核苷酸生物条码技术测定待测蛋白抗原浓度的可行性、灵敏度以及特异性。为与基因芯片结合生物条码技术的进一步研究与应用奠定基础。
     四、基因芯片的研究与应用
     随着后基因组时代到来而发展起来的基因芯片技术具有高通量的优势,可同时对同一样本中多种不同的靶标进行分析和测定。本研究应用自行设计,由60个碱基组成的单链DNA生物条码制备基因芯片。通过对待测蛋白抗原进行检测,其灵敏度也可达6.67 fM。结果同时显示应用基因芯片技术具有较好的特异性与高通量的特点。我们分别应用三条不同序列的生物条码制备的基因芯片进行检测,结果具有良好的一致性,进一步证实该方法的稳定与可靠性。
     综上所述,本实验分别应用生物条码、量子点、分子信标与基因芯片等技术与方法结合磁性微球与纳米金等生物材料对蛋白抗原水平进行微量检测的可行性、稳定性及检测的灵敏度与特异性进入了比较深入的研究和探索。应用生物条码与基因芯片检测蛋白浓度的方法可行稳定,灵敏度到达6.67 fM,具有进一步研究与开发的潜能。分子信标与量子点在与上述生物材料结合应用方面上有很多问题需要进一步澄清与明确。该研究为进行肿瘤标志物的筛选与检测奠定了良好的基础。
At present, cancer remains a major problem in the developed and most developing countries, and there are approximately 12 million people will be diagnosed with cancer and more 8 million were died every year. The focus of cancer therapy is the diagnosis, and the key question is detected and diagnosed at the early stage of cancer in good time. The early treatment is obviously superior than its advanced stage, and the costs are significantly lower too. People have been doing and exploring the tumor marker indicating the tumorgenesis so as to diagnose and provide effective treatment progressively in time. Tumor marker has been an effective basis for the diagnosis and effective treatment of cancer at its early stage in comparing with the changes of cytohistology at the early stage of tumor. And now, it has been recognized by most people that many tumor markers are one of the effective objective index in diagnosising at early stage of tumor.
     There are classified three kinds of tumor markers, the serum tumor marker, the cellular tumor markers, and the molecular and genetic tumor markers. There are many measurement methods to detect the tumor marker, including ELISA, RIA, FIA, RII, IHC, automatic immunoassay system and molecular biology techniques applied in the molecular biology research now. But all the methods sensitivity is limited, and it is difficult to achieve a certain degree to diagnose the cancer at its early stage effectively, or only detect at its advanced stage, or is short of the characteristics of high throughput and difficult to be applied on a large scale general census and screening because of its expensive costs.
     The bio-bar-code technology based on the single-strand oligonucleotide is researched applied very comprehensively at present. The bio-bar-code technology can improve the detection sensitivity greatly by its cascade amplification. The research on the the bio-bar-code technology combining with some other methods, such as the scanometric, silver stain and electrochemiluminescence, has made a great progress now, and the detection sensitivity is improved more than before methods mentioned above. The characteristics of genechip are of high throughput, and it can detect many target markers at the same time. It will be of very important significance to detect the concentration or content by the bio-bar-code technology with more high sensitivity combing with the high throughput of genechip.
     This research focuses on the detection the concentration of the protein antigen IgG applying with the bio-bar-code and genechip. It not only improves the detection sensitivity, but also be of the characteristics with more high throughput to detect many taget markers at one time, and this method improves the detection efficiency greatly. This research paves the way for the study and research on the detection of many protein target markers at the same time, and including the tumor marker.
     The major contents of this paper are shown as follows:
     1. The research and application of molecular beacon (MB) Molecular beacon is a special kind of bio-bar-code prober, and is thought to be a new type fluorescein-labeled bio-bar-code probes with the exquisite design. MB is of more strong ability to specifically identify the target sequence for its extraordinary hair-pin structure. And now it has became a powerful research tool in the molecular biology and biotechnology. We designed three different sequence MB for the experiment to detect the target antigen, and the detection limit is 6.67 fM. The research proved the method to be of the availability, sensitivity and speciality in measuring the target antigen.
     2. The research and application of the Quantum Dot (QD)
     Quantum Dot called semiconductor nanocrystal is a kind of stable, soluble nanocrystal made from the second to sixth group or third to fifth group element, and its diameter is between two to twenty nanometer. QD has been applied in many scopes comprehensively as the fluorescence probes now. There are many advantages of it comparing with the general fluorescence probes. We detected the target antigen applying with the bio-bar-code labeled QD, and the results are stable and reliable. But there are some questions on how to confirm the coupling quantities to be solved.
     3. The research and application of the oligonucleotide bio-bar-code assay
     Designing three different sequence bio-bar-code, made of 60 bases, are prepared the genechip, hence there are three corresponding different sequence, consist of 40 bases, complementary to the sequence above. The monoclonal-antibody IgG was labeled on the amino-modified magnetic microparticles (MMPs) with C3 space arm, and the diameter of MMPs is two to three micrometer. And the single-strand DNA bio-bar-code was labeled the fluorescein Cy3 and the thiol-group on the terminal of its 5'and the 3'respectively. Then we modified gold nanoparticles (Au-NPs) with above dual-labeled bio-bar-codes and polyclonal-antibody IgG, Au-NPs diameter is about 13 nanometers. We detected the fluorescence intensity of the bio-bar-code to get the low limit of the target protein, and the minimum concentration is 133.4 fM. Ours research proved the availability, sensitivity and specificity of the bio-bar-code assay. It paved the way for the progressive research and application of the genechip combining with the bio-bar-code assay.
     4. The research and application of genechip
     With the advent of post-genomic era, the developed high-throughput gene chip technology has the characteristics of analyzing and measuring many different target markers in the same sample at one time. We prepared genechip with the single-strand DNA bio-bar-code consisted of 60 bases designed by ours. The sensitivity of the method reached to 6.67 fM too, and the method is of more better specificity and high throughput. We applied with three different sequence bio-bar-code to detect the same target antigen and come to the consistent results, it proved the stability and reliability of the genechip technology.
     All in brief, the study proved the availability, stability, sensitivity and specificity of the microconcentration detection method of target protein antigen applying the bio-bar-code assay, quantum dot, molecular beacon and genechip technology with the biomaterials of MMPs and Au-NPs. It showed available and stable of applying the bio-bar-code assay with the genechip technology, the sensitivity could reach to fetomolar level, and about 6.67 fM. The method will be of full potential in the research and application in the future. And there are many questions to be recognized and solved in applying the MB and QD with the biomaterials mentioned above. The research have paved a well way for the next study and applying in screening and measuring the tumor markers in the clinic at future.
引文
[1]B Vogelstein, ER Fearon, SR Hamilton, SE Kern, AC Preisinger, M Leppert, Y Nakamura, R White, AM Smits, and JL Bos. Genetic alterations during colorectal-tumor development[J]. N. Eng. J. Med,1988,319:525-532.
    [2]Beverly Handy. The Clinical Utility of Tumor Markers[J]. Lab Med,2009,44(2): 99-103.
    [3]Martin Fleisher. Criteria for tumor marker evaluation and utilization[J]. Med Lab Obs, 2003,35(4):16-18.
    [4]Susan E. Bates. Clinical Applications of Serum Tumor Markers[J]. Ann Intern Med, 1991,115(8):623-638.
    [5]D.L. Nielsen, M. Andersson, C. Kamby. HER2-targeted therapy in breast cancer. Monoclonal antibodies and tyrosine kinase inhibitors[J]. Cancer Treatment Reviews, 2009,35:121-136.
    [6]K.I. Pritchard. Tailored targeted therapy for all:a realistic and worthwhile objective against[J]. Breast Cancer Research,2009,11:(S3)S8.
    [7]R.M. Nakamura, W.W. Grody, J.T. Wu, R.B. Nagle. Cancer Diagnostics[M]. Totowa, New Jersey:Humanapress,2004:33.
    [8]Adkins ES, Brown R, Windle ML, Billmire DF, Othersen HB, Coppes MJ. Teratomas and other germ cell tumors[OL]: http://www.emedicine.com/ped/topic3023.htm. Updated May 2006. Accessed Aug 2007.
    [9]Bosl GJ, Sheinfeld J, Bajorin DF, Motzer RJ, Changanti RSK. Cancer of the Testis[M]. CANCER Principles & Practices of Oncology. Philadelphia, PA:Lippincott, Williams & Wilkins, McGraw-Hill Companies, Inc,2005:1(31).
    [10]Sterling RK, Mattar WE, Kwo PY. Cirrhosis. In:Rakel:Conn's Current Therapy[C], 59th ed. WB Saunders,2007.
    [11]National Comprehensive Cancer Network. Clinical Practice Guidelines in Oncology: Multiple Myeloma[OL]:
    http://www.nccn.org/professionals/physician_gls/PDF/myeloma.pdf. V.3.2007, Updated 2007, Accessed Aug 2007.
    [12]American Association for Clinical Chemistry. Tumor Markers[OL]: http://www.labtestsonline.org/understanding/analytes/tumor_markers/glance-3.html. Updated Apr 2006, Accessed Aug 2007.
