用户名: 密码: 验证码:
金包覆核壳结构纳米复合材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核壳结构纳米复合材料是一种涉及材料学、光学和生物工程学等多门学科的新型材料体系,是通过化学或物理作用,将一种纳米材料包覆于另一种纳米材料表面所形成纳米量级的核壳有序结构。与单一材料相比,核壳问的协同效应使纳米复合材料可集众多特性于一身,在光学器件,生物传感以及荧光探针方面都具有重要的研究价值和广泛的应用前景,吸引了越来越多的科研工作者的关注。本文分别以二氧化硅、聚苯乙烯荧光纳米球、半导体量子点为核,采用不同工艺制备金包覆的核壳结构纳米复合材料,在双重态检测、荧光标记和生物传感等领域的应用进行了比较系统的研究。主要研究内容如下:
     1、分别以聚苯乙烯荧光微球和CdSe半导体纳米晶为核,引入聚合物组氨酸(PLH)为中间沉积层,直接沉积金离子还原成壳,并在核壳间设计隔离层结构,制备新型的金包覆核壳结构多功能材料。实验结果显示,新材料具有超薄金壳结构,在CdSe@Au样品中金壳最低可达2-3nm左右,隔离层结构能有效克服荧光猝灭现象,最高可抑制荧光衰减达40%以上。通过控制壳层厚度的变化,材料的吸收峰最远可红移至近红外波段约822nm处。
     2、利用半胱氨酸盐酸盐为稳定剂,采用溶胶-凝胶法在水相中制备出表面具有多种官能团的CdSe纳米晶,对溶菌酶进行了荧光标记的研究。实验结果显示不同粒径的半导体纳米晶材料具备连续变化的吸收和发射光谱,其发射光谱半峰宽窄(<50nm),区分度高,发射峰在475-580nm之间连续可控变化。另外半胱氨酸盐酸盐稳定剂使纳米晶表面同时具有-NH2和-COOH多种官能团,增加生物应用的选择性,操作简单,实现一步标记。
     3、利用实验制备的金包覆核壳结构纳米复合材料,针对荧光免疫标记,生物素检测,双重态表征等方面进行了深入的研究。实验显示在生物素检测的应用中,CdSe@Au与传统工艺制备的Si02@Au材料相比,灵敏度可提高在6.4倍以上;新材料在前列腺癌LNCaP细胞的荧光免疫检测和双重态表征方面的表现也从应用角度验证了材料的多功能性。
Core/shell composite nanomaterial is a new material relating to multiple subjects, such as Materials, Optics and Bio-engineering, etc. Through the chemical and physical effects, core/shell structure is formed by coating shell nanomaterials on the surface of corer nanomaterials. Compared with single materials, core/shell nanomaterials have much more characteristics and its significant research value and broad application prospects in optical devices, biological sensing as well as fluorescent probes are given more and more attention in scientific research. Taking SiO2 microsphere、fluorescence doped polystyrene microsphere and CdSe semiconductor nanocrystal respectively as the core, in this thesis, the synthesis of core/shell composite nanomaterials coated by gold are synthesized using different technology, and a systematic study is done on its application in fluorescent probes, biological sensing, etc. The main contents of the research are as follow:
     1. Croe/shell composite nanomaterials are produced by taking fluorescence doped polystyrene microsphere and CdSe semiconductor nanocrystal as the core, poly-L-histidihe(PLH) as the Au deposition template, and coating ultra slim gold shell on the surface of the core. As shown in the experimental results, ultra slim gold shell can be produced due to the introduction of PLH, it almost is 2-3nm in CdSe@Au sample. The space structure solves the problem of fluorescent quench. It can enhance more than 40%. In addition, according to the principle of Plasmon resonance, by controlling the thickness of shell, the Au surface Plasmon resonance peak can shift to near infrared band (about 822nm)
     2. With L-Cysteine(L-Cys) as the stabilizer, CdSe nanocrystal with different diameter and multi-function on the surface is produced using sol-gel method in water, and the study of the fluorescence probe of lysozyme is conducted. Experimental results show that the absorbance and fluorescence spectrum of semiconductor nanocrystals with different grain diameter can shift from 475nm to 580nm continuously, they have narrow Full Wave at Half Maximum(<50nm) and high differentiable, the optical performance is stable. Moreover, the introduction of L-Cys as the stabilizer allows the co-existence of-COOH and-NH2, which provide more choice for the preparation of core/shell materials and their biological application.
