用户名: 密码: 验证码:
荧光和多孔胶体微粒的制备及与细胞相互作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在生物学和医学的研究领域中,各种功能胶体微粒作为荧光探针以及药物或基因的载体,其中的一个核心问题是细胞与胶体微粒之间的相互作用,在生物分析、检测以及药物传输和基因治疗等领域得到广泛的应用。
     本文首先尝试了制备具有荧光特性的胶体微粒。利用水相合成法成功得到水溶性的以3-巯基丙酸为稳定剂(MPA)的CdTe量子点(QDs),并对制备条件进行了优化。结果表明,当前驱体溶液pH值为9.0,各原料的投料摩尔比满足Cd:Te:MPA=1:0.2:2.4,且[Cd~(2+)]=1.25mM,在高温高压下回流时可以得到量子产率超过40%的高质量水溶性MPA-CdTe QDs。
     利用共沉淀法将水溶性CdTe量子点包埋在无机盐中,制备了掺杂MPA-CdTeQDs的CaCO_3胶体微粒,并讨论了制备条件如溶液的pH值、QDs的加入量以及原料的投料顺序对得到的复合胶体粒子的粒径、对量子点的包埋率以及相对发光效率的影响。其中混合溶液的pH值与原料的投料顺序对粒子的粒径影响较大,而加入的QDs的量会影响包埋率以及相对发光效率。当量子点先与硝酸钙溶液混合且混合溶液的pH值大于7.0时可以得到较小的复合微粒;随着反应原料中QDs量的增加,尽管QDs的包埋效率及其发光效率都有明显下降,但是总的发光强度有所增加。MPA-CdTe QDs被包入碳酸钙粒子之后,其存贮稳定性和光学稳定性都有一定程度的提高。当CaCO_3(CdTe)复合微粒在细胞培养液中存贮6天或者在24h紫外灯的连续照射下能够保持其荧光强度基本不变。CaCO_3(CdTe)粒子能够被HepG2细胞胞吞,在与细胞共培养24h之后可以进入细胞的溶酶体中。同时在溶液中CdTe的浓度相同的条件下,CaCO_3(CdTe)复合微粒对细胞的毒性要远远小于CdTe QDs。
     利用St(o|¨)ber方法合成了四种粒径的单分散荧光二氧化硅纳米粒子,分别用透射电镜、荧光光谱、动态光散射和zeta电位分析仪对其形貌和表面性质进行了表征。在透射电镜下这四组纳米粒子的平均粒径分别为60.3nm(S60)、177.8nm(S180)、368.6nm($370)和592.1nm(S600)。当它们被分散在DMEM(Dulbecco'sModified Eagles Medium)/10%FBS(fetal bovine serum)溶液中时,粒径较小的粒子如S60更容易发生团聚,并且它们的zeta电位值相近,约为-5mV。以这四种粒径的荧光二氧化硅纳米粒子为模型,讨论了粒子的粒径对细胞的胞吞、胞吐、粒子进入细胞的途径、在细胞中的分布以及它们的细胞毒性的影响。实验结果表明细胞对二氧化硅纳米粒子的胞吞和胞吐具有粒径依赖性。在40μg/ml的浓度下,HepG2细胞、成纤维细胞以及Ana-1巨噬细胞对S370的胞吞量最大。而HepG2细胞吐出二氧化硅纳米粒子的难度与粒子的粒径成正关系。二氧化硅纳米粒子进入细胞的途径和它们在细胞中的分布不受粒子粒径的影响。细胞对二氧化硅纳米粒子的胞吞具有能量依赖性,不同大小的二氧化硅纳米粒子都是通过网格蛋白介导的胞吞途径进入HepG2细胞中的,并且分布在细胞膜、细胞质和溶酶体中。不同粒径的二氧化硅纳米粒子对HepG2细胞的毒性都很小,特别是S60在较低的浓度时(280μg/10~5个细胞)还能在一定程度上提高细胞的活性。二氧化硅纳米粒子的细胞毒性仍然呈现出粒径依赖性,但是它们对细胞周期的影响不具有粒径依赖性。
     以多孔碳酸钙微粒为模板,制备了具有多孔结构的二氧化硅胶体微粒。分别用透射电镜、扫描电镜、X射线能谱、红外光谱、X-射线衍射、热重分析、氮气的吸附一脱吸附方法以及zeta电位分析仪对其组成、表面形态以及内部结构进行了表征。得到的多孔二氧化硅胶体微球在干态下是3~5μm的多孔微球,比表面积达到367.3 m~2/g,并且粒子中孔的大小是多分散的。反应体系中正硅酸乙酯(TEOS)的浓度对产物的结构影响较大。当TEOS的浓度较大时,只能得到空心的二氧化硅微球而非多孔结构的二氧化硅微球。此外,当碳酸钙模板表面吸附一层聚二烯炳基二甲基铵盐酸盐(PDADMAC)时,制得的多孔二氧化硅胶体微球更易于保持碳酸钙模板的形状。此外,以掺杂聚苯乙烯磺酸钠(PSS)的碳酸钙微粒为模板,可以制得空心的二氧化硅微囊,与干态下的聚电解质微胶囊的形态极为相似。多孔二氧化硅胶体微球在水溶液中带负电,能够使带正电的葡聚糖(TRITC-dextran)在其内部沉积,而对于带负电的葡聚糖(FITC-dextran),仅在葡聚糖的分子量较小时,才能在多孔二氧化硅胶体微球中部分沉积。制得的多孔二氧化硅胶体微球可以吸附活性辣根过氧化物酶(HRP)。增加溶液中HRP的浓度可以明显增加多孔二氧化硅胶体微球对HRP的吸附量,略微增加HRP的吸附效率,但是被吸附的HRP的酶活性有一定程度的损失,且被吸附的HRP的剩余活性随溶液中HRP浓度的增加而大幅度下降。
Along with the fast development of nanotechnology and nanomedicine,the colloidal particles are usually integrated with multifunction such as tailored wettability,specific targeting,imaging and controlled release of the desired substances to be used as carriers for drug control release,cancer and gene therapy,disease diagnosis and bio-imaging via the way of intracellular uptake and delivery.
     First,we synthesized the water-soluble 3-mercaptopropyl acid(MPA) capped CdTe nanocrystals and optimized the preparation conditions.Results showed that when the pH of precursor was fixed at 9.0 and the molar ratio of Cd:Te:MPA is 1:0.2: 2.4 with a Cd~(2+) concentration of 1.25mM,the high quality CdTe nanocrystals could be obtained under a high pressure and temperature condition with a quantum yield up to more than 40%.
     The QDs could also be incorporated into inorganic colloidal particles.The MPA-CdTe quantum dots(QDs) were embedded into CaCO_3 microparticles with a size of 1.4~4.4μm by addition of the QDs into Ca(NO_3)_2 solution during a mineralization process.Compared to the parent QDs,about 1/7~/1/4 photoluminescence efficiency of the embedded QDs was preserved,enabling the CaCO_3(CdTe) particles visible under UV irradiation.The structure and morphology of the CaCO_3(CdTe) particles were characterized by X-ray diffraction(XRD),UV-vis spectroscopy,scanning electron microscopy(SEM),transmission electron microscopy (TEM) and confocal laser scanning microscopy(CLSM).Protected by the CaCO_3 particles,the QDs in the composites were more stable against long term storage,UV irradiation and cell culture medium containing serum.The CaCO_3(CdTe) particles could be internalized into live ceils,human liver cancer cells(HepG2) cells,for example,and most of which distributed in the lysosomes as revealed by confocal microscopy.Also the CaCO_3(CdTe) particles had low cytotoxicity in comparison with the parent CdTe QDs.
     Next,fluorescent silica nanoparticles with four different diameters were prepared by the classical St(o|¨)ber sol-gel method.When these silica particles were suspended into the DMEM(Dulbecco's Modified Eagles Medium)/10%FBS(fetal bovine serum) solution,some extent aggregation appeared especially for the smaller ones.Their surfaces showed a similar zeta potential of about -5mV.Cellular uptake of the silica nanoparticles with different diameters was carefully studied.The results revealed that the cellular uptake of the silica nanoparticles was dependent on particle concentration, co-culture time and cell types.While in the same condition,the cells had larger uptake amount of S370(the diameter of the particles under TEM is 368.6nm) under a 40μg/ml particle concentration.The exocytosis which is the opposite process of endocytosis was also size dependant.The silica nanoparticles could be gradually cleaned out from the cells during a 12h incubation after a 12h endocytosis,finding a higher exocytosed efficiency for smaller particles.The particles in the cells mainly distributed in the cytoplasm,lysosomes and onthe cell membranes as revealed by CLSM(confocal laser scanning microscopy).The morphology of the cells after their co-culture with particles was observed by SEM showing an aggregation state on the surface of the cell membranes for smaller ones.The silica nanoparticles were internalized into the cells through a clathrin-mediated endocytosis pathway which was proved by an obvious decrease of the cellular uptake after a low temperature incubation,NaN_3,sucrose or amandatine-HCl treatments.While the genestein treatment could not influence the cellular uptake,and the result indicated a caveolae independent endocytosis for the silica nanoparticles.The impact of silica nanoparticles on the HepG2 cells was assayed in terms of cytotoxicity and cell cycle profile.The cytotoxicity was in a low extent even at a high particle concentration up to 1000μg/10,000 cells,especially for the smaller particles.The cell cycle analysis showed that the nanoparticle-treatment can not influence the cell proliferation at a concentration of 80μg/ml for 24h co-culture.
     At last we synthesized porous silica particles using a CaCO_3 particle template. The porous silica particles had a spherical shape with diameters of 3~5μm and a porous structure under a dry state.Their relative surface area reached to 367.3 m~2/g with multiscale pores.The concentration of TEOS(tetraethyl orthosilicate) in the preparation system showed an apparent influence on the structure of the products. Under a relative high concentration of TEOS,hollow capsules were obtained.When a PDADMAC(poly(diallyl-dimethyl-ammoniumchloride)) layer was adsorbed on the pore surface of the CaCO_3 particles in prior,more solid porous silica particles were obtained and kept the shape of the template better.The porous silica colloidal particles showed a negatively charged surface in water.Thus,TRITC-dextran (tetramethylrhodamineisothiocyanate) which is positively charged in water could be deposited into the pores.The porous silica colloidal particles could adsorb active enzymes,too.While more HRP(horseradish peroxidase) was deposited with the increase of the HRP concentration,its bioactivity was decreased.Moreover,the PSS (polystyrene sulfonate) doped CaCO_3 particles could also be used as template for the growth of silica particles on their surface.The silica colloidal particles were hollow with only a thin wall and showed a similar morphology to polyelectrolyte microcapsules under a dry state.
引文
[1] Holtz, J.H.; Asher, S.A. Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature, 1997, 389: 829-832.
    