    [13]Takeo Nomura, Wen-Chin Huang, Haiyen E. Zhau, Daqing Wu, Zhihui Xie, Hiromitsu Mimata, Majd Zayzafoon, Andrew N. Young, Fray F. Marshall, M.Neale Weitzmann and Leland W.K. Chung. β2-Microglobulin Promotes the Growth of Human Renal Cell Carcinoma through the Activation of the Protein Kinase A, Cyclic AMP-Responsive Element-Binding Protein, and Vascular Endothelial Growth Factor Axis[J]. Clin Cancer Res,2006,12(24):7294-7305.
    [14]Shipley WU, Kaufman DS, McDougal WS, Dahl DM, Michealson MD, Zietman AL. Cancers of the genitourinary system[M]. CANCER Principles & Practices of Oncology. Philadelphia, PA:Lippincott, Williams & Wilkins, McGraw-Hill Companies, Inc,2005:1(30).
    [15]K. Junker, T. Fritsch, A. Hartmann, W. Schubert. Multicolor fluorescence in situ hybridization (M-FISH) on cells from urine for the detection of bladder cancer[J]. Cytogenet Genome Res,2006,114:279-283.
    [16]Eaton LA. Ovarian Cancer. In:Rakel Conn's Current Therapy[C],59 ed. WB Saunders,2007.
    [17]Kumar. Ovarian Cancer. In:Kumar:Robbins and Cotran:Pathologic Basis of Disease[C],7 ed. WB Saunders,2005.
    [18]Carlson KJ, Skates SJ, Singer DE. Screening for ovarian cancer[J]. Ann Intern Med, 1994,121(2):124-132.
    [19]Sokoll LJ, Chan DW. Clinical Chemistry-Tumor Markers[C]. In:Abeloff:Clinical Oncology,3 ed, Churchill Livingston,2004,17.
    [20]American Association for Clinical Chemistry. Tumor Markers[OL]: http://www.labtestsonline.org/understanding/analytes/tumor_markers/glance-3.html. Updated Apr 2006. Accessed Aug 2007.
    [21]Clark JW. Management of gastrointestinal cancers[C]. In:Goroll AH, Mulley AG. Primary Care Medicine,5 ed. Lippincott Williams & Wilkins; McGraw-Hill Companies, Inc,2006,76
    [22]Libutti SK, Saltz LB, Rustgi AK, Tepper JE. Cancer of the Gastrointestinal Tract-Section 8:Cancer of the Colon[C]. In:DeVita VT, Hellman S, Rosenberg SA. Cancer:Principles and Practice of Oncology,7 ed. Lippincott William & Wilkins.2005, 29.
    [23]Pister PWT, Kelsen DP, Powell SM, Tepper JE. Cancer of the gastrointestinal tract, Section 2:Cancer of the stomach[M]. In:DeVita VT, Hellman S, Rosenberg S. CANCER Principles & Practices of Oncology. Philadelphia, PA:Lippincott, Williams & Wilkins, McGraw-Hill Companies, Inc,2005,1(29)
    [24]Christopher E. Desch, Al B. Benson Ⅲ, Mark R. Somerfield, Patrick J. Flynn, Carol Krause, Charles L. Loprinzi, Bruce D. Minsky, David G. Pfister, Katherine S. Virgo, Nicholas J. Petrelli. Colorectal Cancer Surveillance:2005 Update of an American Society of Clinical Oncology Practice Guideline[J]. J Clin Oncol,2005,23:8512-8519.
    [25]Locker GY, Hamilton S, Harris J, Jessup JM, Kemeny N, Macdonald JS, Somerfield MR, Hayes DF, Bast RC. ASCO 2006 Update of Recommendations for the Use of Tumor Markers in Gastrointestinal Cancer[J]. J Clin Oncol,2006,24:5313-5327.
    [26]Bigbee W, Herberman RB. Cancer Immunology-13. Tumor Markers and Immunodiagnosis-Organ Site-Specific Markers[C]. In:Kufe, Pollock, Weichselbaum, Bast, Gansler, Holland, Frei. Cancer Medicine. BC Decker, Inc,2003, Section 2.
    [27]Borglum T, Rehfeld JF, Drivsholm LB, Hilsted L. Processing-Independent Quantitation of Chromogranin A in Plasma from Patients with Neuroendocrine Tumors and Small-Cell Lung Carcinoma[J]. Clin Chem,2007,53(3):438-46.
    [28]Abeloff MD, Wolff AC, Wood WC, McCormick B, Weber BL. Cancer of the Breast[C]. In:Abeloff:Clinical Oncology,3 ed. Churchill Livingstone,2004, Chapter 94.
    [29]Wolff AC, Hammond ME, Schwartz JN, Hagerty KL, Allred DC, Cote RJ, Dowsett M, Fitzgibbons PL, Hanna WM, Langer A, McShane LM, Paik S, Pegram MD, Perez EA, Press MF, Rhodes A, Sturgeon C, Taube SE, Tubbs R, Vance GH, van de Vijver M, Wheeler TM, Hayes DF. American Society of Clinical Oncology/College of American Pathologists Guideline Recommendations for Human Epidermal Growth Factor Receptor 2 Testing in Breast Cancer[J]. J Clin Oncol,2007,25(1):118-145.
    [30]Nordenson NJ, Jones CLA. Tumor Markers. Gale Encyclopedia of Cancer[M]. The Gale Group Inc,2002.
    [31]Small EJ, Garcia JA, Torti F. Testicular Cancer[C]. In:Abeloff:Clinical Oncology, 3rd ed, Churchill Livingstone,2004, Chapter 89.
    [32]National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology. Prostate Cancer[OL]: http://www.nccn.org/professionals/physician_gls/PDF/prostate.pdf. V.2.2007, Updated 2007, Accessed Aug 2007.
    [33]National Cancer Institute. Early Prostate Cancer:Questions and Answers[OL]: http://www.cancer.gov/cancertopics/factsheet/Detection/early-prostate. Updated Oct 2006, Accessed Aug 2007.
    [34]American Cancer Society. Tumor Markers[OL]. Available at URL address: www.cancer.org/docroot/PED/content/PED_2_3X_Tumor_Markers.asp?sitearea=PED. Updated 2006, Accessed Aug 2007.
    [35]National Academy of Clinical Biochemistry. Guidelines for the use of tumor markers in thyroid cancer[OL]:http://www.nacb.org/lmpg/tumor/chp3o_thyroid.pdf. Updated 2005, Accessed Aug 2007.
    [36]邱德凯,普民德.血清肿瘤标志物联合检测对原发性肝癌的诊断检查[J].中华消化杂志,1987,5:65-69.
    [37]蔡文秀,郑辉.肿瘤标志物联合检测在肝细胞癌诊断中的临床意义[J].福建医学院学报,1999,30(4):328-330.
    [38]杜凤兰,高琪.肿瘤标志物联合检测肺癌及非肺癌[J].西安医科大学学报,1993,14(3):269-271.
    [39]宋茂民,何三光.肿瘤标志物联合检测对胰腺癌诊断价值的初步探讨[J].中国实用外科杂志,1995,15(12):756-757.
    [40]Wei Bian and Zhishun Xu. Combined assay of CYFRA21-1, telomerase and vascular endothelial growth factor in the detection of bladder transitional cell carcinoma[J]. Int. J. Urology,2007,14:108-111.
    [41]刘霞.血清肿瘤标志物检测方法的研究进展[J].中华现代医学与临床,2005,6:58-59.
    [42]Dorte Lisbet Nielsen, Michael Andersson, Claus Kamby. HER2-targeted therapy in breast cancer. Monoclonal antibodies and tyrosine kinase inhibitors[J]. Cancer Treatment Reviews,2009,35:121-136.
    [43]刘坚,王郡甫.多肿瘤标志物联合检测在妇科恶性肿瘤临床治疗中的应用研究[J].实用癌症杂志,2008,23(5):480-482.
    [44]薛磊.四种肿瘤标志物在消化道良恶性疾病诊断治疗中的联合应用及评价[J].放射免疫学杂志,1996,9(5):308-309.
    [45]Marnellos G. High-throughput SNP analysis for genetic association studies[J]. Curr Opin Drug Discov Devel,2003,6(3):317-321.
    [46]Clapper ML. Genetic polymorphism and cancer risk[J]. Curr. Oncol. Rep,2000,2: 251-256.
    [47]李春海,李克勤.肿瘤微血管形成的机制与肿瘤侵袭和转移[J].中华肿瘤杂志,2000,22(3):108-110.
    [48]Koblindki JE, Ahram M, Sloane BF. Unreveling the role of proteases in cancer[J]. Clin Chim Acta,2000,291:113-135.
    [49]Nelson AR, Fingleton B, Rothenberg ML. Matrix metalloproteinases, biological and clinical implications[J]. J Clin Oncol,2000,18:135-149.
    [50]Biackbum EH. Structure and function of telomeres[J]. Science,1990,249:489.
    [51]J Feng, WD Funk, SS Wang, SL Weinrich, AA Avilion, CP Chiu, RR Adams, E Chang, RC Allsopp, J Yu. The RNA component of human telomerase[J]. Science,1995, 269:1236-1241.