     3. The application of core/shell composite nanomaterials produced in the experiment, in fluorescent probes, biological sensing and the detecting of cellular immunity, are studied by surface functionalization. The Experiments show that the CdSe@Au sample is more sensitive than SiO2@Au made using traditionary method (about 6.4 times). In addition, the application of fluorescence detection for LNCaP cell and dual-modality imaging also prove the multifunctional of our new core/shell composite materials.
引文
[1]杨文胜,高明远,白玉白.纳米材料与生物技术,北京:化学工业出版社.2005
    [2]白春礼.纳米科技及发展前景.北京:化工工业出版社,2002:2-5
    [3]Junu Chatterjee, Yousef Haik, Ching Jen Chen. Polythylene magnetic nanoparticle: a new magnetic material for biomedical applications. Journal of Magnetism and Magnetic Materials[J].2002,246:382-391
    [4]Kelly K L. Nanotechnology grows up. Science,2004,304(5678):1732-1734
    [5]DawsonP, PuygranierF, Goudonnet JP. Surface plasmon polariton propagation length: A direct comparison using photon scanning tunneling microscopy and attenuated total reflection. Phys. Rev. B,2001,63:405-410
    [6]Ebbesen T W, Lezec HJ, Ghaem HF, et al. Extraordinary optical transmission through subwavelength hole arrays. Nature,1998,391:667-669
    [7]张立德,牟季美.纳米材料与纳米结构.北京,科学出版社,2001:59-66
    [8]Rosetti R, Nakahara S, Brus L E. Quantum size effects in the redox potentials, resonance raman spectra and electronic specra of CdS crystallites in aqueous solution[J]. J Chem. Phys.1983,79(2):1086-1088
    [9]Ball P, Garwin L. Science at the atomic scale[J]. Nature,1992,355:761-766
    [10]Cavicchi R. E, Silsbee R. H. Coulomb suppression of tunneling rate from small metal particles[J]. Phys. Rev. Lett.1984,52(5):1453-1457
    [11]Lopez Quintela, Rivas M. A., Liz J. Quantum effects in ultrafine neodymium-iron-boron particles[J]. NATO ASI Series, Series B:Physics,1991(259): 567-572
    [12]Kubo R. Electronic Properties of Metallic Fine Particles [J]. J. Phys. Soc. Jpn. 1962,17:975-979.
    [13]Kubo R, Kawabata A, Kobayashi S. Annu Rev Mater Sci,1984,14:49-53.
    [14]Bandara, K. M. S. V., Coon. D. D. Derivation and correction of the Tsu-Esaki tunneling current formula[J]. Journal of Applied Physics.1989,66(2):408-412
    [15]Peng, Z. A., Peng, X. G. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor, J. Am. Chem. Soc.2001,123:183-184.
    [16]朱静等,纳米材料与器件,北京,清华大学出版社,2003.
    [17]Jin R, Cao Y, Mirkin CA, et al. Photoinduced conversion of silver nanospheres to nanoprisms. Science,2001,294:1901-1903
    [18]Callegari A, Tonti D, Chergui M. Photochemiclly grown silver nanoparticles with wavelength-controlled size and shape. Nano Lett.2003,3:1565-1568
    [19]Chen J Y, Wiley B, Li Z Y, et al. Gold Nanocages:Engineering Their Structure for Biomedical Applications. Adv. Mater.,2005,17,2255-2261.