    [2] Schroedter, A.; Weller, H.; Eritja, R.; Ford, W.E.; Wessels, J.M. Biofunctionalization of silica-coated CdTe and gold nanocrystals. Nano Letters, 2002,2(12): 1363-1367.
    [3] Vaynberg, K.A.; Wagner, N.J.; Sharma, R. Polyampholyte Gelatin Adsorption to Colloidal Latex: pH and Electrolyte Effects on Acrylic and Polystyrene Latices. Biomacromolecules, 2000, 1: 462-472.
    
    [4] Gao, C.; Donath, E.; Mohwald, H.; Shen, J. Spontaneous deposition of water-soluble substances into microcapsules: Phenomenon, mechanism, and application. Adv. Mater., 2002, 14: 3789-3793.
    [5] Penn, S.G.; He, L.; Natan, M.J. Nanoparticles for Bioanalysis. Curr. Opin. Chem. Biol., 2003, 7: 609-615.
    [6] West, J.L.; Halas, NJ. Applications of nanotechnology to biotechnology-commentary. Opin. Biotechnol., 2000, 11: 215-217.
    [7] Liu, W.T. Nanoparticles and Their Biological and Environmental Applications. J. Biosci. & Bioengin., 2006, 102: 1-7.
    [8] Takeuchi, H.; Yamamoto, H.; Kawashima, Y. Mucoadhesive nanoparticulate systems for peptide drug delivery. Adv. Drug Deliv. Rev., 2001, 47: 39-54.
    [9] Peracchia, M.T.; Gref, R.; Minamitake, Y. PEG-coated nanospheres from amphiphilic diblock and multiblock copolymers: investigation of their drug encapsulation and release characteristics. J. Control. Release, 1997, 46: 223-231.
    [10] Sakuma, S.; Hayashi, M.; Akashi, M. Design of nano-particles composed of graft copolymers for oral peptide delivery. Adv. Drug Deliv. Rev., 2001, 47: 21-37.
    
    [11] Li,.Y.P.; Pei, Y.Y.; Zhang, X.Y.; Gu, Z.H.; Zhou, Z.H.; Yuan, W.F.; Zhou, J.J.; Zhu, J.H.; Gao, X.J. PEGylated PLGA nanoparticles as protein carriers: synthesis, preparation and biodistribution in rats. J. Control. Release, 2001, 71: 203-211.
    