    [52]Kim N,,Piatyszek M, Prowse KR, Harley CB, West MD, Ho PL, Coviello GM, Wright WE, Weinrich SL, Shay JW. Specific association of human telomerase activity with immortal cell and cancer[J]. Science,1994,266:2011-2015.
    [53]Dawei Xu, Qian Wang, Astrid Gruber, Magnus Bjorkholm, Zhiguo Chen, Ahmed Zaid, Galina Selivanova, Curt Peterson, Klas G Wiman and Pavel Pisa. Downregulation of telomerase reverse transcriptase mRNA expression by wild type p53 in human tumor cells[J]. Oncogene,2000,19(45):5123-5133.
    [54]Kirkpatrick KL and Mokbel K. The significance of human telomerase reverse transcriptase (hTERT) in cancer[J]. Eur J Surg Oncol,2001,27(8):754-760.
    [55]邹向阳,李连宏.细胞周期调控与肿瘤[J].国际遗传学杂志,2006,29(1):70-73.
    [56]Yu Q, Geng Y, Sicinski P. Specific protection against breast cancers by cyclinDl ablation[J]. Nature,2001,411:1017-1021.
    [57]Blagosklonny MV, Pardee AB. Exploiting cancer cell cycling for selective protection of normal cells[J]. Cancer Res,2001,61:4301-4305.
    [58]Franck Brichory, David Beer, Francois Le Naour, Thomas Giordano, and Samir Hanash. Proteomics-based Identification of Protein Gene Product 9.5 as a Tumor Antigen That Induces a Humoral Immune Response in Lung Cancer[J]. Cancer Res, 2001,61(21):7908-7912.
    [59]Seow TK, Liang RC, Leow CK, Chung MC. Hepatocellular carcinoma:From bedside to proteomics[J]. Proteomics,2001,1(10):1249-1263.
    [60]Haynes PA, Gygi SP, Figeys D, Aebersold R. Proteome analysis:biological assay or data achieve[J]? Electrophoresis,1998,19(11):1862-1871.
    [61]Emmert-Buck MR, Gillespie JW, Paweletz CP, Ornstein DK, Basrur V, Appella E, Wang QH, Huang J, Hu N, Taylor P, and Petricoin Ⅲ EF. An approach to proteomic analysis of human tumors[J]. Mol Carcinog,2000,27(3):158-165.
    [62]Tyagi, S. and Kramer, F.R. Molecular beacons:probes that fluoresce upon hybridization[J]. Nat. Biotechnol,1996,14:303-308.
    [63]Tyagi S, Bratu D.P. and Kramer F.R. Multicolor molecular beacons for allele discrimination[J]. Nat. Biotechnol,1998,16:49-53.
    [64]Marras SAE, Kramer FR, and Tyagi S. Genotyping single nucleotide polymorphisms with molecular beacons[M]. In Kwok, P. Y. (ed.), Single nucleotide polymorphisms:methods and protocols. Totowa, NJ, The Humana Press Inc,2003,212: 111-128.
    [65]Vet, J.A.M. and Marras, S.A.E. Design and optimization of molecular beacon real-time polymerase chain reaction assays[J]. In Herdewijn, P. (ed.), Oligonucleotide synthesis:Methods and Applications. Humana Press, Totowa, NJ,2004,288:273-290.
    [66]Andrew Tsourkas, Mark A. Behlke, Scott D. Rose and Gang Bao. Hybridization kinetics and thermodynamics of molecular beacons[J]. Nucleic Acids Res,2003,31(4): 1319-1330.
    [67]Youngmi Kim, Chaoyong James Yang and Weihong Tan. Superior structure stability and selectivity of hairpin nucleic acid probes with an L-DNA stem[J]. Nucleic Acids Res,2007,35(21):7279-7287.
    [68]Jianwei Jeffery Li, Yizhuo Chu, Benjamin Yi-Hung Lee and Xiaoliang Sunney Xie. Enzymatic signal amplification of molecular beacons for sensitive DNA detection[J]. Nucleic Acids Res,2008,36(6):e36.
    [69]Gang Yao and Weihong Tan. Molecular-beacon-based array for sensitive DNA analysis[J]. Anal. Chem,2004,331:216-223.
    [70]Li X, Huang Y, Song C, Zhao M, Li Y. Several concerns about the primer design in the universal molecular beacon real-time PCR assay and its application in HBV DNA detection[J]. Anal Bioanal Chem,2007,388(4):979-985.
    [71]Gionata Leone, Harm van Schijndel, Bob van Gemen, Fred Russel Kramer and Cornelis Dirk Schoen. Molecular beacon probes combined with amplification by NASBA enable homogeneous, real-time detection of RNA[J]. Nucleic Acids Res,1998, 26(9):2150-2155.
    [72]John Perlette and Weihong Tan. Real-Time Monitoring of Intracellular mRNA Hybridization Inside Single Living Cells[J]. Anal. Chem,2001,73:5544-5550.
    [73]Sokol D.L, Zhang X, Lu P, and Gewirtz A.M. Real time detection of DNA.RNA hybridization in living cells[J]. Proc. Natl. Acad. Sci. USA,1998,95:11538-11543.
    [74]Matsuo T. In situ visualization of messenger RNA for basic broblast growth factor in living cells[J]. Biochim. Biophys. Acta,1998,1379:178-184.
    [75]Philip J. Santangelo, Brent Nix, Andrew Tsourkas and Gang Bao. DuaL FRET molecular beacons for mRNA detection in living cells[J]. Nucleic Acids Res,2004,32(6): e57.
    [76]Sanjay Tyagi, Diana P. Bratu, and Fred Russell Kramer. Multicolor molecular beacons for allele discrimination[J]. Nat Biotechnol,1998,16:49-53.
    [77]Sanjay Tyagi, Salvatore AE. Marras, and Fred Russell Kramer. Wavelength-shifting molecular beacons[J]. Nat Biotechnol,2000,18:1191-1196.
    [78]Soumitesh Chakravorty, Bola Aladegbami, Michele Burday, Michael Levi, Salvatore A. E. Marras, Darshini Shah, Hiyam H. El-Hajj, Fred Russell Kramer, and David Alland. Rapid Universal Identification of Bacterial Pathogens from Clinical Cultures by Using a Novel Sloppy Molecular Beacon Melting Temperature Signature Technique[J]. J. Clin. Microbiol,2010,48(1):258-267.
    [79]Fang X., Li J.J. and Tan W. Using molecular beacons to probe molecular interactions between lactate dehydrogenase and singlestranded DNA[J]. Anal. Chem, 2000,72:3280-3285.
    [80]Li J.J, Geyer R, and Tan, W. Using molecular beacons as a sensitive fluorescence assay for enzymatic cleavage of single-stranded DNA[J]. Nucleic Acids Res,2000,28: e52.
    [81]Rosenthal SJ. Bar-coding biomolecules with fluorescent nanocrystals[J]. Nat Biotechnol,2001,19(7):621-622.
    [82]Bawendi MG, Steigerwald ML, Brus L E. The quantum mechanics of larger semiconductor clusters ("quantum dots")[J]. Annu Rev Phys Chem,1990,41:477-496.
    [83]Alivisatos AP. Semiconductor clusters, nanocrystals, and quantum dots[J]. Science, 1996,271:933-937.
    [84]Bruchez M Jr, Moronne M, Gin P, Weiss S, Alivisatos AP. Semiconductor Nanocrystals as Fluorescent Biological Labels[J]. Science,1998,281:2013-2016.
    [85]Mark Green and Paul O'Brien. Recent advances in the preparation of semiconductors as isolated nanometric particles:new routes to quantum dots[J]. Chem. Commun,1999,22:2235-2241.
    [86]Warren C. W. Chan and Shuming Nie. Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection[J]. Science,1998,281:2016-2018.
    [87]MitcheU G P, Mirkin C A, Letsinger R L. Programmed Assembly of DNA Functionalized Quantum Dots[J]. J. Am. Chem. Soc,1999,121(35):8122-8123.
    [88]Baoquan Sun, Wenzhang Xie, Guangshun Yi, Depu Chen, Yuxiang Zhou, Jing Cheng. Microminiaturized immunoassays using quantum dots as fluorescent label by laser confocal scanning fluorescence detection[J]. J Immun Methods,2001,249:85-89.
    [89]D. H. Feng, Z. Z. Xu, T. Q. Jia, X. X. Li, and S. Q. Gong. Quantum size effects on exciton states in indirect-gap quantum dots[J]. Phys Rev B,2003,68(035334):1-7.
    [90]L. Brus. Quantum Crystallites and Nonlinear Optics[J]. Appl. Phys. A,1991,53(6): 465-474.
    [91]Henglein A.Small-particle research:physicochemical properties of extremely small colloidal metal and semiconductor particles[J]. Chem. Rev,1989,89(8):1861-1873.
    [92]Heath J R and Shiang J J. Covalency in semiconductor quantum dots[J]. Chem. Soc. Rev,1998,27(1):65-71.