    [20]Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots. Science, 1996,271:933-937
    [21]Graf C, van Blaaderen A. Metallodielectric colloidal core-shell particles for photonic applications. Langmuir,2002,18:524-534
    [22]Raschke G, Kowarik S, Franzl T, et al. Biomolecular recognition based on single gold nanoparticle light scattering. Nano Lett.,2003,3:935-938
    [23]Toshima N, Yonezawa T. Bimetallic nanoparticles-novel materials for chemical and physical applications. New J. Chem.,1998,22(11):1179-1201
    [24]于乃森,李玲,郝霄鹏等.核壳型复合半导体纳米粒子的研究.材料科学与工程学报,2004,22(3):432-435
    [25]Chen J, McLellan J M, Siekkinen A., et al. Facile synthesis of gold-silver nanocages with controllable pores on the surface[J]. Am. Chem. Soc.,2006, 128(46):14776-14777
    [26]喻发全.核壳型复合结构纳米粒子研究进展.现代化工,2004,24(2):12-15
    [27]Gleiter H. Nanocrystalline materials[J]. Progress in Mater Sci,1989,33:223-315
    [28]Gell M. Application opportunities for nanostructured materials and coatings, Mater. Sci. Eng.,1996,204A:246
    [29]沙恒,李凤生,宋洪昌等.超细高氯酸银的表面改性及对高燃速推进剂性能的影响[J].含能材料,1995,3(2):26-29
    [30]Cho J, Kim Y. J, Park B. Novel LoCoO2 cathode material with Al2O3 coating for a Li ion cell[J]. Chem. Mater.2002(12):3788-3791
    [31]Liz-Marzan L. M, Giersig M, Mulvaney P. Synthesis of nanosized gold-silica core-shell particles[J]. Langmuir.1996,12(18):4329-4335
    [32]Margaret A. Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals[J]. J. Phys. Chem.1996(100):468-471
    [33]谈勇,杨可靖,曹跃霞等.聚苯乙烯光子晶体的制备及其在传感中的应用.化学学报,2004,62(20):2089-2092.
    [34]Wang Y W, Xie X Y, Wang X D, et al. Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain[J]. Nano. Lett.,2004,4(9):1689-1692.
    [35]Zhang Z B, Cheng H M, Ma J M. Synthesis of silver-coated silica nanoparticles in nonionic reverse micelles[J]. Mater. Sci. Lett.,2001,20(5):439-440
    [36]Kalele S. A, Ashtaputre S. S, Hebalkar N. Y, et al. Optical detection of antibody using silica-silver core-shell particles. Chem. Phys. Lett.,2005,404(1-3): 136-141
    [37]Neeves A. E, Birnboim M. H. Composite structures for the enhancement of nonlinear-optical susceptibility[J]. Opt. Soc. Am. B,1989,6(4):787-796
    [38]Patrick 0. D, Leon R. H, Halas N. J, et al. photo thermal tumor ablation in mice using near infrared absorbing nanoparticles. Cancer Lett.,2004,209:171-176
    [39]Lahav M, Vaskevich A, Rubinsterin I. Biological sensing using transmission surface plasmon resonance spectroscopy. Langmuir,2004,20:7365-7367
    [40]Kuzik L. A, Yakovlev V. A, Mattei G. Raman scattering enhancement in porous silicon microcavity. Appl. Phys. Lett.,1999,75:1830-1832
    [41]Krasser W, Renouprez A. J. Enhanced Raman scattering of benzene chemisorbed on small platinum clusters. Solid State Commun.,1982,41:231-235
    [42]Krolikowska A, Kudelski A, Michota A, et al. SERS studies on the structure of thioglycolic acid monolayers on silver and gold, Surface Science. Surface Science, 2003,532:227-232
    [43]Tan Pham, Joseph B, Halas N. J. Preparation and characterization of gold nanoshells coated with self-assembled monolayers. Langmuir,2002(18):4915-4920
    [44]Dong A. G, Wang Y. J, Tang Y. Fabrication of compact silver nanoshells on polystyrene spheres through electrostatic attraction[J]. CHEM. COMMUN.2002:350-351
    [45]Jackson J. B, Halas N. J. Silver nanoshell:variations in morphologies and optical properties. J. Phys. Chen. B,2001(105):2743-2746
    [46]Weili Shi, Sahoo Y, Swihart Mark T, Gold Nanoshells on Polystyrene Cores for Control of Surface Plasmon Resonance, Langmuir 2005, (21):1610-1617
    [47]MA Y. Synthesis and chemical fabrication of the composite structure of Ⅱ-Ⅵ Semiconductor quantum dots and the study of its photoelectralproperty[D]. Nanjing: Nanjin University,2002:8-10
    [48]刘选明,刘巧玲,萧小鹃等,微乳液法制备CdSe/CdS核壳结构纳米粒子及表征,湖南大学学报,2006,33(2):90-94
    [49]Yang Y, Jing L, Yu X, et al. Coating aqueous quantum dots with silica via reverse microemulsion method:toward size-controllable and robust fluorescent nanoparticles. Chem. Mater.,2007,19(17):4123-4128
    [50]徐国财,张立德.纳米复合材料,北京:化学工业出版社,2002.