    [12] Buffle, J. The key role of environmental colloids/nanoparticles for sustainability of life. Environment & Chemistry, 2006, 3: 155-158.
    [13] Hunter, R.J. Zeta potential in colloid science, Principles and Appliocations. Academic press, London, 1981.
    [14] Quesada-perez, M.; Gonzalez-tovar, E.; Matin-Molina, A. Lozada-Cassou, M.; Hidalgo-Alvarez, R. Chem. Phys. Chem., 2003, 4: 234-238.
    [15] Everett, D.H. Basic Principles of Colloid Science. Royal Society of Chemistry, London, 1988.
    [16] Murray, C.B.; Kagan, C.R.; Bawendi, M.G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci., 2000, 30: 545-610.
    [17] Tian, Y.; Newton, T.; Kotov, N.A.; Guldi, D.; Fendler, J.H. Coupled Composite CdS-CdSe and Core-Shell Types of (CdS)CdSe and (CdSe)CdS Nanoparticles. J. Phys.Chem., 1996, 100: 8927-8939.
    [18] Peng, X.G.; Schlamp, M.C.; Kadavanich, A.V.; Alivisatos, A.P. Epitaxial growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility. J. Am. Chem. Soc, 1997, 119: 7019-7029.
    [19] Kumar, A.; Kumar, S. Catalytic Effect of Ag~+ in Colloidal CdS-Induced Photooxidation of Aniline. Chem. Lett., 1996, 8: 711-712.
    [20] Spanhel, L.; Haase, M.; Weller, H.; Henglein, A. Photochemistry of colloidal semiconductors. 20. Surface Modification and Stability of Strong Luminescing CdS Particles. J. Am. Chem. Soc, 1987, 109: 5649-5655.
    [21] Hasselbarth, A.; Eychmuller, A.; Eichberger, R.; Giersig, M.; Mews, A.; Weller, H. Chemistry and photophysics of mixed cadmium sulfide/mercury sulfide colloids. J. Phys. Chem., 1993, 97: 5333-5340.
    [22] Hines, M.A.; Guyot-Sionnest, P. Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals. J. Phys.Chem. B, 1996, 100: 468-471.
    [23] Dabbousi, B.O.; Rodriguez-Viejo, J.; Mikulec, F.V.; Heine, J.R.; Mattoussi, H.; Ober, R.; Jensen, K.F.; Bawendi, M.G. (CdSe)ZnS Core-Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites. J. Phys. Chem. B, 1997, 101: 9463-9475.
    [24] Fox, M.A.; Dulay, M.T. Heterogeneous phototocatalys. Chem. Rev., 1993, 93: 341-357.
    [25] Mews, A.; Eychmuller, A.; Giersig, M.; Schooss, D.; Weller, H. Preparation, characterization, and photophysics of the quantum dot quantum well system cadmium sulfide/mercury sulfide/cadmium sulfide. J. Phys. Chem., 1994, 98: 934-941.
    [26] Kamalov, V.F.; Little, R.; Logunov, S.L.; Elsayed, M.A. Picosecond Electronic Relaxation in CdS/HgS/CdS Quantum Dot Quantum Well Semiconductor Nanoparticles. J. Phys. Chem., 1996, 100: 6381-6384.
    [27] Han, M.Y.; Huang, W.; Chew, C.H.; Gan, L.M.; Zhang, X.J.; Ji, W. Large Nonlinear Absorption in Coated Ag2S/CdS Nanoparticles by Inverse Microemulsion. J. Phys. Chem. B, 1998, 102: 1884-1886.
    [28] Vossmeyer, T.; Katsikas, L.; Giersig, M.; Popovie, I.G.; Diesner, K.; Chemseddine, A.; Eychmuller, A.; Weller, H. CdS Nanoclusters: Synthesis, Characterization, Size Dependent Oscillator Strength, Temperature Shift of the Excitonic Transition Energy, and Reversible Absorbance Shift. J. Phys. Chem., 1994, 98: 7665-7673.
    [29] Kortan, A.R.; Hull, R.; Opila, R.L.; Bawendi, M.G.; Steigerwald, M.L.; Carrikk, P.J.; Brus, L.E. Nucleation and growth of cadmium selendie on zinc sulfide quantum crystallite seeds, and vice versa, in inverse micelle media. J. Am. Chem. Soc, 1990, 112: 1327-1332.
    [30] Murray, C.B.; Norris, D.J.; Bawendi, M.G. Synthesis and characterization of nearly monodisperse CdE (E=sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc, 1993, 115: 8706-8715.
    [31] Peng, Z.A.; Peng, X.G. Formation of High-Quality CdTe, CdSe, and CdS Nanocrystals Using CdO as Precursor. J. Am. Chem. Soc, 2001, 123: 183-184.
    [32] Rajh, T.; Micic, O.L.; Nozik, A. Synthesis and characterization of surface-modified colloidal cadmium telluride quantum dots. J. Phys. Chem., 1993,97: 11999-12003.
    [33]Gao,M.Y.;Kirstein,S.;M(o|¨)hwald,H.;Rogach,A.L.;Kornowski,A.;Eychm(u|¨)ller,A.;Weller,H.Strongly Photoluminescent CdTe Nanocrystals by Proper Surface Modification.J.Phys.Chem.B,1998,102(43):8360-8363.
    [34]Gaponik,N.;Talapin,D.V.;Rogach,A.L.;Hoppe,K.;Shevchenko,E.V.Thiol-Capping of CdTe Nanocrystals:An Alternative to Organometallic Synthetic Routes.Phys.Chem.B,2002,106(29):7177-7185.
    [35]Gleiter,H.Nanocrystalline materials.Progress in Mater.Sci.,1989,33:223-315.
    [36]王广厚;韩民.纳米微晶材料的结构和性质.物理学进展,1990,10:248-289.
    [37]苏品书.超微粒子材料技术.复汉出版社,1989.
    [38]Hahn,H.;Averback,R.S.The production of nanocrystalline powders by magnetron sputtering.J.Appl.Phys.,1990,67:1113-1115.
    [39]Vollater,D.Aerosol Methods and Advanced Techniques for Nanoparticle Science and Nanopowder Technology.Duisburg,Germany,1993.
    [40]张立德;牟季美.纳米材料和纳米结构.科学出版社,2001.
    [41]加藤昭夫;森满由纪子.日化,1984,23:800.
    [42]Zhang,H.;Wang,L.P.;Xiong,H.M.;Hu,L.H.;Yang,B.;Li,W.Hydrothermal Synthesis for High-Quality CdTe Nanocrystals.Adv.Mater.,2003,15:1712-1715.
    [43]钱逸泰,朱英杰,张曼维等.微米纳米科学与技术,1995,1:27.
    [44]Tan,W.B.;Huang,N.;Zhang,Y.J.Ultrafine biocompatible chitosan nanoparticles encapsulating multi-coloured quantum dots for bioapplications.Colloid Interface Sci.,2007,310:464-470.
    [45]Meng,W.;Parker,T.L.;Kallinteri,P.;Walker,D.A.;Higgins,S.;Hutcheon,G.A.;Garnett,M.C.Uptake and metabolism of novel biodegradable poly (glycerol-adipate) nanoparticles in DAOY monolayer.J.Control Release,2006,116:314-321.
    [46]Halpert,J.E.;Porter,V.J.;Zimmer,J.P.;Bawendi,M.G.Synthesis of CdSe/CdTe Nanobarbells.J.Am.Chem.Soc.,2006,128:12590-12591.
    [47]Hohng,S.;Ha,T.Near-Complete Suppression of Quantum Dot Blinking in Ambient Conditions.J.Am.Chem.Soc.,2004.126:1324-1325.
    [48] Kapitonov, A.M.; Stupak, A.P.; Gaponenko, S.V.; Petrov, E.P.; Rogach, A.L.; Eychmiiller, A. Luminescence Properties of Thiol-Stabilized CdTe Nanocrystals. J. Phys. Chem. B, 1999, 103: 10109-10113.
    [49] Mitchell, GP.; Mirkin, C.A.; Letsinger, R.L. Programmed Assembly of DNA Functionalized Quantum Dots. J. Am. Chem. Soc, 1999, 121: 8122-8123.
    [50] Potapova, L.; Mruk, R.; Prehl, S.; Zentel, R.; Basche, T.; Mews, A. Semiconductor Nanocrystals with Multifunctional Polymer Ligands. J. Am. Chem. Soc, 2003, 125: 320-321.
    [51] Pathak, S.; Choi, S-K, Amhaeim, N.; Thompson, M.E. Hydroxylated Quantum Dots as Luminescent Probes for in Situ Hybridization. J. Am. Chem. Soc, 2001, 123:4103-4104.
    [52] Mahtab, R.; Rogeers, J.P.; Singleton, C.P.; Murphy, C.J. Preferential Adsorption of a "Kinked" DNA to a Neutral Curved Surface: Comparisons to and Implications for Nonspecific DNA-Protein Interactions. J. Am. Chem. Soc, 1996, 118:7028-7032.
    [53] Torimoto, T.; Yamashita, M.; Kuwabata, S.; Sakata, T.; Mori, H.; Yoneyama, H. Fabrication of CdS Nanoparticle Chains along DNA Double Strands. J. Phys. Chem. B, 1999, 103: 8799-8803.
    [54] Chan, W.C.W.; Nie, S.M. Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection. Science, 1998, 281: 2016-2018.
    [55] Dubertret, B.; Skourides, P.; Norris, D.J.; Noireaux, V.; Brivanlou, A.H.; Libchaber, A. In Vivo Imaging of Quantum Dots Encapsulated in Phospholipid Micelles. Science, 2002, 298: 1759-1762.
    [56] Wu, X.Y.; Liu, H.J.; Liu, J.Q.; Haley, K.N.; Treadway, J.A.; Larson, J.P.; Ge, N.F.; Peale, F.; Bruchez, M.P. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol., 2003, 21:41-46.
    [57] Han, M.; Gao, X.; Su, J.; Nie, S.M. Quantum-Dot-Tagged Microbeads for Multiplexed Optical Coding of Biomolecules. Nat. Biotechnol., 2001, 19: 631-635.
    [58] Rosenthal, S.J. Bar-coding biomolecules with fluorescent nanocrystals. Nat. Biotechnol., 2001, 19: 621-622.
    
    [59] Bradley, M.; Bruno, N.; Vicent, B. Distribution of CdSe Quantum Dots within Swollen Polystyrene Microgel Particles Using Confocal Microscopy. Langmuir, 2005,21:2750-2753.
    
    [60] Li, M.; Zhang, H.; Zhang, J.H.; Wang, C.L.; Han, K.; Yang, B. Easy preparation and characterization of highly fluorescent polymer composite microspheres from aqueous CdTe nanocrystals. J. Colloid Interface Sci., 2006, 300: 564-568.
    
    [61] Wang, Y. A.; Li, J.J.; Chen, H.Y.; Peng, X.G. Stabilization of Inorganic Nanocrystals by Organic Dendrons. J. Am. Chem Soc, 2002, 124: 2293-2298.
    
    [62] Guo, W; Li, J.J.; Wang, YA.; Peng, X. Luminescent CdSe/CdS Core/Shell Nanocrystals in Dendron Boxes: Superior Chemical, Photochemical and Thermal Stability. J. Am. Chem. Soc, 2003, 125: 3901-3909.
    
    [63] Spahnel, L.; Haase, M.; Weller, H.; Henglein, A. Photochemistry of colloidal semiconductors. 20. Surface modification and stability of strong luminescing CdS particles. J. Am. Chem. Soc, 1987, 109: 5649-5655.
    
    [64] Han, K.; Xiang, Z.; Zhao, Z.H.; Wang, C.L.; Li, M.J.; Zhang, H.; Yan, X.; Zhang, J.H.; Yang, B. Preparation of Monodisperse CdTe Nanocrystals-SiO_2 Microspheres without Ligands Exchange. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 280: 169-176.
    
    [65] Zhang, H.; Wang, C.; Li, M.; Ji, X.; Zhang, J.; Yang, B. Fluorescent Nanocrystal-Polymer Composites from Aqueous Nanocrystals: Methods without Ligand Exchange. Chem. Mater., 2005, 17: 4783-4788.
    
    [66] Michalet, X.; Pinaud, RF.; Bentolila, L.A.; Tsay, J.M.; Doose, S.; Li, J.J.; Sundaresan, G.; Wu, A.M.; Gambhir, S.S.; Weiss, S. S Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics. Science, 2005, 307(5709): 538-544.
    