    [93]孙宝全,徐咏蓝,衣光舜,陈德朴.半导体纳米晶体的光致发光特性及在生物 材料荧光标记中的应用[J].分析化学,2002,30(9):1130-1136.
    [94]Andrew M. Smith and Shuming Nie. Chemical analysis and cellular imaging with quantum dots[J]. Analyst,2004,129:672-677.
    [95]Rakesh K Jain and Mark Stroh. Zooming in and out with quantum dots[J]. Nat Biotechnol,2004,22(8):959-960.
    [96]Xiaohu Gao, Yuanyuan Cui, Richard M Levenson, Leland W K Chung & Shuming Nie. In vivo cancer targeting and imaging with semiconductor quantum dots[J]. Nat Biotechnol,2004,22(8):969-976.
    [97]W.A. Hild, M. Breunig, A. Goepferich Quantum dots-Nano-sized probes for the exploration of cellular and intracellular targeting[J]. Eur J Pharm & Biopharm,2008,68: 153-168.
    [98]W. Cai, D. Shin, K. Chen, O. Gheysens, Q. Cao, S. Wang, X, S.S. Gambhir, X. Chen. Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects[J]. Nano Lett,2006,6:669-676.
    [99]B. Christoffer Lagerholm, Miaomiao Wang, Lauren A. Ernst, Danith H. Ly, Hongjian Liu, Marcel P. Bruchez, and Alan S. Waggoner. Multicolor Coding of Cells with Cationic Peptide Coated Quantum Dots[J]. Nano Lett,2004,4(10):2019-2022.
    [100]Xingyong Wu, Hongjian Liu, Jianquan Liu, Kari N. Haley, Joseph A. Treadway, J Peter Larson, Nianfeng Ge, Frank Peale & Marcel P. Bruchez. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots[J]. Nat. Biotechnol.2003,21(1):41-46.
    [101]Jyoti K. Jaiswall, Hedi Mattoussi2, J. Matthew Mauro3, and Sanford M. Simon. Long-term multiple color imaging of live cells using quantum dot bioconjugates[J]. Nat. Biotechnol,2003,21(1):47-51.
    [102]Brad A. Kairdolf, Michael C. Mancini, Andrew M. Smith, and Shuming Nie. Minimizing Nonspecific Cellular Binding of Quantum Dots with Hydroxyl-Derivatized Surface Coatings[J]. Anal. Chem,2008,80:3029-3034.
    [103]W.J. Parak, R. Boudreau, M. Le Gros, D. Gerion, D. Zanchet, C.M. Micheel, S.C. Williams, A.P. Alivisatos, C. Larabell. Cell Motility and Metastatic Potential Studies Based on Quantum Dot Imaging of Phagokinetic Tracks[J]. Adv. Mater.2002,14(12): 882-885.
    [104]Sungjee Kim, Yong Taik Lim, Edward G Soltesz, Alec M De Grand, Jaihyoung Lee, Akira Nakayama, J Anthony Parker, Tomislav Mihaljevic, Rita G Laurence, Delphine M Dor, Lawrence H Cohn, Moungi G Bawendi & John V Frangioni. Near-infrared fluorescent type Ⅱ quantum dots for sentinel lymph node mapping[J]. Nat. Biotechnol. 2004,22(1):93-97.
    [105]Maksym V. Yezhelyev, Lifeng Qi, Ruth M. O'Regan, Shuming Nie, and Xiaohu Gao. Proton-Sponge Coated Quantum Dots for siRNA Delivery and Intracellular Imaging[J]. J. Am. Chem. Soc,2008,130:9006-9012.
    [106]Dejian Zhou, Liming Ying, Xin Hong, Elizabeth A. Hall, Chris Abell, and David Klenerman. A Compact Functional Quantum Dot-DNA Conjugate:Preparation, Hybridization, and Specific Label-Free DNA Detection[J]. Langmuir,2008,24: 1659-1664.
    [107]Sergio Marin and Arben Merkoci. Direct electrochemical stripping detection of cystic-fibrosis-related DNA linked through cadmium sulfide quantum dots[J]. Nanotechnol,2009,20:1-6.
    [108]Alivisatos, P. The use of nanocrystals in biological detection[J]. Nat. Biotechnol, 2004,22(1):47-52.
    [109]Dale M. Willard, Lori L. Carillo, Jaemyeong Jung, and Alan Van Orden. CdSe-ZnS Quantum Dots as Resonance Energy Transfer Donors in a Model Protein-Protein Binding Assay[J]. Nano Lett,2001,1(9):469-474.
    [110]Matthew Levy, Sean F. Cater, and Andrew D. Ellington. Quantum-Dot Aptamer Beacons for the Detection of Proteins[J]. ChemBioChem,2005,6:2163-2166.
    [111]Aurelien Crut, Benedicte Geron-Landre, Isabelle Bonnetl, Stephane Bonneau, Pierre Desbiolles and Christophe Escude. Detection of single DNA molecules by multicolor quantum-dot end-labeling[J]. Nucleic Acids Res,2005,33 (11):e98.
    [112]Gregory P. Mitchell, Chad A. Mirkin, and Robert L. Letsinger. Programmed Assembly of DNA Functionalized Quantum Dots[J]. J. Am. Chem. Soc,1999,121: 8122-8123.
    [113]Srikant Pathak, Soo-Kyung Choi, Norman Arnheim, and Mark E. Thompson. Hydroxylated Quantum Dots as Luminescent Probes for in Situ Hybridization[J]. J. Am. Chem. Soc,2001,123:4103-4104.
    [114]Weilin Shi and Xiying Ma. The detection application of CdS quantum dots in labeling DNA molecules[J]. Biomed. Mater,2006,1:81-84.
    [115]Yu He, He-Fang Wang, and Xiu-Ping Yan. Exploring Mn-Doped ZnS Quantum Dots for the Room-Temperature Phosphorescence Detection of Enoxacin in Biological Fluids[J]. Anal. Chem,2008,80:3832-3837.
    [116]Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions[J]. Nature,1973,241:20-22.
    [117]L. A. Dykman, A. A. Lyakhov, V. A. Bogatyrev, and S. Yu. Shchyogolev. Synthesis of Colloidal Gold Using High-Molecular-Weight Reducing Agents[J]. Colloid J,1998, 60(6):700-704.
    [118]J.L. Gardea-Torresdey, K.J. Tiemann, G. Gamez, K. Dokken, S. Tehuacanero, M. Jose-Yacaman. Gold Nanoparticles Obtained by Bio-precipitation from Gold (Ⅲ) Solutions[J]. J. Nanopart. Res,1999,1(3):397-404.
    [119]Huazhong Shi, Lide Zhang, Weiping Cai. Preparation and optical absorption of gold nanoparticles within pores of mesoporous silica[J]. Mater. Res. Bull,2000,35(10): 1689-1695.
    [120]Xinhua Dai, Yiwei Tan, and Jian Xu. Formation of Gold Nanoparticles in the Presence of o-Anisidine and the Dependence of the Structure of Poly(o-anisidine) on Synthetic Conditions[J]. Langmuir,2002,18:9010-9016.
    [121]兰新哲,金志浩,赵西成,苟林峰.PVP保护还原法制备纳米金溶胶.稀有金属材料与工程[J],2003,32(1):50-53.
    [122]陈文兴吴雯陈海相沈之荃.丝素蛋白质原位还原制备纳米贵金属胶体及表征[J].中国科学B辑,2003,33(3):185-191.
    [123]Yee Ting Wong, M. Manimaran and Francis E. H. Tay. Synthesis and Characterisation of Alkanethiolated Nanogold Clusters for BioMEMS Applications[J]. Int. J. Comput. Eng. Sci,2003,4(3):663-666.
    [124]Lee KM, Park S T, Lee DJ. Nanogold synthesis by inert gas condensation for immuno-chemistry probes[J]. J. Alloys and Comp,2005,390:297-300.
    [125]Mandal S, Phadtare S, Sastry M. Interfacing biology with nanoparticles[J]. Curr. Appl.Phys,2005,5:118-127.
    [126]Mirkin C A, Letsinger R L, Mucic P C and Storhoff J J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials[J]. Nature,1996,382: 607-609.
    [127]Xiao-li Kong, Fei-yan Qiao, Hui Qi and Fu-rong Li. One-step preparation of antibody and oligonucleotide duallabeled gold nanoparticle bio-probes and their properties[J]. Biotechnol Lett,2008,30:2071-2077.
    [128]Fei-Yan Qiao, Jun Liu, Fu-Rong Li, Xiao-Li Kong, Hao-Li Zhang, Han-Xin Zhou. Antibody and DNA dual-labeled gold nanoparticles:Stability and reactivity[J]. Appl. Surf. Sci,2008,254:2941-2946.
    [129]Jwa-Min Nam, Savka I. Stoeva, and Chad A. Mirkin. Bio-Bar-Code-Based DNA Detection with PCR-like Sensitivity[J]. J. Am. Chem. Soc,2004,126(19):5932-5933.
    [130]Robert Elghanian, James J. Storhoff, Robert C. Mucic, Robert L. Letsinger, and Chad A. Mirkin. Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles[J]. Science,1997,277: 1078-1080.