    [51]刘冰,王德平,姚爱华等,溶胶-凝胶法制备核壳Si02/Fe304复合纳米粒子的研究,无机材料学报,2008,23(1):33-38
    [52]谢颖,徐静娟,于俊生等。 水溶性的CdSe/ZnS纳米微粒的合成与表征[J].无机化学学报,2004,20(6):663-667
    [53]Pol V. G, Srivastava D. N, Palchik 0, et al. Sonochemical deposition of silver nanoparticles on silica spheres. Langmuir,2002,18:3352-3357
    [54]Pol V. G, Srivastava D. N, Palchik O, et al. Deposition of gold nanoparticles on silica spheres:A Sonochemical Approach. Chem. Mater.,2003,15:3402-3404
    [55]Pol V. G, Motiei M, Gedanken A, et al. Sonochemical deposition of air-stable iron nanoparticles on monodispersed carbon spherules[J]. Chem. Mater., 2003,15:1378-1384
    [56]徐瑞赛,余产为.原位聚合法制备纳米Ti02有机硅改性丙烯酸酯复合乳液.有机硅材料,2003,17(6):11-14
    [57]Dubertret B, et al. In vivo imaging of QDs encapsulated in phospholipid micelles[J]. Science,2002,298:1759-1762
    [58]Wu X. Y, et al. Immunof luorescent labeling of cancer marker Her2 and other cellular targets with semiconductor QDs[J]. Nat. Biotechnol.2003,21:41-46
    [59]Larson D. R, et al. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo [J]. Science,2003,300:1434-1436
    [60]Mattoussi H, et al. Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein[J]. J. Am. Chem. Soc.2000,122:12142-12150
    [61]Tauster S. J, Fung S. J, Garten R. L. Strong metal-support interactions Group noble metals supported on titanium dioxide. J. Am. Chem. Soc,1978,100:170-175
    [62]Oldenburg S. J, Averitt R. D, Westcott S. L, Halas N. J. Nanoengineering of optical resonances[J]. Chem. Phys. Lett.,1998,288:243-247
    [63]Kuzik L. A, Yakovlev V. A, Mattei G. Raman scattering enhancement in porous silicon microcavity[J]. Appl. Phys. Lett.,1999,75:1830-1832
    [64]Nie S. M, Emory S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering[J]. Science,1997,275:1102-1106
    [65]Kaushik M, Madhuri M, Narayan P, et al. Seed mediated formation of bimetallic nanoparticles by UV irradiation:a photochemical approach for the preparation of "core-shell" type structures. Nano Lett.,2001,1:319-322
    [66]Naoki T, Tetsu Y. bimetallic nanoparticles-novel materials for chemical and physical applications. New J. Chem.,1998,22:1179-1201
    [67]Kneipp K, Wang Y, Kneipp H. Single molecule detection using surface-enhanced Raman scattering[J]. Phys. Rev. Lett.,1997,78:1667-1670
    [68]Sun Y, Mayers B, Xia Y. Metal nanostructures with hollow interiors. Adv. Mater. 2003,15:641-646
    [69]Xiaohu Gao, Yuanyuan Cui, Shuming Nie. In vivo cancer targeting and imaging with semiconductor quantum dots[J]. Nature biotechnology,2004, (22)8:969-976
    [70]Chen H, Titushkin I, Stroscio M, et al. Altered membrane dynamics of quantum dot-conjugated integrins during osteogenic differentiation of human bone marrow derived progenitor cells. Biophys[J].2007,92(4):1399-1408
    [71]Dahan M, Levi S, Luccardini C, et al. Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science,2003,302(5644):442-445
    [72]Kriete A, Papazoglou E, Edrissi B, et al. Automated quantification of quantum-dot-labelled epidermal growth factor receptor internalization via multiscale image segmentation[J]. Micros.,2006,222(1):22-27
    [73]Dubertret B, Skourides P, Norris D J, et al. In Vivo Imaging of quantum dots encapsulated in phospholipid micelles[J]. Science,2002,298(5599):1759-1762