    [67] Sanchez, C.; Lebeau, B.; Chaput, R.; Boilot, J.P. Optical properties of functional hybrid oreanic-inoreanic nanocomnosites. J. Adv. Mater., 2003, 15 (23): 1969-1994.
    [68] Tapec, R.; Zhao, X.J.; Tan, W. Development of Organic Dye-Doped Silica Nanoparticles for Bioanalysis and Biosensors. J. Nanosci. Nanotechnol. 2002, 2: 405-409.
    [69] Blaaderen, A.V.; Vrij, V. Synthesis and characterization of colloidal dispersions of fluorescent, monodisperse silica spheres. Langmuir, 1992, 8: 2921-2931.
    [70] Wang, L.; Yang, C.; Tan, W. Dual-Luminophore-Doped Silica Nanoparticles for Multiplexed Signaling. Nano Lett., 2005, 5: 37-43.
    [71] Wang, L.; Tan, W. Multicolor FRET Silica Nanoparticles by Single Wavelength Excitation. Nano Lett. 2006, 6: 84-88.
    [72] Wilkins, D.J. Fluorescent Labelling of Polystyrene Latex for Tracing in Biological Systems. Nature, 1964, 202: 798-799.
    [73] Holzapfel, V.; Musyanovych, A.; Landfester, K.; Lorenz, M.R.; Mailander, V. Preparation of Fluorescent Carboxyl and Amino Functionalized Polystyrene Particles by Miniemulsion Polymerization as Markers for Cells. Macromol. Chem. Phys., 2005, 206: 2440-2449.
    [74] Zhu, L.; Wu, W.; Zhu, M.Q.; Han, J.J.; Hurst, J.K.; Li, A.D.Q. Reversibly Photoswitchable Dual-Color Fluorescent Nanoparticles as New Tools for Live-Cell Imaging. J. Am. Chem. Soc, 2007, 129: 3524-3526.
    [75] Kim, K.; Lee, M.; Park, H.; Kim, J-H; Kim, S.; Chung, H.; Choi, K.; Kim, I-S; Seong, B.L.; Kwon, I.C. Cell-Permeable and Biocompatible Polymeric Nanoparticles for Apoptosis Imaging. J. Am. Chem. Soc. 2006, 128: 3490-3491.
    [76] Chnari, E.; Nikitczuk, J.S.; Uhrich, D.E.; Moghe, P.V. Nanoscale anionic macromolecules can inhibit cellular uptake of differentially oxidized LDL. Biomacromolecules, 2006, 7: 597-603.
    [77] Park, J.S.; Han, T.H.; Lee, K.Y.; Han, S.S.; Hwang, J.J.; D Moon, H.; Kim, S.Y.; Cho, Y.W. N-acetyl histidine-conjugated glycol chitosan self-assembled nanoparticles for intracytoplasmic delivery of drugs: Endocytosis, exocytosis and drug release. J. Control Release, 2006, 115: 37-45.
    [78] Chen, J.; Tian, B.; Yin, X.; Zhang, Y.; Hu, D.; Hu, Z.; Liu, M.; Pan, Y.; Zhao, J.; Li, H.; Hou, C.; Wang, J.; Zhang, Y. Preparation, characterization and transfection efficiency of cationic PEGylated PLA nanoparticles as gene delivery systems. J. Biotechnol., 2007, 130: 107-113.
    [79] Zahr, A.S.; Davis, C.A.; Pishko, M.V. Macrophage Uptake of Core-Shell Nanoparticles Surface Modified with Poly(ethylene glycol). Langmuir, 2006, 22: 8178-8185.
    [80] Zhang, L.; Hou, S.; Mao, S.; Wei, D.; Song, X.; Lu, Yi. Uptake of folate-conjugated albumin nanoparticles to the SKOV3 cells. Int. J. Pharm., 2004, 287: 155-162.
    [81] Kocbek, P.; Obermajer, N.; Cegnar, M.; Kos, J.; Kristl, J. Targeting cancer cells using PLGA nanoparticles surface modified with monoclonal antibody. J. Control. Release, 2007, 120: 18-26.
    [82] Gref, R.; Minamitake, Y.; Peracchia, M.T.; Trubetskoy, V.; Torchilin, V.; Langer, R. Biodegradable long-circulating polymeric nanospheres. Science, 1994, 263: 1600-1603.
    [83] Nguyen C A, Allemann E, Schwach G.; Doelker, E.; Gurny, R. Cell interaction studies of PLA-MePEG nanoparticles. Int. J. Pharm., 2003, 254: 69-72.
    [84] Garinot, M.; Fievez, V.; Pourcelle, V.; Stoffelbach, F.; des Rieux, A.; Plapied, L.; Theate, I.; Freichels, H.; Jerome, C.; Marchand-Brynaert, J.; Schneider, Y-J; Preat, V. PEGylated PLGA-based nanoparticles targeting M cells for oral vaccination. J. Control. Release, 2007, 120: 195-204.
    [85] Sethuraman, V.A.; Na, K.; Bae, Y.H. pH-responsive sulfonamide/PEI system for tumor specific gene delivery: an in vitro study. Biomacromolecules, 2006, 7: 64-70.
    [86] Tokumasu, F.; Dvorak, J. Development and application of quantum dots for immunocytoche-mistry of human erythrocytes. J.Microsc.2003, 211: 256-261.
    [87] Kim, S.; Bawendi, M.G. Oligomeric Ligands for Luminescent and Stable Nanocrystal Quantum Dots. J. Am. Chem. Soc, 2003, 125: 14652-14653.
    [88] He, X.; Duan, J.; Wang, K.; Tan, W; Lin, X.; He, CM. A Novel Fluorescent Label Based on Organic Dye-Doped Silica Nanoparticles for HepG Liver Cancer Cell Recognition. J. Nanosci. Nanotechnol. 2004, 4: 585-589.
    [89] Bruchez Jr., M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Semiconductor Nanocrystals as Fluorescent Biological Labels.Science 1998,281:2013-2016.
    [90]Wu,X.;Liu,H.;Liu,J.;Haley,K.N.;Treadway,J.A.;Larson,J.P.;Ge,N.;Peale,F.;Bruchez,M.P.Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots.Nature Biotechnology,2002,21:41-46.
    [91]Seydel,C.Quantum Dots Get Wet.Science,2003,300:80-81.
    [92]Gao,X.H.;Nie,S.M.Molecular profiling of single cells and tissue specimens with quantum dots.Trends in biotechnology,2003,21:371-373.
    [93]Akerman,M.E.;Chan,W.C.W.;Laakkonen,P.;Bhatia,S.N.;Ruoslahti,E.Nanocrystal targeting in vivo.Proc.Natl.Acad.Sci.U.S.A.2002,99(20);12617-12621.
    [94]Spector,D.L.;Goldman,R.D.;Leinwand,L.A.Cells A Laboratory Manual,Cold Spring Harbor Laboratory Press,1998,995.
    [95]孙保全;衣光舜;陈德朴;谢文章;周玉祥;程京.用ZnS/CdSe量子点标记、激光共聚焦扫描法在微阵列芯片上进行免疫分析.中国化学会第七届分析化学年会暨原子光谱学术会议论文集,2006.
    [96]Santra,S.;Zhang,P.;Wang,K.;Tapec,R.;Tan,W.Conjugation of biomolecules with luminophore-doped silica nanoparticles for photostable bio-markers.Anal.Chem.,2001,73:4988-4993.
    [97]Deng,T.;Li,J.-S.;Jiang,J.-H.;Shen,G.-L.;Yu,R.-Q.Preparation of Near-IR Fluorescent Nanoparticlesfor Fluorescence-Anisotropy-Based Immunoagglutin-ation Assay in Whole Blood.Adv.Funct.Mater.,2006,16:2147-2155.
    [98]Zhao,X.;Hilliard,L.R.;Menchery,S.J.;Wang,Y.;Bagwe,R.P.;Jin,S.;Tan,W.A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles.Proc.Natl.Acad.Sci.U.S.A.2004,101:15027-15032.
    [99]张海玲,朱敦皖,董霞,刘兰霞,冷希岗,壳聚糖载基因纳米粒子荧光标记的优化研究.生物医学工程与临床,2008,12(1):9-12.
    [100]Feng,M.;Lee,D.;Li,P.Intracellular uptake and release of poly(ethyleneimine)-co-poly(methyl methacrylate) nanoparticle/pDNA comple-xes for gene delivery.International J.of Pharmaceutics,2006,311:209-214.
    [101]Everett,D.H.IUPAC Manual of Symbols and Terinology.Pure Appl.Chem.,1972,31:578-638.
    [102]Beck,J.S.;Vartuli,J.C.;Roth,W.J.;Leonowicz,M.E.;Kresge,C.T.;Schmitt,K.D.;Chu,C.T.W.;Olson,D.H.;Sheppard,E.W.A new family of mesoporous molecular sieves prepared with liquid crystal templates.J.Am.Chem.Soc.,1992,114:10834-10843.
    [103]Kresge,C.T.;Leonowicz,M.E.;Roth,W.J.;Vartuli,J.C.;Beck,J.S.Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism.Nature,1992,359:710-712.
    [104]王秀丽;曾永飞;卜显和.模板法合成纳米结构材料.化学通报,2005,10:723-730.
    [105]Ryoo,R.;Joo,S.H.;Jun,S.Synthesis of Highly Ordered Carbon Molecular Sieves via Template-Mediated Structural Transformation.J.Phys.Chem.B,1999,103:7743-7746.
    [106]Kang,M.;Yi,S.H.;Lee,H.L;Yie,J.E.;Kim,J.M.Reversible replication between ordered mesoporous silica and mesoporous carbon.Chem.Commun.2002,19:44-45.
    [107]Taguchi,A.;Smatt,J.H.;Linden,M.Carbon Monoliths Possessing a Hierarchical,Fully Interconnected Porosity.Adv.Mater.,2003,15:1209-1211.
    [108]Gr(u|¨)n,M.;Lauer,L.;Unger,K.K.The synthesis of micrometer- and submicrometer-size spheres of ordered mesoporous oxide MCM-41.Adv.Mater.,1997,9:254-257.
    [109]Qi,L.M.Micrometer-sized microporous silica spheres templated by a double-hydrophilic block copolymer.J.Mater.Sci.Letters,2001,20:2153-2156.
    [110]Izutsu,H.;Mizukami,F.;Nair,P.K.;Kiyozumi,Y.;Maeda,K.Preparation and characterization of porous silica spheres by the sol-gel method in the presence of tartaric acid.J.Mater.Chem.,1997,5:767-771.
    [111]Li,H.P.;Mou,C.Y.;Liu,S.B.Hollow spheres of MCM-41 aluminosilicate with pinholes.Chem.Common.,2001,19:1970-1971.
    [112]Yoon,S.B.;Sohn,K.;Kim,J.Y.;Shin,C.-H.;Yu,J.-S.;Hyeon,T.Fabrication of Carbon Capsules with Hollow Macroporous Core/Mesoporous Shell Structures.Adv.Mater.2002,14:19-21.
    [113]Liu,C.B.;Ye,X.K.;Wu,Y.Hydroxylation of phenol by iron(Ⅱ)-phenanthroline(Phen)/MCM-41 zeolite.Catal.Lett.1996,36:263-266.
    [114]徐应明;李军幸;戴晓华;张泽;高怀友.介孔分子筛表面功能膜的制备及对水体中铅汞镉的去除作用.应用化学,2002,19:941-945.
    [115]林永兴;孙立军;张文彬;郑雪萍.介孔材料的合成机理与应用.材料导报,2003.17:226-228.
    [116]Zhao,Q.;Han,B.;Wang,Z.;Gao,C.;Peng,C.;Shen,J.Hollow chitosan-alginate multilayer microcapsules as drug delivery vehicle:doxorubicin loading and in vitro and in vivo studies.Nanomedicine:Nanotechnology,Biology and Medicine,2007,3(1):63-74.
    [117]中国科学院院士评出路明杯2005年中国十大科技进展新闻,科学(中文版),2006.3:F005.
    [118]Xu,Z.P.;Zeng,Q.H.;Lu,G.Q.;Yu,A.B.Inorganic nanoparticles as carriers for efficient cellular delivery.Chem.Eng.Sci.,2006,61:1027-1040.
    [119]Kubo,T.;Sugita T,Shimose,S.Nitta,Y.;Ikuta,Y.;Murakami,T.Targeted systemic chemotherapy using magnetic liposomes with incorporated adriamicin for osteosarcoma in hamsters.Int.J.Oncol.,2001,18:121-125.
    [120]Kubo,T.;Sugita T,Shimose,S.;Nitta,Y.;Ikuta,Y.;Murakami,T.Targeted delivery of anticancer drugs with intravenously administered magnetic liposomes in osteosarcoma-bearing hamsters.Int.J.Oncol.,2000,17:309-315.
    [121]Sun,C.;Sze,R.;Zhang,M.Folic acid-PEG conjugated superparamagnetic nan-oparticles for targeted cellular uptake and detection by MRI.J.Biomed.Mater.Res.A,2006,7:550-557.
    [122]Rolland A.Advanced Gene Delivery:From Concepts to Pharmaceutical Products.Amsterdam:Harwood Academic Publishers,1999.
    [123]汤雪明(Tang,X.M.).医学细胞生物学(Medical cell biology).北京:科 学出版社 (Beijing: Science Press) ,2003,285-325.
    [124] Moore, M.N. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environment Int., 2006: 967-976.
    [125] Luo, D.; Saltaman, W.M. Synthetic DNA delivery systems. Nat. Biotechnol., 2000, 18:33-37.
    