    [131]L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J.Natan, C. D. Keating. Colloidal Au-Enhanced Surface Plasmon Resonance for Ultrasensitive Detection of DNA Hybridization[J]. J. Am. Chem. Soc,2000,122:9071-9077.
    [132]D. J. Maxwell, J. R. Taylor, S. Nie. Self-Assembled Nanoparticle Probes for Recognition and Detection of Biomolecules[J]. J. Am. Chem. Soc,2002,124:9606-9612.
    [133]T. Niazov, V. Pavlov, Y. Xiao, R. Gill, I. Willner. Aptamer-Functionalized Au Nanoparticles for the Amplified Optical Detectionof Thrombin[J]. Nano Lett,2004,4: 1683-1687.
    [134]Valeri Pavlov, Yi Xiao, Bella Shlyahovsky, and Itamar Willner. Aptamer-Functionalized Au Nanoparticles for the Amplified Optical Detection of Thrombin[J]. J. Am. Chem. Soc,2004,126:11768-11769.
    [135]J. Liu, Y. Lu. A Colorimetric Lead Biosensor Using DNAzyme-Directed Assembly of Gold Nanoparticles[J]. J. Am. Chem. Soc,2003,125:6642-6643.
    [136]林章碧,苏星光,张家骅,金钦汉.纳米粒子在生物分析中的应用[J]。分析化学,2002,30(2):237-241.
    [137]James J. Storhoff, Anne A. Lazarides, Robert C. Mucic, Chad A. Mirkin, Robert L. Letsinger, and George C. Schatz. What Controls the Optical Properties of DNA-Linked Gold Nanoparticle Assemblies[J]? J. Am. Chem. Soc,2000,122:4640-4650.
    [138]Rongchao Jin, Guosheng Wu, Zhi Li, Chad A. Mirkin, and George C. Schatz. What Controls the Melting Properties of DNA-Linked Gold Nanoparticle Assemblies[J]? J. Am. Chem. Soc,2003,125:1643-1654.
    [139]Abigail K. R, Lytton-Jean and Chad A. Mirkin. A Thermodynamic Investigation into the Binding Properties of DNA Functionalized Gold Nanoparticle Probes and Molecular Fluorophore Probes[J]. J. Am. Chem. Soc,2005,127:12754-12755.
    [140]Philip A. Gale, Korakot Navakhun, Salvatore Camiolo, Mark E. Light, and Michael B. Hursthouse. Anion-Anion Assembly:A New Class of Anionic Supramolecular Polymer Containing 3,4-Dichloro-2,5-diamido-substituted Pyrrole Anion Dimers[J]. J. Am. Chem. Soc,2002,124:11248-11249.
    [141]Taylor J R. Doctoral Dissertation of Indiana University[D]. USA:122-147,2002.
    [142]Benoit Dubertret, Michel Calame, and Albert J Libchaber. Single-mismatch detection using gold-quenched fluorescent oligonucleotides[J]. Nat Biotechnol,2001,19: 365-370.
    [143]Joseph Wang, Guodong Liu, and Arben Merkoci. Electrochemical Coding Technology for Simultaneous Detection of Multiple DNA Targets[J]. J. Am. Chem. Soc. 2003,125:3214-3215.
    [144]Debin Zhu, Yabing Tang, Da Xing, and Wei R. Chen. PCR-Free Quantitative Detection of Genetically Modified Organism from Raw Materials. An Electrochemiluminescence-Based Bio Bar Code Method[J]. Anal. Chem,2008,80(10): 3566-3571.
    [145]YunWei, Charles Cao, Rongchao Jin, Chad A. Mirkin. Nanoparticles with Raman Spectroscopic Fingerprints for DNA and RNA Detection[J]. Science,2002,297: 1536-1540.
    [146]Lin He, Michael D. Musick, Sheila R. Nicewarner, Frank G. Salinas, Stephen J. Benkovic, Michael J. Natan, and Christine D. Keating. Colloidal Au-Enhanced Surface Plasmon Resonance for Ultrasensitive Detection of DNA Hybridization[J]. J. Am. Chem. Soc,2000,122(38):9071-9077.
    [147]James J Storhoff, Adam D Lucas, Viswanadham Garimella, Y Paul Bao & Uwe R Muller. Homogeneous detection of unamplified genomic DNA sequences based on colorimetric scatter of gold nanoparticle probes[J]. Nat Biotechnol,2004,22(7):883-887.
    [148]Haley D. Hill, Rafael A. Vega, and Chad A. Mirkin. Nonenzymatic Detection of Bacterial Genomic DNA Using the Bio Bar Code Assay[J]. Anal. Chem,2007,79(23): 9218-9223.
    [149]_J Roth, M Bendayan and L Orci. Ultrastructural localization of intracellular antigens by the use of protein A-gold complex[J]. J. Histochem. Cytochem,1978,26(12): 1074-1081.
    [150]Chih-Ching Huang, Yu-Fen Huang, Zehui Cao, Weihong Tan, and Huan-Tsung Chang. Aptamer-Modified Gold Nanoparticles for Colorimetric Determination of Platelet-Derived Growth Factors and Their Receptors[J]. Anal. Chem,2005,77: 5735-5741.
    [151]Dimitra G. Georganopoulou, Lei Chang, Jwa-Min Nam, C. Shad Thaxton, Elliott J. Mufson, William L. Klein, and Chad A. Mirkin. Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer's disease[J]. PNAS,2005, 102 (7):2273-2276.
    [152]Jwa-Min Nam, C. Shad Thaxton, Chad A. Mirkin. Nanoparticle-Based Bio-Bar Codes for the Ultrasensitive Detection of Proteins [J]. Science,2003,301:1884-1886.
    [153]Savka I. Stoeva, Jae-Seung Lee, Jennifer E. Smith, Steven T. Rosen, and Chad A. Mirkin. Multiplexed Detection of Protein Cancer Markers with Biobarcoded Nanoparticle Probes[J]. J. Am. Chem. Soc,2006,128:8378-8379.
    [154]Edgar D. Goluch, Jwa-Min Nam, Dimitra G. Georganopoulou, Thomas N. Chiesl, Kashan A. Shaikh, Kee S. Ryu, Annelise E. Barron, Chad A. Mirkin and Chang Liu. A bio-barcode assay for on-chip attomolar-sensitivity protein detection[J]. Lab Chip,2006, 6:1293-1299.
    [155]Hui Xu, Xun Mao, Qingxiang Zeng, Shengfu Wang, Abdel-Nasser Kawde, and Guodong Liu. Aptamer-Functionalized Gold Nanoparticles as Probes in a Dry-Reagent Strip Biosensor for Protein Analysis[J]. Anal. Chem,81:669-675.
    [156]Juewen Liu and Yi Lu. A Colorimetric Lead Biosensor Using DNAzyme-Directed Assembly of Gold Nanoparticles[J]. J. Am. Chem. Soc,2003,125:6642-6643.
    [157]Li Shen, Zhong Chen, Yihan Li, Shali He, Shubao Xie, Xiaodong Xu, Zhongwei Liang, Xin Meng, Qing Li, Zhiwei Zhu, Meixian Li, X. Chris Le, and Yuanhua Shao. Electrochemical DNAzyme Sensor for Lead Based on Amplification of DNA#Au Bio-Bar Codes[J]. Anal. Chem,2008,80:6323-6328.
    [158]Hajime Sawada, Michiyo Esaki. A Practical Technique to Postfix Nanogold-immunolabeled Specimens with Osmium and to Embed Them in Epon for Electron Microscopy[J]. J. Histochem. Cytochem,2000,48 (4):493-498.
    [159]王楠,徐淑坤,王文星.纳米金生物探针及其应用[J].化学进展,2007,19:408-413.
    [160]Xiaojun Zhao, Rovelyn Tapec-Dytioco, Kemin Wang, and Weihong Tan. Collection of Trace Amounts of DNA/mRNAMolecules Using Genomagnetic Nanocapturers[J]. Anal. Chem,2003,75(14):3476-3483.
    [161]Eric Yi Sun, Lee Josephson, Kim A. Kelly, and Ralph Weissleder. Development of Nanoparticle Libraries for Biosensing[J]. Bioconjugate Chem,2006,17(1):109-113.
    [162]Schena. M, DNA Microarrays:A Practical Approach (Practical Approach Series[M]. Oxford, UK:Oxford University Press,1999:205.
    [163]Bowtell D, and Sambrook J. DNA Microarrays:A Molecular Cloning Manual[M]. New York:Cold Spring Harbor Laboratory Press.2002
    [164]Affymetrix. GeneChip Analysis Suite, User Guide, version 3.3.1999.
    [165]Affymetrix. GeneChip Experission Analysis, Technical Manual.2000.
    [166]Lockhart. D. J, Dong. H, Byrne. M. C, Follettie. M. T, Gallo. M. V, Chee. M. S, Mittmann. M, Wang C, Kobayashi. M, Horton. H, and Brown. E. L. Expression monitoring by hybridization to high-density oligonucleotide arrays[J]. Nat Biotechnol, 1996,14:1675-1680.