    [74]杨文胜,高明远,白玉白等.纳米材料与生物技术.北京:化学工业出版社,2005:154-166
    [75]闫仕农,王永昌,魏天杰等.金/银合金纳米颗粒的制备及光学吸收特性.功能材料与器件学报,2005,11(3):269-272
    [76]Perez J. M, Simeone F. J, Saeki Y, et al. Viral-induced self-assembly of magnetic nanoparticles allows the detection of viral particles in biological media[J]. Am. Chem. Soc.,2003,125(34):10192-10193
    [77]Kuzik L. A, Yakovlev V. A, Mattei G. Raman scattering enhancement in porous silicon microcavity[J]. Appl. Phys. Lett.,1999,75:1830-1832
    [78]Yugang Sun and Younan Xia. Increased Sensitivity of Surface Plasmon Resonance of Gold Nanoshells Compared to That of Gold Solid Colloids in Response to Environmental Changes. Anal. Chem.2002(74):5297-5305
    [79]Asian K, Zhang J, Lakowicz J. R. Saccharide sensing using gold and silver nanoparticles[J]. Journal of fluorescence,2004,14:391-400
    [80]Krolikowska A, Kudelski A, Michota A, et al. SERS studies on the structure of thioglycolic acid monolayers on silver and gold, Surface Science. Surface Science, 2003,532:227-232
    [81]Furtak T. E, Kester J. Do metal alloys work as substrates for surface-enhanced Raman spectroscopy[J]. Phys. Rev. Lett.,1980,45:1652-1655
    [82]Krasser W, Renouprez AJ. Enhanced Raman scattering of benzene chemisorbed on small platinum clusters. Solid State Commun.,1982,41:231-235
    [83]Baibarac M, Cochet M, Lapkowski M, et al. SERS spectra of polyaniline thin films deposited on rough Ag, Au and Cu. Polymer film thickness and roughness parameter dependence of SERS spectra. Synthetic metals,1998,96:63-70
    [84]Hirsch L. R, Stafford R. J, Bankson J. A, et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance gridance[J]. Proc. Natl. Acad. Sci. USA,2003,100:13549-13554
    [85]Huiyu Liu, Dong Chen, Fangqiong Tang. Photothermal therapy of Lewis lung carcinoma in mice using gold nanoshells on carboxylated polystyrene spheres[J]. Nanotechnology,2008(19):455101 (7pp)
    [86]Cassagneau T, Caruso F. Contiguous Silver Nanoparticle Coatings on Dielectric Spheres. Adv. Mater.,2002,14:732-736.
    [87]Shi W, Sahoo Y, Swihart MT, et al Gold nanoshells on polystyrene cores for control of surface plasmon resonance. Langmuir.,2005,21(4):1610-1617
    [88]Pham T, Jackson J B, Halas N J, et al. and characterization of gold nanoshells coated with self-assembled monolayers. Langmuir,2002,18:4915-4920.
    [89]Wang Y W, Xie X Y, Wang X D, et al. Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain[J]. Nano. Lett.,2004,4(9):1689-1692.
    [90]Pol V. G, Gedanken A, Calderon-Moreno J. Deposition of. gold nanoparticles on silica spheres:A sonochemical approach. Chem. Mater.,2003,15:1111-1118.
    [91]Daniel M. C, Astruc D. Gold Nanoparticles:Assembly, Supramolecular Chemistry, QuantumSize-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chem Rev,2004,104:293-346.
    [92]Hirsch L. R, Jackson J. B, Lee A, et al. A whole blood immunoassay using gold nanoshells[J]. Anal. Chem.,2003,75:2377-2381.
    [93]Penn S. G, He L, Natan M. J, et al. Nanoparticles for bioanalysis. Curr. Opin. Chem. Biol.,2003,7:609-615.
    [94]赵丽,余家国,程蓓等.单分散二氧化硅球形颗粒的制备与形成机理[J].2003,61(4):562-566
    [95]Cassagneau T, Caruso F. Contiguous Silver Nanoparticle Coatings on Dielectric Spheres. Adv. Mater.,2002,14:732-736.