    [126] Russell, D.G.; Marsh, M. Endocytosis. Oxford: Oxford University Press, 2001.
    [127] Decuzzi, P.; Ferrari, M. The Role of Specific and Non-Specific Interactions in Receptor-Mediated Endocytosis of Nanoparticles. Biomaterials, 2007, 28: 2915-2922.
    [128] Huang, M.; Ma, Z.; Khor, E. Lim, L.Y. Uptake of FITC-Chitosan Nanoparticles by A549 Cells. Pharm. Res., 2002, 19: 1488-1494.
    [129] Azzam, T.; Domb, A.J. Current developments in gene trans- fection agents. Current. Cur. Drug Deliv., 2004, 1: 165-193.
    [130] Pouton, C.W.; Seymour, L.W. Key issues in non-viral gene delivery. Adv. Drug Deliv. Rev., 1998,34:3-19.
    [131] Lorenz, M.R.; Holzapfel, V.; Musyanovych, A.; Nothelfer, K.; Walther, P.; Frank, H.; Landfester, K.; Schrezenmeier, H.; Mailander, V. Uptake of Functionalized, Fluorescent-Labeled Polymeric Particles in Different Cell Lines and Stem Cells. Biomaterials, 2006, 27: 2820-2828.
    [132] Foley, S.; Crowley, C.; Smaihi, M.; Bonfils, C.; Erlanger, B.F.; Seta, P.; Larroque, C. Cellular localization of a water-soluble fullerene derivative. Biochem. Biophys. Res. Commum., 2002, 294: 116-119.
    [133] Tkachenko, A.G.; Xie, H.; Coleman, D.; Glomm, W.; Ryan, J.; Anderson, M.F.; Franzen, S.; Feldheim, D.L. Multifunctional Gold Nanoparticle-Peptide Complexes for Nuclear Targeting. J. Am. Chem. Soc, 2003, 125: 4700-4701.
    [134] Maysinger, D.; Lovric, J.; Eisenberg, A.; Savic, R. Fate of micelles and quantum dots in cells. Eur. J. Pharm. and Biopharm., 2007, 65: 270-281.
    [135] Olivier, V.; Riviere, C.; Hindie, M.; Duval, J.-L.; Bomila-Koradjim, G.; Nagel, M.-D. Uptake of polystyrene beads bearing functional groups by macrophages and fibroblasts. Colloids Surf. B: Bionterfaces, 2004, 33: 23-31.
    [136] Blunk, T.; Luck, M.; Calvor, A.; Hochstrasser, D.F.; Sanchez, J.C.; Muller, B.W.; Muller, R.H. Kinetics of plasma protein adsorption on model particles for controlled drug delivery and drug targeting. Eur. J. Pharm. Biopharm., 1996, 42: 262-268.
    [137] Goppert, T.M.; Muller, R.H. Adsorption kinetics of plasma proteins on solid lipid nanoparticles for drug targeting. Int. J. Pharm., 2005, 302: 172-186.
    [138] Nagayama, S.; Ogawara, K.; Fukuoka, Y.; Higaki, K.; Kimura, T. Time-dependent changes in opsonin amount associated on nanoparticles alter their hepatic uptake characteristics. Int. J. Pharm., 2007, 342: 215-221.
    [139] Choi, J.; Jun, Y.; Yeon, S.; Kim, H.C.; Shin, J.-S.; Cheon, J. Biocompatible Heterostructured Nanoparticles for Multimodal Biological Detection. J. Am. Chem. Soc, 2006, 128: 15982-15983.
    [140] Chithrani, B. D.; Ghazani, A.A.; Chan, W.C.W. Determining the Size and Shape Dependence of Gold Nanoparticle Uptake into Mammalian Cells. Nano Lett., 2006, 6: 662-668.
    [141] Geng, Y.; Dalhaimer, P.; Cai, S.S.; Tsai, R.; Tewari, M.; Minko, T.; Discher, D.E. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotechnol., 2007, 2: 249-255.
    [142] Pham, T.T.H.; Cao, C.; Sim, S.J. Application of citrate-stabilized gold-coated ferric oxide composite nanoparticles for biological separations. J. Mag. and Mag. Mater., 2008, 320: 2049-2055.
    [143] Win, K.Y.; Feng, S.S. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs, BioMater., 2005, 26: 2713-2722.
    [144] Mao, Z.; Wang, B.; Ma, L.; Shen, J. The influence of polycaprolactone coati ng on the internalization and cytotoxicity of gold nanoparticles. Nanomedicine:NBM, 2007, 3:215-223.
    [145] Luo, D.; Han, E.; Belcheva, N.; Saltzman, W.M. A self-assembled modular DNA delivery system mediated by silica nanoparticles. J. Control. Release, 2004,95:333-341.
    [146] Qaddoumi, M.G.; Ueda, H.; Yang, J.; Davda, J.; Labhasetwar, V.; Lee, V.H. The characteristics and mechanisms of uptake of PLGA nanoparticles in rabbit conjunctival epithelial cell layers. Pharm. Res., 2004, 21: 641-648.
    
    [147] Dawson, G.F.; Halbert, G.W. The in vitro cell association of invasin coated polylactide-co-glycolide nanoparticles. Pharm. Res., 2000, 17: 1420-1425.
    
    [148] Gbadamosi, J.K.; Hunter, A.C.; Moghimi, S.M. PEGylation of microspheres generates a heterogeneous population of particles with differential surface characteristics and biological performance. Febs Lett., 2002, 532: 338-344.
    
    [149] Foged, C.; Brodin, B.; Frokjaer, S.; Sundblad, A. Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. Int. J. Pharm., 2005, 298: 315-322.
    
    [150] Vihola, H.; Marttila, A.K.; Pakkanen, J.S.; Andersson, M.; Laukkanen, A.; Kaukonen, A.M.; Tenhu, H.; Hirvonen, J. Cell-polymer interactions of fluorescent polystyrene latex particles coated with thermosensitive poly(N-isopropylacrylamide) and poly(N-vinylcaprolactam) or grafted with poly(ethylene oxide)-macromonomer. Int. J. Pharm., 2007, 343: 238-246.
    