    [167]Steen Knudsen. Cancer Diagnostics with DNA Microarrays[M]. John Wiley & Sons, Inc.2006,1-16.
    [168]Beier. M, and Hoheisel. J. D. Analysis of DNA-microarrays produced by inverse in situ oligonucleotide synthesis[J]. J. Biothchnol,2002,94:15-22.
    [169]Craig A. Cummings and David A. Relman. Using DNA Microarrays to Study Host-Microbe Interactions[J]. Emerging Infectious Diseases,2000,6(5):513-525.
    [170]Wilson B, Samanta MK, Santhi K, Sampath Kumar KP, Ramasamy M, Suresh B. Significant delivery of tacrine into the brain using magnetic chitosan microparticles for treating Alzheimer's disease[J]. J Neurosci Methods,2009,177(2):427-33.
    [171]Pouponneau P, Leroux JC,Martel S. Magnetic nanoparticles encapsulated into biodegradable microparticles steered with an upgraded magnetic resonance imaging system for tumor chemoembolization[J]. Biomaterials,2009,30(31):6327-32.
    [172]Bohuslav Rittich, Alena Spanova, Petr Salek, Stepanka Trachtova, Daniel Horak. Application of Aqueous Phase System and Hydrophilic Magnetic Microspheres for Isolation of Bacterial PCR-ready DNA from Dairy[C]. In:7th International Conference on the Scientific and Clinical Applications of Magnetic Carriers. Vancouver, Canada, 2008,202-202.
    [173]Pankhurst QA, J Connoly, SK Jones, J Dobson. Applications of magnetic nanoparticles in biomedicine[J]. Journal of Physics D,2003,36:R167-R181.
    [174]Dobson J. Remote control of cellular behavior with magnetic nanoparticles[J]. Nat Nanotechnol,2008,3:139-143.
    [175]Oliver C. Conjugation-of colloidal gold to proteins[J]. Methods Mol Biol,1999, 115(3):331-334.
    [176]Wang Y, He X, Wang K, Zhang X, Tan W. Barbated Skullcup herb extract-mediated biosynthesis of gold nanoparticles and its primary application in electrochemistry[J]. Colloids Surf B Biointerfaces,2009,73(1):75-9.
    [177]Das SK, Das AR, Guha AK. Gold nanoparticles:microbial synthesis and application in water hygiene management[J]. Langmuir,2009,25(14):8192-9.
    [178]Zhang Q, Iwakuma N, Sharma P, Moudgil BM, Wu C, McNeill J, Jiang H, Grobmyer SR. Gold nanoparticles as a contrast agent for in vivo tumor imaging with photoacoustic tomography[J]. Nanotechnology,2009,20:395102 (8pp).
    [179]Soo PC, Horng YT, Chang KC, Wang JY, Hsueh PR, Chuang CY, Lu CC, Lai HC. A simple gold nanoparticle probes assay for identification of Mycobacterium tuberculosis and Mycobacterium tuberculosis complex from clinical specimens[J]. Mol Cell Probes, 2009,23(5):240-246
    [1]Li Y, Zhou X, Ye D. Molecular beacons:an optimal multifunctional biological probe. Biochem. Biophys. Res. Commun[J].2008,373(4):457-461.
    [2]Michael Zuker. Mfold web server for nucleic acid folding and hybridization prediction[J]. Nucleic Acids Res,2003,31(13):3406-3415.
    [3]Thomas Antony and Vinod Subramaniam. Molecular Beacons:Nucleic Acid Hybridization and Emerging Applications[J]. J. Biomol. Struct. Dyn,2001,19(3): 497-504.
    [4]Tyagi S, Bratu D P, Kramer F R. Multicolor molecular beacons for allele discrimination[J]. Nat Biotechnol,1998,16:49-53.
    [5]Andrew Tsourkas, Mark A. Behlke, Scott D. Rose, and Gang Bao. Hybridization kinetics and thermodynamics of molecular beacons [J]. Nucleic Acids Res,2003,31(4): 1319-1330.
    [6]Marras S A E, Kramer F R,Sanjay Tyagi. Efficiencies of fluorescence resonance energy transfer and contact-mediated quenching in oligonucleotide probes[J]. Nucleic Acids Res,2002,30(21):e122.
    [7]Chaoyong James Yang, Hui Lin, and Weihong Tan. Molecular Assembly of Superquenchers in Signaling Molecular Interactions[J]. J. Am. Chem. Soc,2005,127: 12772-12773.
    [8]Weihong Tan, Xiaohong Fang, Jeffery Li, and Xiaojing Liu. Molecular Beacons:A Novel DNA Probe for Nucleic Acid and Protein Studies[J]. Chem. Eur. J,2000,6(7): 1107-1111.
    [9]Mustafa Culha, David L. Stokes, Guy D. Griffin, Tuan Vo-Dinh. Application of a miniature biochip using the molecular beacon probe in breast cancer gene BRCA1 detection[J]. Biosens. Bioelectron,2004,19:1007-1012.
    [10]Guedson JL, Temynk T, Avrameas S. The use of avidin-biotin interaction in immunoenzymatic techniques[J]. J Histochem Cytochem,1979,27(8):1131-1139.
    [11]Hsu SM, Raine L, Fanger H. Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques:a comparison between ABC and unlabeled antibody (PAP) procedures[J]. J Histochem Cytochem,1981,29(4):577-580.
    [12]Chad A Mirkin, Robert L. Letsinger, Robert C. Mucic & James J. Storhoff. A DNA-based method for rationally assembling nanoparticles into macroscophic materials[J]. Nature,1996,382(15):607-609.
    [13]Xiao-li Kong, Fei-yan Qiao, Hui Qi, Fu-rong Li. One-step preparation of antibody and oligonucleotide dual-Labeled gold nanoparticle bio-probes and their properties[J]. Biotechnol Lett,2008,30:2071-2077.
    [14]Kanaras A G, Wang Z, Bates A D, et al. Towards multistep nanostructure synthesis: programmed enzymatic self-assembly of DNA/gold systems[J]. Angew. Chem., Int. Ed. Engl,2003,42(2):191-194.
    [15]Edgar D. Goluch, Jwa-Min Nam, Dimitra G. Georganopoulou, Thomas N. Chiesl, Kashan A. Shaikh, Kee S. Ryu, Annelise E. Barron, Chad A. Mirkin and Chang Liu. A bio-barcode assay for on-chip attomolar-sensitivity protein detection[J]. Lab Chip,2006, 6:1293-1299.
    [16]Youngmi Kim, Chaoyong James Yang, Weihong Tan. Superior structure stability and selectivity of hairpin nucleic acid probes with an L-DNA stem[J]. Nucleic Acids Res, 2007,35(21):7279-7287.
    [17]Jianwei Jeffery Li, Yizhuo Chu, Benjamin Yi-Hung Lee, et al. Enzymatic signal amplification of molecular beacons for sensitive DNA detection[J]. Nucleic Acids Res, 2008,36(6):e36.
    [18]Joong Hyun Kim, Dimitrios Morikis, Mihrimah Ozkan. Adaptation of inorganic quantum dots for stable molecular beacons[J]. Sens. Actuators, B,2004,102:315-319.
    [1]Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP. Semiconductor Nanocrystals as Fluorescent Biological Labels[J]. Science,1998,281:2013-2016.
    [2]Warren CWC, Nie S. Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection[J]. Science,1998,281:2016-2018.
    [3]Benoit Dubertret, Paris Skourides, David J. Norris, Vincent Noireaux, Ali H. Brivanlou, and Albert Libchaber. In Vivo Imaging of Quantum Dots Encapsulated in Phospholipid Micelles[J]. Science,2002,298:1759-1762.
    [4]Mingyong Han, Xiaohu Gao, Jack Z. Su and Shuming Nie. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules[J]. Nat Biotechnol,2001, 19(7):631-635.
    [5]Riegler J, Nick P, Kielmann U, Nann T. Visualizing the Self-Assembly of Tubulin with Luminescent Nanorods[J]. J Nanosci Nanotech,2003,3:380-385
    [6]Jaiswal JK, Mattoussi H, Mauro JM, Simon SM. Long-term multiple color imaging of live cells using quantum dot bioconjugates[J]. Nat Biotechnol,2003,21:47-51.
    [7]M. A. Hines and P. Guyot-Sionnest. Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals[J]. J. Phys. Chem,1996,100:468-471.
    [8]B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi. (CdSe)ZnS Core-Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites[J]. J. Phys. Chem. B,1997,101:9463-9475.
    [9]Tomaselli M, Yarger J, Bruchez M, Havlin RH, Degraw D, Pines A, Alivisatos AP. NMR study of InP quantum dots:Surface structure and size effects[J]. J Chem Phys, 1999,110:8861-8864.
    [10]Goldman ER, Anderson GP, Tran PR, Mattoussi H, Charles PT, Mauro JM. Conjugation of Luminescent Quantum Dots with Antibodies Using an Engineered Adaptor Protein to Provide New Reagents for Fluoroimmunoassay[J]. Anal Chem.2002, 74:841-847.