    [96]Liang Z, Susha A. S, Caruso F. Metallodielectric opals of layer-by-layer processed colloids. Adv. Mater.,2002,14:1160-1164.
    [97]Pol V. G, Gedanken A, Calderon-Moreno J. Deposition of. gold nanoparticles on ilica spheres:A sonochemical approach. Chem. Mater.,2003,15:1111-1118.
    [98]刘大勇,任山,闻立时.液相制备纳米金属粉的粒度及形貌控制研究进展.材料导报,2006,20(1):135-137
    [99]刘惠玉,陈东,高继宁.贵金属纳米材料的液相合成及其表面等离子体共振性质应用.化学进展,2006,18(8):889-896
    [100]Stober W, Fink A, Bohn E. Controlled growth of mono-disperse silica spheres in the micron size range. J Colloid. Interface Sci.1968,26:62-69
    [101]Snigdhamayee Praharaj, Sudip Nath, Sudipa Panigrahi. Layer-by-Layer Deposition of Bimetallic Nanoshells on Functionalized Polystyrene Beads[J]. Inorg. Chem.2006, 45,1439-1441
    [102]Kim Xuyen Phan, Misuk Cho, Jae Do Nam. Fabrication of odified-poly (divinylbenzene)/Au core-shell structure [J]. Synthetic Metals.2006,156:872-877
    [103]Tianhao J, Vladislav G, Lirtsman, Yair Avny. Preparation, Characterization, and Application of Au-Shell/Polystyrene Beads and Au-Shell/Magnetic Beads[J]. Adv. Mater.2001,13(16):1253-1256
    [104]ReithF, Rogers S. L, McPhailD. C.& Webb, D. Biomineralization of gold:biofilms on bacterioform gold. Science,2006,313,233-236
    [105]Djalali R, Chen Y. F. Matsui H. Au nanocrystal growth on nanotubes controlled by conformations and charges of sequenced peptide templates. J. Am. Chem. Soc.2003, 125:5873-5879
    [106]Yongdong Jin and Xiaohu Gao, Plasmonic fluorescent quantum dots, Nature Nanotechnology.2009,4:571-576
    [107]沈同,王镜岩.生物化学(第二版)[M].北京:高等教育出版社,1999:92-95
    [108]Gan Linhuo, Weng Lianjin, Guo Xu. Study on activated clay in adsorption of L-histidine[J]. Food and fermentation industries,2005,31 (10):55-88
    [109]Kulakovich O, et al. Enhanced luminescence of CdSe quantum dots on gold colloids[J]. Nano Lett.2002,2:1449-1452
    [110]Son D. H, Hughes S. M, Yin Y. Alivisatos A. P. Cation exchange reactions in ionic nanocrystals[J]. Science 2004,306:1009-1012
    [111]Liao S. Y. Light transmittance and RF shielding effectiveness of a gold film on aglass substrate[J]. IEEE Trans. Electromagn. Compat.1975, EMC-17:211-216
    [112]Hirsch L. R, et al. Metal nanoshells. Ann. Biomed. Eng.2006,34:15-22
    [113]Shu Man Liua, Hai Qing Guob, Zhi Hua Zhan. Characterization of CdSe and CdSe/CdS core/shell nanoclusters synthesized in aqueous solution. Physica E,2000,8:174-178
    [114]Epifani M, Giannini C. A novel synthesis of CdSe nanocrystals[J]. Mater. Lett. 2004,58:2429-2432.
    [115]Sondi I, Siiman 0. Synthesis of CdSe nanoparticles in the presence of aminodextran as stabilizing and capping agent[J]. Col. Int. Sci.,2004,275:503-507.
    [116]Zhong Huaizhen, Li Guoqiang, He Xiaoyun, et al. Preparation of nanosize CdS/PANI film and studies of its photoelectric properties[J]. Chin. Lumin.,2004, 25(5):585-590
    [117]Wang Yinshu, Zheng Dong, Sun Ping, et al. Photoluminescence of CdSeS nanocrystals at room temperature[J]. Chin. Lumin.,2003,24(2):139-143
    [118]Peng X, Manna L, Yang W, Wickham J, Scher E, Kadavanich A, Alivisatos A P, Shape control of CdSe nanocrystals [J]. Nature,2000,404(6773):59-61
    [119]Han M, Gao X, Su J Z, Nie S. Quantum-dot-tagged microbeads for multiplexed opital coding of biomolecules [J]. Nat Biotechnol,2001,19(7):631-635.