    [151] Soppimath, K.S.; Liu, L.H.; Seow, W.Y.; Liu, S.Q.; Powell, R.; Chan, P.; Yang, Y.Y. Multi-Functional Polymer Core-Shell Nanoparticles Se If-Assembled from pH-Induced Thermally Responsive Polymer for Targeted Anticancer Drug Delivery. Adv. Funct. Mater., 2007, 17: 355-362.
    
    [152] Berry, C.C.; de la Fuente, J.M.; Mullin, M.; Chu, S.W.L.; Curtis, A.S.G. Nuclear Localization of HIV-1 Tat Functionalized Gold Nanoparticles. Transact. Nanobiosci., 2007, 6: 262-269.
    
    [153] Lee, H.Y.; Li, Z.; Chen, K.; Hsu, A.R.; Xu, C.; Xie, J. Sun, S.; Chen, X. PET/MRI Dual-Modality Tumor Imaging Using Arginine-Glycine-Aspartic (RGD)-Conjugated Radiolabeled Iron Oxide Nanoparticles. J. Nucl. Med., 2008, 49: 1371-1379.
    
    [154] Gu, J.X.; Cheng, W. P.; Liu, J.G.; Lo, S.Y.; Smith, D.; Qu, X.Z.; Yang, Z.Z. pH-triggered reversible "stealth" polycationic micelles. Biomacromolecules, 2008, 9: 255-262.
    [155] Mao, Z.; Ma, L.; Jiang, Y.; Yan, M.; Gao, C.; Shen, J. N,N,N-Trimethyl- chitosan chloride as a gene vector: synthesis and application. Macromol. Biosci., 2007,7:855-863.
    [156] Gao, X.; Wang, T.; Wu, B.; Chen J, Chen J, Yue, Y.; Dai, N.; Chen, H.; Jiang, X. Quantum dots for tracking cellular transport of lectin-functionalized nano- particles. Biochem. Biophys. Res. Commun., 2008, 377: 35-40.
    [157] Magrez, A.; Kasas, S.; Salicio, V.; Pasquier, N.; Seo, J.W.; Celio, M.; Catsicas, S.; Schwaller, B.; Forro, L. Cellular toxicity of carbon-based nanomaterials. Nano Lett., 2006, 6: 1121-1125.
    [158] Xia, T.; Kovochich, M.; Liong, M. Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways. ACS Nano, 2008, 2: 85-96.
    [159] Akin, D.; Sturgis, J.; Ragheb, K.; Sherman, D.; Burkholder, K.; Robinson, J.P.; Bhunia, A.K.; Mohammed, S.; Bashir, R. Bacteria-mediated delivery of nanoparticles and cargo into cells. Nat. Nanotechnol., 2007, 2: 441-449.
    [160] Foster, K.A.; Yazdanian, M.; Audus, K.L. Microparticulate Uptake Mechanisms of in-vitro Cell Culture Models of the Respiratory Epithelium. J. P. P., 2001, 53, 57-66.
    [161] Goto, Y.; Matsuno, R.; Konno, T.; Takai, M.; Ishihara, K. Artificial Cell Membrane-Covered Nanoparticles Embedding Quantum Dots as Stable and Highly Sensitive Fluorescence Bioimaging Probes. Biomacromolecules, 2008, 9: 3252-3257.
    [162] Liu, L.; Venkatraman, S.S.; Yang, Y.Y.; Guo, K.; Lu, J.; He, B.; Moochhala, S.; Kan, L. Polymeric micelles anchored with TAT for delivery of antibiotics across the blood-brain barrier. Biopoly. (Peptide Sci.), 2008, 90: 617-623.
    [163] Kostura, L.; Kraitchman, D.L.; Mackay, A.M.; Pittenger, M.F.; Bulte, J.W. Feridex labeling of mesenchymal stem cells inhibits chon-drogenesis but not adipogenesis or osteogenesis. NMR Biomed., 2004, 17: 513-517.
    [164] Yake, A.M.; Zahr, A.S.; Jerri, H.A.; Pishko, M.V.; Velegol, D. Localized functionalization of individual colloidal carriers for cell targeting and imaging. Biomacromolecules, 2007, 8: 1958-1965.
    [165] Pan, J. Feng, S. Targeted delivery of paclitaxel using folate-decorated poly(lactide)-vitamin E TPGS nanoparticles. BioMater., 2008, 29: 2663-2672.
    [166] Zhang, K.; Rossin, R.; Hagooly, A.; Chen, Z.; Welch, M.J.; Wooley, K. Folate-Mediated Cell Uptake of Shell Crosslinked Spheres and Cylinders. J. Polymer Sci. Polymer Chem., 2008, 46: 7578-7583.
    [167] Zhang, K.; Fang, H.; Chen, Z.; Taylor, J.S.A.; Wooley, K.L. Shape effects of Nanoparticles Conjugated with Cell-Penetrating Peptides (HIV Tat PTD) on CHO Cell Uptake. Bioconjug. Chem., 2008, 19: 1880-1887.
    [168] Qu, L.; Peng, Z.A.; Peng, X. Alternative Routes toward High Quality CdSe Nanocrystals. Nano.Lett. 2001, 1: 333-337.
    [169] Hines, M.A.; Scholes, G.D. Colloidal PbS Nanocrystals with Size-Tunable Near-Infrared Emission: Observation of Post-Synthesis Self-Narrowing of the Particle Size Distribution. Adv. Mater., 2003, 15: 1844-1849.
    [170] Alivisatos, A.P. Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem., 1996, 100: 13226-13239.
    [171] Weller, H. Colloidal Semiconductor Q-Particles: Chemistry in the Transition Region Between Solid State and Molecules. Angew. Chem. Int. Ed., 1993, 32: 41-53.
    [172] Eychmüller, A. Structure and Photophysics of Semiconductor Nanocrystals. J. Phys. Chem. B, 2000, 104: 6514-6528.
    [173] Wuister, S.F.; Swart, I.; Driel, F.; Hickey, S.G.; Donega, CM. Highly Luminescent Water-Soluble CdTe Quantum Dots. Nano.Lett., 2003, 3: 503-507.
    [174] Micic, O.I.; Smith, B.B.; Nozik, A.J. Core-Shell Quantum Dots of Lattice-Matched ZnCdSe2 Shells on InP Cores: Experiment and Theory. J. Phys. Chem. B, 2000, 104: 12149-12156.
    
    [175] Zhong, X.; Han, M.; Dong, Z.; White, T.J.; Knoll, W. Composition-Tunable Zn_xCd_(1-x)Se Nanocrystals with High Luminescence and Stability. J. Am. Chem. Soc, 2003, 125: 8589-8594.
    [176] Pradhan, N.; Katz, B.; Efrima, S. Synthesis of High-Quality Metal Sulfide Nanoparticles from Alkyl Xanthate Single Precursors in Alkylamine Solvents. J. Phys. Chem. B, 2003, 107: 13843-13854.
    [177] Talapin, D.V.; Rogach, A.L.; Shevchenko, E.V.; Kornowski, A.; Haase, M.; Weller, H. Dynamic Distribution of Growth Rates within the Ensembles of Colloidal II-VI and III-V Semiconductor Nanocrystals as a Factor Governing Their Photoluminescence Efficiency. J. Am. Chem. Soc, 2002, 124: 5782-5790.
    [178] Zhang, H.; Yang, B. X-ray Photoelectron Spectroscopy Studies of the Surface Composition of Highly Luminescent CdTe Nanoparticles in Multilayer Film. Thin Solid Films 2002, 418, 169-174.
    [179] Tang, Z.; Kotov, N.A.; Giersig, M. Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science, 2002, 297: 237-240.
    [180] Talapin, D.V.; Haubold, S.; Rogach, A.L.; Kornowski, A.; Haase, M.; Weller, H. A Novel Organometallic Synthesis of Highly Luminescent CdTe Nanocrystals. J. Phys. Chem. B, 2001, 105: 2260-2263.
    [181] Cai, E.; Zhang, H.; Yang, B.; Ren, H.; Shen, J. Polyelectrolyte/Cu-Doped ZnSe Nanoparticle Multilayer Composite Films. J. Colloid and Interface Sci., 2001, 238: 285-290.
    [182] Chen, Y.F.; Rosenzweig, Z. Luminescent CdS Quantum Dots as Selective Ion Probes. Anal. Chem., 2002, 74: 5132-5138.
    [183] Bakalova, R.; Ohba, H.; Zhelev, Z.; Ishikawa, M.; Baba, Y. Quantum Dots as Photosensivizers? Nat. Biotechnol., 2004, 22: 1360-1361.
    [184] Samia, A.C.S.; Chen, X.B.; Burda, C. Semiconductor Quantum Dots for Photodynamic Therapy. J. Am. Chem. Soc, 2003, 125: 15736-15737.
    [185] Derfus, A.M.; Chan, W.C.W.; Bhatia, S.N. Probing the Cytotoxicity of Semiconductor Quantum Dots. Nano. Lett., 2004, 4: 11-18.
    [186] Gao, X. H.; Yang, L.; Petros, J.A.; Marshall, F.F.; Simons, J.W.; Nie, S.M. In Vivo Molecular and Celluar Imaging with Quantum Dots. Curr. Opin. Biotechnol., 2005, 16: 63-72.
    [187] Lin, Z.B.; Cui, S.X.; Zhang, H.; Chen, Q.D.; Yang, B.; Su, X.G.; Zhang, J.H.; Jin, Q.H. Studies on Quantum Dots Synthesized in Aqueous Solution for Biological Labeling via Electrostatic Interaction. Analytical Biochemistry, 2003, 319:239-243.
    