    [11]R.Q. Liang, W. Li, Y. Li, C.Y. Tan, J.X. Li, Y.X. Jin, K.C. Ruan. An oligonucleotide microarray for microRNA expression analysis based on labeling RNA with quantum dot and nanogold probe[J]. Nucleic Acids Res,2005,33 (e17):1-8.
    [12]Hanaki K, Momo A, Oku T, Komoto A, Maenosono S, Yamaguchi Y, Yamamoto K. Semiconductor quantum dot/albumin complex is a long-life and highly photostable endosome marker[J]. Biochem Biophys Res Commun,2003,302:496-501.
    [13]Seydel C. Quantum Dots Get Wet[J]. Science,2003,300:80-81.
    [14]王楠,邹明强,薛强,李锦丰,张帆,汪明.量子点标记DNA的应用与进展[J].化学试剂,2009,31(5):337-34.
    [15]Baoquan Suna, Wenzhang Xie, Guangshun Yia, Depu Chen, Yuxiang Zhou, Jing Cheng. Microminiaturized immunoassays using quantum dots as fluorescent label by laser confocal scanning fluorescence detection[J]. J. Immunol. Methods,2001,249:85-89.
    [16]Gregory P. Mitchell, Chad A. Mirkin, and Robert L. Letsinger. Programmed Assembly of DNA Functionalized Quantum Dots[J]. J. Am. Chem. Soc,1999,121(35): 8122-8123.
    [17]Warren C. W. Chan, Dustin J. Maxwell, Xiaohu Gao, Robert E. Bailey, Mingyong Han, Shuming Nie. Luminescent quantum dots for multiplexed biological detection and imaging[J]. Curt. Opin. Biotechnol,2002,13(1):40-46.
    [18]林章碧,苏星光,张皓,牟颖,孙晔,胡海,杨柏,闫岗林,罗贵民,金钦.用水溶液中合成的量子点作为生物荧光标记物的研究[J].高等学校化学学报,2003,24(2):216-220.
    [19]Zhangbi Lin, Shuxun Cui, Hao Zhang, Qidan Chen, Bai Yang, Xingguang Su, Jiahua Zhang, Qinhan Jin. Studies on quantum dots synthesized in aqueous solution for biological labeling via electrostatic interaction [J]. Anal. Biochem,2003,319(2):239-243.
    [20]高梅.纳米粒子标记DNA探针在电化学DNA生物传感器中的应用[J].生物磁学,2006,6(1):1619.
    [21]Mark Green and Paul O'Brien. Recent advances in the preparation of semiconductors as isolated nanometric particles:new routes to quantum dots[J]. Chem Commun,1999,22:2235-2241.
    [22]孙保全,徐咏蓝,衣广舜,陈德朴.半导体纳米晶体的光致发光特性及其在生物材料荧光标记中的应用[J].分析化学,2002,9:1130-1136.
    [23]Matthew Levy, Sean F. Cater, and Andrew D. Ellington. Quantum-Dot Aptamer Beacons for the Detection of Proteins[J]. ChemBioChem,2005,6:2163-2166.
    [24]Jianzhong Shen, Fei Xu, Haiyang Jiang, Zhanhui Wang, Jing Tong, Pengju Guo & Shuangyang Ding. Characterization and application of quantum dot Nanocrystal-monoclonal antibody conjugatesfor the determination of sulfamethazine in milk by fluoroimmunoassay[J]. Anal Bioanal Chem,2007,389:2243-2250.
    [25]Liang RQ, Li W; Li Y, Tan CY, Li JX, Jin YX, Ruan KC. An oligonucleotide microarray for microRNA expression analysis based on labeling RNA with quantum dot and nanogold probe[J]. Nucleic Acids Res,2005,33(2):e17.
    [26]Dale M. Willard, Lori L. Carillo, Jaemyeong Jung, and Alan Van Orden. CdSe-ZnS Quantum Dots as Resonance Energy Transfer Donors in a Model Protein-Protein Binding Assay[J]. Nano Lett,2001,1(9):469-474.
    [27]W.A. Hild, M. Breunig, A. Goepferich. Quantum dots-Nano-sized probes for the exploration of cellular and intracellular targeting[J]. European Journal of Pharmaceutics and Biopharmaceutics.2008,68:153-168.
    [28]D.S. Lidke, P. Nagy, R. Heintzmann, D.J. Arndt-Jovin, J.N. Post, H.E. Grecco, E.A. Jares-Erijman, T.M. Jovin. Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction[J]. Nat. Biotechnol,2004,22:198-203.
    [29]E. Chang, W.W. Yu, V.L. Colvin, R. Drezek. Quantifying the influence of surface coatings on quantum dot uptake in cells[J]. J. Biomed. Nanotechnol,2005,1:397-401.
    [30]E.L. Bentzen, I.D. Tomlinson, J. Mason, P. Gresch, M.R. Warnement, D. Wright, E. Sanders-Bush, R. Blakely, S.J. Rosenthal. Surface modification to reduce nonspecific binding of quantum dots in live cell assays[J]. Bioconjug. Chem,2005,16:1488-1494.
    [31]A.M. Derfus, W.C.W. Chan, S.N. Bhatia. Intracellular delivery of quantum dots for live cell labeling and organelle tracking[J]. Adv. Mater,2004,16:961-966.
    [32]W. Cai, D. Shin, K. Chen, O. Gheysens, Q. Cao, S. Wang, X, S.S. Gambhir, X. Chen. Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects[J]. Nano Lett,2006,6:669-676.
    [33]Aurelien Crutl, Benedicte Geron-Landre, Isabelle Bonnet, Stephane Bonneau, Pierre Desbiolles and Christophe Escude. Detection of single DNA molecules by multicolor quantum-dot end-labeling[J]. Nucleic Acids Res,2005,33(11):e98.
    [34]Diane S Lidke, Peter Nagy, Rainer Heintzmann, Donna J Arndt-Jovin, Janine N Post, Hernan E Grecco, Elizabeth A Jares-Erijman & Thomas M Jovinl. Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction[J]. Nat Biotechnol,2004,22(2):198-203.
    [35]杨华静,徐鹏,王坚苗,夏星,张苏明.采用量子点标记的寡核苷酸探针检测ApoEε4等位基因[J].华中科技大学学报(医学版),2008,37(4):493-495.
    [36]Chuang Chen, Jun Peng, He-Shun Xia, Gui-Fang Yang, Qiong-Shui Wu, Liang-Dong Chen, Li-Bo Zeng, Zhi-Ling Zhang, Dai-Wen Pang, Yan Li. Quantum dots-based immunofluorescence technology for the quantitative determination of HER2 expression in breast cancer[J]. Biomaterials,2009,30:2912-2918.
    [37]Er-Qun Song, Zhi-Ling Zhang, Qing-Ying Luo, Wen Lu, Yun-Bo Shi, Dai-Wen Pang. Tumor Cell Targeting Using Folate-Conjugated Fluorescent Quantum Dots and Receptor-Mediated Endocytosis[J]. Clin. Chem,2009,55(5):955-963.
    [38]Kevin C. Weng, Charles O. Noble, Brigitte Papahadjopoulos-Sternberg, Fanqing F. Chen, Daryl C. Drummond, Dmitri B. Kirpotin, Donghui Wang, Yun K. Hom, Byron Hann and John W. Park. Targeted Tumor Cell Internalization and Imaging of Multifunctional Quantum Dot-Conjugated Immunoliposomes in Vitro and in Vivo[J]. Nano Lett,2008,8(9):2851-2857.
    [39]Xiaohu Gao, Yuanyuan Cui, Richard M Levenson, Leland W K Chung & Shuming Nie. In vivo cancer targeting and imaging with semiconductor quantum dots[J]. Nat Biotechnol,2004,22(8):969-976.
    [40]李常艳,李倩,刘海涛,张军,阿勒坦高勒.量子点荧光标记技术的研究热点及面临的挑战[J].生物化学与生物物理进展,2010,37(1):103-110.
    [1]Mirkin, C. A, Letsinger, R. L, Mucic, R. C, Storhoff, J. J. A DNA-Based Method for Rationally Assembling Nanoparticles into Macroscopic Materials[J]. Nature,1996,382: 607-609.
    [2]胡瑞省等.金纳米粒子通过形成Au-S键的组装[J].物理化学学报,1999,15(11):961-964.
    [3]Taton T. A, Mirkin C. A, Letsinger R.L. Scanmetric DNA array detection with nanoparticle probes[J]. Science,2000,289:1757-1760.
    [4]Reynolds R. A, Mirkin C. A, Letsinger R.L. Homogeneous, nanoparticle-based quantitative colorimetric detection of oligonucleotides[J]. J. Am. Chem. Soc,2000,122: 3795-3796.
    [5]Oliver C. Conjugation of colloidal gold to proteins[J]. Methods Mol Biol,1999,115 (3):331-334.
    [6]Dimitra G. Georganopoulou, Lei Chang, Jwa-Min Nam, C. Shad Thaxton, Elliott J. Mufson, William L. Klein, and Chad A. Mirkin. Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimerps disease[J]. PNAS,2005, 102(7):2273-2276.