    [120]Hines M. A, Guyot Sionnest P. Synthesis and characterization of strongly luminescing ZnS capped CdSe nanocrystalls[J]. J. Phys. Chem.,1996,100:468-471.
    [121]Michalet X, Pinaud F, Lacoste T. D, et al. Properties of fluorescent semiconductor nanocrystals and their application to biogical labeling [J]. Single Mol.,2001,2(4):261-276.
    [122]Talapin D. V, Haubold S, Rogach A. L, et al. A novel organometallic synthesis of highly luminescent CdTe nanocrystals [J]. Phps. Chem. B,2001,105(12):2260-2263
    [123]Aldana J, Wang Y A, PengX, et al. Photochemical instability of CdSe nanocrystals coated by hydrophilic thiolsf [J]. J. Am. Chem. Soc.,2001,123(36):8844-8850.
    [124]Murray C. B, Norris D. J, Bawendi M. G. Synthesis and characterization of nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc,1993,115:8706-8715.
    [125]Peng Z. A, Peng X G. Mechanisms of the Shape Evolution of CdSe Nanocrystals [J]. Am. Chem. Soc.,2001,123:1389-1395.
    [126]Aldana, J, Wang, Y A, Peng, X G. Photochemical Instability of CdSe Nanocrystals Coated by Hydrophilic Thiols[J]. Am.Chem. Soc.,2001,123:8844
    [127]Peng, X. Green Chemical Approaches toward High-Quality Semiconductor Nanocrystals. Chem. Eur. J.,2002,8:334-339
    [128]Xie Y, Xu J J, Y u J S. Synthesis and characterization of water-soluble CdSe/ZnS core-shell nanoparticles[J]. Chin. Inorg. Chem.2004,20(6):663-667
    [129]Vossmeyer T, Katsikas L, Gienig M. CdS Nanoclusters:Synthesis, Characterization, Size Dependent Oscillator Strength, Temperature Shift of the Exci tonic Transition Energy, and Reversible Absorbance Shift [J]. J. Phys. Chem.1994, 98:7665-7673
    [130]Adam P. Z, Peng Xiaogang. Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes:nucleation and growth[J]. Am. Chem. Soc., 2002,124:3343-3553.
    [131]Chen Zengxie, Iju Jing, Luo Dan. Biochemistry Experiments. Hefei:Chinese University Press of Science and Technology,1994:29
    [132]Yu ying, Zhou zhentang. Fluorescence Determination of Lysozyme with Cadmium Di-selenide/Cadmium Sulf ide Quantum Dots Synthesized in the Aqueous Solutio. Chinese J.Ana. Chem.,2005,33(5):650-652
    [133]Zhong Ping, Yu Ying, Wu Jiangzhong, et al. Preparation and application of functionalized nanoparticles of CdSe capped with 11-mercaptoundecanoic acid as a fluorescence probe. Talanta,2006,70:902-906
    [134]VanDerMeer B. W, Coker G, Chen S. Y. S. Resonance Energy Transfer:Theory and Data. VCH:New York,1994.
    [135]F6rste T. Intramolecular energy migration and fluorescence [J]. Ann Phys,1948, 2:55
    [136]Dexter D. L. A theory of sensitized luminescence in solid[J]. J Chem Phy, 1953,21(5):836-850.
    [137]堀江一之,等著,张镇西译.分子光子学[M].北京:科学出版社,2004:109
    [138]Xin Yan Wang, Qiang Ma, Ya Bing Li. Studies on Fluorescence Resonance Energy Transfer Between Dyes and Water-Soluble Quantum Dots. Canadian Journal of nalytical Sciences and Spectroscopy [J].2005.50(3):141-146
    [139]Lin zhangbi, Zhang hao, Chen qidan, et al. Studies on Labeling of Papain with Quantum Dots Synthesized in Aqueous Solution. Chemical Journal of Chinese Universities,2003,24(4):609-611

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700