    [188] Jiang, W.; Mardyani, S.; Fischer, H.; Chan, W.C.W. Design and Characterization of Lysine Cross-Linked Mercapto-Acid Biocompatible Quantum Dots. Chem. Mater., 2006, 18: 872-878.
    
    [189] Chang, E.; Thekkek, N.; Yu, W. Y.; Colvin, V. L.; Drzek, R., Evaluation of Quantum Dot Cytotoxicity Based on Intracellular Uptake. Small 2006, 2, 1412-1217.
    
    [190] Lovric, J.; Bazzi, H. S.; Cuie, Y.; Fortin, G.R.; Winnik, F.M.; Maysinger, D. Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. J. Mol. Med. 2005, 83: 377-385.
    
    [191] Bharali, D.J.; Lucey, D.W.; Jayakumar, H.; Pudavar, H.E.; Prasad, P.N. Folate-Receptor-Mediated Delivery of InP Quantum Dots for Bioimaging Using Confocal and Two-Photon Microscopy. J. Am. Chem. Soc, 2005, 127: 11364-11371.
    
    [192] Garon, E.B.; Marcu, L.; Luong, Q.; Tcherniantchouk, O.; Crooks, G.M.; Koeffler, H.P. Quantum Dot Labeling and Tracking of Human Leukemic, Bone Marrow and Cord Blood Cell. Leukemia Research, 2007, 31: 643-651.
    [193] Wang, D.; Rogach, A.L.; Caruso, F. Semiconductor Quantum Dot-Labeled Microsphere Bioconjugates Prepared by Stepwise Self-Assembly. Nano. Lett., 2002,2:857-861.
    
    [194] Ma, Q.; Wang, X.Y.; Li, Y.B.; Su, X.G.; Jin, Q.H. The Use of CdTe Quantum Dot Fluorescent Microspheres in Fluoro-immunoassays and a Microfluidic Chip System. Luminescence, 2007, 22: 438-445.
    
    [195] Kuang, M.; Wang, D.Y.; Bao, H.B.; Gao, M.Y.; Mohwald, H.; Jiang, M. Fabrication of Multicolor Fluorescent Microspheres by Loading CdTe Nanocrystals within Microgel Spheres. Adv. Mater., 2005, 17: 267-270.
    [196] Gong, Y. J.; Gao, M.Y.; Wang, D.Y.; Mohwald, H. Incorporating Fluorescent CdTe Nanocrystals in Hydrogel via Hydrogen Bonding-towards Fluorescent Microspheres with Thermal Responsive Properties. Chem. Mater., 2005, 17: 2648-2653.
    [197] Sheng, W.C.; Kim, S.; Lee, J.; Kim, S.W.; Jensen, K.; Bawendi, M.G. In-Situ Encapsulation of Quantum Dots into Polymer Microspheres. Langmuir, 2006, 22: 3782-3790.
    [198] Chan, Y.; Zimmer, J.P.; Stroh, M.; Steckel, J.S.; Jain, R.K.; Bawendi, M.G. Incorporation of luminescent Nanocrystals into Monodisperse Core-Shell silica Microspheres. Adv. Mater., 2004, 16: 2092-2097.
    [199] Yang, X.; Zhang, Y. Encapsulation of Quantum Nanodots in Polystyrene and Silica Micro-/Nanoparticles. Langmuir, 2004, 20: 6071-6073.
    [200] Li, Y.; Liu, E.C.Y.; Pickett, N.; Skabara, P.J.; Cummins, S.S.; Ryley, S.; Sutherland, A.J.; O'Brien, P. Synthesis and Characterization of CdS Quantum Cots in Polystyrene. J. Mater. Chem., 2005, 15: 1238-1243.
    [201] O'Brien, P.; Cummins, S. S.; Darcy, D.; Dearden, A.; Masala, O.; Pickett, N. L.; Ryley, S.; Sutherland, A. Quantum Dot-Labeled Polymer Beads by Suspension Polymerization. J. Chem. Commun., 2003, 20: 2532-2533.
    [202] Mosmann, T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J. Immunol. Meth., 1983, 65:55-63.
    [203] Farmer, S.C.; Patten, T.E. Photoluminescent Polymer/Quantum Dot Composite Nanoparticles. Chem. Mater., 2001, 13: 3920-3926.
    [204] Yang, Y.H.; Wen, Z.K.; Dong, Y.P.; Gao, M.Y. Incorporating CdTe Nanocrystals into Polystyrene Microspheres: Towards Robust Fluorescent Beads Cores by the Reverse Microemulsion Method. Small, 2006, 2: 898-901.
    [205] de la Fuente, J. M.; Fandel, M.; Berry, C.C.; Riehle, M.; Cronin, L.; Aitchison, G.; Curtis, A.S.G. Quantum Dots Protected with Tiopronin: A New Fluorescence System for Cell-Biology Studies. Chem. Bio. Chem., 2005, 6: 989-991.
    [206] Gupta, A.K.; Gupta, M.; Yarwood, S.J.; Curtis, A.S. Effect of Cellular Uptake of Gelatin Nanoparticles on Adhesion, Morphology and Cytoskeleton Organisation of Human Fibroblasts. J. Control. Release, 2004, 95: 197-207.
    [207] Lin, W.S.; Huang, Y.; Zhou, X.D.; Ma, Y.F. In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicology and Applied Pharmacology 2006, 217: 252-259.
    [208] Rogach, A.L.; Nagesha, D.; Ostrander, J.W.; Giersig, M.; Kotov, N.A. "Raisin Bun"-Type Composite Spheres of Silica and Semiconductor Nanocrystals. Chem. Mater., 2000, 12: 2676-2685.
    [209] Liz-Marzan, L.M.; Giersig, M.; Mulvaney, P. Synthesis of Nanosized Gold-Silica Core-shell Particles. Langmuir, 1996, 12: 4329-4335.
    [210] Ung, T.; Liz-Marzan, L.M.; Mulvaney, P. Controlled method for silica coating of silver colloids. Influence of coating on the rate of chemical reactions. Langmuir, 1998, 14: 3740-3748.
    [211] Lu, Y.; Yin, Y.; Li, Z.Y.; Xia, Y. Synthesis and Self-Assembly of Au@SiO2 Core-Shell Colloids. Nano Lett., 2002, 2: 785-788.
    [212] Szabo, D.V.; Vollath, D. Nonocomposites from Coated Nanoparticles. Adv. Mater., 1999, 11: 1313-1316.
    [213] Zhang, RF.; Wan, Q., Li, C.X.; Wang, X.L.; Zhu, Z.Q.; Xian, Y.Z.; Jin, L.T.; Yamamoto, K. Simultaneous assay of glucose, lactate, L-glutamate and hypoxanthine levels in a rat striatum using enzyme electrodes based on neutral red-doped silica nanoparticles. Anal. Bioanal. Chem., 2004, 380: 637-642.
    [214] Hirsch, L.R.; Stafford, R.J.; Bankson, J.A.; Sershen, S.R.; Rivera, B.; Price, R.E.; Hazle, J.D.; Halas, N.J.; West, J.L. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. U. S. A., 2003, 100: 13549-13554.
    [215] Bharali, D.J.; Klejbor, I.; Stachowiak, E.K.; Dutta, P.; Roy, I.; Kaur, N.; Bergey, E.J.; Prasad, P.N.; Stachowiak, M.K. Organically modified silica nanoparticles:a nonviral vector for in vivo gene delivery and expression in the brain. Proc. Natl. Acad. Sci. U. S. A., 2005, 102: 11539-11544.
    