    [7]Savka I. Stoeva, Jae-Seung Lee, C. Shad Thaxton, Chad A. Mirkin. Multiplexed DNA detection with biobarcoded nanoparticle probes[J]. Angew Chem Int Ed Engl,2006, 45(20):3303-3306.
    [8]Savka I. Stoeva, Jae-Seung Lee, Jennifer E. Smith, Steven T. Rosen, and Chad A. Mirkin. Multiplexed detection of protein cancer markers with biobarcoded nanoparticle probes[J]. J Am Chem Soc,2006,128(26):8378-8379.
    [9]Nam J M, Thaxton C S, Mirkin C A. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins[J]. Science,2003,301:1884-1886.
    [10]Frens,G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions[J]. Nat. Phys. Sci,1973,241:20-22.
    [11]Katherine C. Grabar, R Griffith Freeman, Michael B. Hommer, and Michael J. Natan. Preparation and Characterization of Au Colloid Monolayers[J]. Anal. Chem,1995, 67:735-743.
    [12]Adriano Ambrosi, Maria Teresa Castaneda, Anthony J. Killard, Malcolm R. Smyth, Salvador Alegret, and Arben Merkoci. Double-Codified Gold Nanolabels for Enhanced Immunoanalysis[J]. Anal. Chem,2007,79:5232-5240.
    [13]Daniela Zanchet, Christine M. Micheel, Wolfgang J. Parak, Daniele Gerion, and A. Paul Alivisatos. Electrophoretic Isolation of Discrete Au Nanocrystal/DNA Conjugates[J]. Nano Lett,2001,1:32-35.
    [14]Fei-Yan Qiao, Jun Liu, Fu-Rong Li, Xiao-Li Kong, Hao-Li Zhang, Han-Xin Zhou. Antibody and DNA dual-labeled gold nanoparticles:Stability and reactivity[J]. Applied Surface Science,2008,254:2941-2946.
    [15]崔亚丽,张连营,苏婧,张彩峰,李琦,崔婷,金伯泉,陈超.组装型金磁微粒的制备及其在免疫学检测中的应用[J].中国科学B辑化学,2006,36(2):159-165.
    [16]孔小丽,乔飞燕,齐晖,李富荣,周汉新.抗体和寡核苷酸双标记纳米金生物探针的制备及性能分析[J].中国生物化学与分子生物学报,2008,24(5):481-487.
    [17]Christopher J, Ackerson, Michael T, Sykes and Roger D. Kornberg. Defined DNA nanoparticle conjugates[J]. PNAS,2005,102:13383-13385.
    [18]Par Sandstrom and Bjorn Akerman. Electrophoretic Properties of DNA-Modified Colloidal Gold Nanoparticles[J]. Langmuir,2004,20:4182-4186.
    [19]John A. Burns, James C. Butler, John Moran, and George M. Whitesides. Selective reduction of disulfides by tris-(2-carboxyethyl)-phosphine[J]. J. Org. Chem,1991,56: 2648-2650.
    [20]Han, J.C. and Han, G.Y. A procedure for quantitative determination of tris(2-carboxyethyl)phosphine, an odorless reducing agent more stable and effective than dithiothreitol[J]. Anal. Biochem,1994,220:5-10.
    [21]John A. Burns, James C. Butler, John Moran, George M. Whitesides. Selective reduction of disulfides by tris(2-carboxyethyl)phosphine[J]. J. Org. Chem,1991,56: 2648-2650.
    [22]Jwa-Min Nam, C. Shad Thaxton, Chad A. Mirkin. Nanoparticle-Based Bio-Bar Codes for the Ultrasensitive Detection of Proteins [J]. Science,2003,301:1884-1886.
    [23]Debin Zhu, Yabing Tang, Da Xing, and Wei R. Chen. PCR-Free Quantitative Detection of Genetically Modified Organism from Raw Materials. An Electrochemiluminescence-Based Bio Bar Code Method[J]. Anal Chem,2008,80: 3566-3571.
    [24]Haley D. Hill, Rafael A. Vega, and Chad A. Mirkin. Nonenzymatic Detection of Bacterial Genomic DNA Using the Bio Bar Code Assay[J]. Anal. Chem,2007,79: 9218-9223.
    [25]Dimitra G. Georganopoulou, Lei Chang, Jwa-Min Nam, C. Shad Thaxton, Elliott J. Mufson, William L. Klein, and Chad A. Mirkin. Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer's disease[J]. PNAS,2005, 102:2273-2276.
    [1]Kulesh DA, Clive DR, Zarlenga DS, Greene JJ. Identification of interferon-modulated proliferation-related cDNA sequences[J]. PNAS,1987,84(23): 8453-8457.
    [2]Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray[J]. Science,1995,270: 467-470.
    [3]Lashkari DA, DeRisi JL, McCusker JH, Namath AF, Gentile C, Hwang SY, Brown PO, Davis RW. Yeast microarrays for genome wide parallel genetic and gene expression analysis[J]. PNAS,1997,4(24):13057-13062.
    [4]Wu JT. Diagnosis and management of cancer using serolgic tumor, in:Diagnosis and Management by Laboratory Method Markers[M]. Philadelphia, Henry JB, ed, S. Saunders Co,2001,20:1028-1042.
    [5]Landman J, ChangY, Kavaler E, Droller MJ, Liu BC. Sensitivity and specificity of NMP-22, telomerase, and BTA in the detection of human bladder cancer[J]. Urology, 1998,52(3):398-402.
    [6]Koprowski H, Steplewski Z, Mitchell K, Herlyn M, Herlyn D. Colorectal carcinoma antigens detected by hybridoma antibodies[J]. Somatic Cell Genet,1979,5(6):957-971.
    [7]Bast RC Jr, Feeney M, Lazarus H, Nadler LM, Colvin RB, Knapp RC. Reactivity of a monoclonal antibody with human ovarian carcinoma[J]. J Clin Invest,1981, 68(5):1331-1337.
    [8]Hanash S. Disease Proteomics[J]. Nature,2003,422:226-232.
    [9]Lok C. Picture perfect[J]. Nature,2001,412:372-374.
    [10]Bel Hadj Hmida Y, Tahri N, Sellami A, Yangui N, Jlidi R, Beyrouti MI, Krichen MS, Masmoudi H. Sensitivity, specificity and prognostic value of CEA in colorectal cancer: results of a Tunisian series and literature review[J]. Tunis. Med,2001,79(8-9):434-440.
    [11]Pezzilli R, Billi P, Plate, L, Laudadio Ma, Sprovieri G. Serum CA 242 in pancreatic cancer. Comparison with CA 19-9 and CEA[J]. Ital. J. Gastroenterol,1995,27(6): 296-299.
    [12]Johnson PJ. The role of serum alpha-fetoprotein estimation in the diagnosis and management of hepatoceller carinoma[J]. Clin. Liver Dis,2001,5(1):145-159.
    [13]Aoyagi U. [Japanese]Alpha fetoprotein and I'ts fucocylation index in early Diagnostic diagnostic of Hepatocarcinomahepatocarcinoma[J]. Nippon Rinsho,2001, 59(6):42-348.
    [14]Takeda M, Sakuragi N, Okamoto K, Todo Y, Minobe S, Nomura E, Negishi H, Oikawa M, Yamamoto R, Fujimoto S. Preoperative serum SCC, CA125, and CA19-9 levels and lymph node status in squamous cell carcinoma of the uterine cervix[J]. Acta. Obstet. Gynecol. Scand,2002,81(5):451-457.
    [15]Krumholtz JS, Carvalhal GF, Ramos CG, Smith DS, Thorson P, Yan Y, Humphrey PA, Roehl KA, Catalona WJ. Prostate-specific antigen cutoff of 2.6 ng/mL for prostate cancer screening is associated with favorable pathologic tumor features[J]. Urology, 2002,60(3):469-474.
    [16]Kokhanenko NIu, Ignashov AM, Varga EV, Polkanova MS, Aleshina LA, Kimbarovskaia AA, Osipenko SK, Lebedev EG Role of the tumor markers CA 19-9 and carcinoembryonic antigen (CEA) in diagnosis, treatment and prognosis of pancreatic cancer[J]. Vopr. Onkol,2001,47(3):294-297.
    [17]Gemer O, Segal S, Kopmar A. Preoperative CA-125 level as a predictor of non optimal cytoreduction of advanced epithelial ovarian cancer[J]. Acta. Obstet. Gynecol. Scand,2001,80(6):583-585.
    [18]Tampellini M, Berruti A, Gorzegno G, Bitossi R, Bottini A, Durando A, De Matteis A, Farris A, Donadio M, De Fabiani E, Manzin E, Arese P, Sarobba MG, Castiglione F, Moro G, Bonazzi G, Nuzzo F, Massobrio M, Dogliotti L. Independent factors predict supranormal CA 15-3 serum levels in advanced breast cancer patients at first disease relapse[J]. Tumour Biol,2001,22(6):367-373.
    [19]Ychou M, Duffour J, Kramar A, Gourgou S, Grenier J. Clinical significance and prognosticvalue of CA72-4 compared with CEA and CA19-9 in patients with gastric cancer[J]. Dis. Markers,2000,16(3-4):105-110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700