    [216] Gemeinhart, R.A.; Luo, D.; Saltzman, W.M. Cellular fate of a modular DNA delivery system mediated by silica nanoparticles. Biotechnol. Prog., 2005, 21: 532-537.
    [217] Venkatesan, N.; Yoshimitsu, J.; Ito, Y.; Shibata, N.; Takada, K. Liquid filled nanoparticles as a drug delivery tool for protein therapeutics. Biomaterials 2005, 26:7154-7163.
    [218] Qhobosheane, M.; Santra, S.; Zhang, P.; Tan, W. Biochemically functionalized silica nanoparticles. Analyst., 2001, 126: 1274-1278.
    [219] Brunner, T.J.; Wick, P.; Manser, P.; Spohn, P.; Grass, R.N.; Limbach, L.K.; Bruinink, A.; Stark, W.J. In vitro cytotoxicity of oxide nanoparticlesxomparisen to asbestos, silica, and the effect of particle solubility. Environ. Sci. Technol., 2006,40:4374-4381.
    [220] Ow, H.; Larson, D.R.; Srivastava, M.; Baird, B.A.; Webb, W.W.; Wiesner, U. Bright and Stable Core-Shell Fluorescent Silica Nanoparticles. Nano Lett., 2005, 5: 113-117.
    [221] Zhao, X.; Tapec-Dytioco, R.; Tan, W. Ultrasensitive DNA Detection Using Highly Fluorescent Bioconjugated Nanoparticles. J. Am. Chem. Soc. 2003, 125: 11474-11475.
    [222] Hoshino, A.; Fujioka, K.; Oku, T.; Nakamura, S.; Suga, M.; Yamaguchi, Y.; Suzuki, K.; Yasuhara, M.; Yamamoto, K. Quantum Dots Targeted to the Assigned Organelle in Living Cells. Microbiology and Immunology, 2004, 48(12): 985-994.
    [223] Jaiswal, J.; Goldman, E.; Mattoussi, H.; Simon, S. Use of quantum dots for live cell imaging. Nature Methods, 2004, 1(1): 73-78.
    [224] Michalet, X.; Pinaud, F.; Bentolila, L.; Tsay, J.; Doose, S.; Li, J.; Sundaresan, G.; Wu, A.M.; Gambhir, S.S.; Weiss, S. Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics. Science, 2005, 307(5709): 538-544.
    [225] Chen, F.; Gerion, D. Fluorescent CdSe/ZnS Nanocrystal-Peptide Conjugates for Long-term, Nontoxic Imaging and Nuclear Targeting in Living Cells. Nano Letters, 2004, 4(10): 1827-1832.
    [226] Burns, A.; Sengupta, P.; Zedayko, T.; Baird, B.; Wiesner, U. Core/Shell Fluorescent Silica Nanoparticles for Chemical Sensing: Towards Single-Particle Laboratories. Small, 2006, 2(6): 723-726.
    [227] Clarke, S.; Hollmann, C.; Zhang, Z.; Suffern, D.; Bradforth, S.; Dimitrijevic, N.; Minarik, W.G.; Nadeau, J.L. Photophysics of dopamine-modified quantum dots and effects on biological systems. Nature Materials, 2006, 5(5): 409-417.
    [228] Tan, W.; Wang, K.; He, X.; He, X.; Zhao, X.J.; Drake, T.; Wang, L.; Bagwe, R.P. Bionanotechnology based on silica nanoparticles. Med. Res. Rev., 2004, 24: 621-638.
    [229] Kim, H.K.; Kang, S.J.; Choi, S.K.; Min, Y.H.; Yoon, CS. Highly Efficient Organic/Inorganic Hybrid Nonlinear Optic Materials via Sol-Gel Process: Synthesis, Optical Properties, and Photobleaching for Channel Waveguides. Chem. Mater., 1999, 11: 779-788.
    [230] Jain, T.K.; Roy, I.; De, T.K.; Maitra, A.N. Nanometer Silica Particles Encapsulating Active Compounds: A Novel Ceramic Drug Carrier. J. Am. Chem. Soc, 1998, 120: 11092-11095.
    [231] Cordek, J.; Wang, X.; Tan, W. Direct Immobilization of Glutamate Dehydrogenase on Optical Fiber Probes for Ultrasensitive Glutamate Detection. Anal. Chem., 1999, 71: 1529-1533.
    [232] Fang, X.H.; Liu, X.; Schuster, S.; Tan, W. Designing a Novel Molecular Beacon for Surface-Immobilized DNA Hybridization Studies. J. Am. Chem. Soc, 1999, 121:2921-2922.
    
    [233] Huh, S.; Wiench, J.W.; Yoo, J.-C.; Pruski, M.; Lin, V.S.-Y. Organic Functionalization and Morphology Control of Mesoporous Silicas via a Co-Condensation Synthesis Method. Chem. Mater., 2003, 15: 4247-4256.
    [234] Walcarius, A.; Etienne, M.; Lebeau, B. Rate of Access to the Binding Sites in Organically Modified Silicates. 2. Ordered Mesoporous Silicas Grafted with Amine or Thiol Groups. Chem. Mater., 2003, 15: 2161-2173.
    [235] Cagnol, F.; Grosso, D.; Sanchez, C. A general one-pot process leading to highly functionalised ordered mesoporous silica films. Chem. Commun., 2004: 1742-1743.
    
    [236] Han, L.; Sakamoto, Y.; Terasaki, O.; Li, Y.; Che, S. Synthesis and Characterization of the Amphoteric Amino Acid Bifunctional Mesoporous Silica. J. Mater. Chem., 2007, 17: 1216-1221.
    [237] Sharma, P.; Brown, S.; Walter, G.; Santra, S.; Moudgil, B. Nanoparticles for bioimaging. Adv. Colloid Interface Sci., 2006, 123-126: 471-485.
    [238] Smith, J.E.; Wang, L.; Tan, W. Bioconjugated silica-coated nanoparticles for bioseparation and bioanalysis. Trends Anal. Chem. 2006, 25: 848-855.
    [239] Bagwe, R.P.; Yang, C.; Hilliard, L.R.; Tan, W. Optimization of dye-doped silica nanoparticles prepared using reverse microemulsion method. Langmuir, 2004, 20:8336-8342.
    [240] Yao, G.; Wang, L.; Wu, Y.; Smith, J.; Xu, J.; Zhao, W.; Lee, E.; Tan, W. FloDots: luminescent nanoparticles. Anal. Bioanal. Chem., 2006, 385: 518-524.
    [241] Bagwe, R.P., Hilliard, L.R.; Tan, W. Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding. Langmuir, 2006, 22: 4357-4362.
    [242] Zhao, X.; Bagwe, R.P.; Tan, W. Development of Organic-Dye-Doped Silica Nanoparticles in a Reverse Microemulsion . Adv. Mater., 2004, 16: 173-176.
    [243] Tansil, N.C.; Gao, Z. Nanoparticles in biomolecular detection. Nano Today, 2006, 1(1): 28-37.
    [244] Santra, S.; Liesenfeld, B.; Dutta, D.; Chatel, D.; Batich, C.D.; Tan, W.; Moudgil, B.M.; Mericle, R.A. Folate conjugated fluorescent silica nanoparticles for labeling neoplastic cells. J. Nanosci. Nanotechnol., 2005, 5: 899-904.
    [245] Santra, S.; Yang, H.; Dutta, D.; Stanley, J.T.; Holloway, P.H.; Tan, W.; Moudgil, B.M.; Mericle, R.A. Rapid and effective labeling of brain tissue using TAT-conjugated CdS:Mn/ZnS quantum dots. Chem. Commun. (Cambridge) 2005,25:3144-3146.
    
    [246] Chithrani, B.D.; Chan, W.C.W. Elucidating the Mechanism of Cellular Uptake and Removal of Protein-Coated Gold Nanoparticles of Different Sizes and Shapes. Nano Lett., 2007, 7: 1542-1550.
    [247] Stober, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid. Interface Sci., 1968, 26: 62-69.
    [248] Bogush, GH.; Tracy, M.A.; Zukoski, C.F.J. Preparation of Monodisperse Silica Particles: Control of Size and Mass Fraction. Non-Cryst. Solids, 1988, 104: 95-106.
    [249]Verhaegh,N.A.M.;Blaaderen,A.V.Dispersions of Rhodamine-Labeled Silica Spheres:Synthesis,Characterization,and Fluorescence Confocal Scanning Laser Microscopy Dispersions of Rhodamine-Labeled Silica Spheres:Synthesis,Characterization,and Fluorescence Confocal Scanning Laser Microscopy.Langmuir,1994,10:1427-1438.
    [250]Yoon,T.J.;Yu,K.N.;Kim,E.;Kim,J.S.;Kim,B.G.;Yun,S.H.;Sohn,B.H.;Cho,M.H.;Lee,J.K.;Park,S.B.Specific Targeting,Cell Sorting,and Bioimaging with Smart Magnetic Silica Core-Shell Nanomaterials.Small,2006,2:209-215.
    [251]韩坤.Ⅱ-Ⅵ族半导体材料一二氧化硅复合胶体微粒的制备研究.长春,吉林大学,1996,33.
    [252]Chang,J.S.;Chang,K.L.B.;Hwang,D.F.;Kong,Z.L.In Vitro Cytotoxicitiy of Silica Nanoparticles at High Concentrations Strongly Depends on the Metabolic Activity Type of the Cell Line.Environ.Sci.Technol.,2007,41:2064-2068.
    [253]Slowing,I.I.;Vivero-Escoto,J.L.;Wu,C.W.;Lin,V.S.-Y.Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers.Advanced Drug Delivery Reviews,2008,60:1278-1288.
    [254]Rejman,J.;Oberle,V.;Zuhorn,I.S.;Hoekstra,D.Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis.Biochem.J.,2004,377:159-169.
    [255]Oh,J.M.;Choi,S.J.;Kim,S.T.;Choy,J.H.Cellular uptake mechanism of an inorganic nanovehicle and its drug conjugates:Enhanced efficacy due to clathrin-mediated endocytosis.Bioconjugate Chem.,2006,17:1411-1417.
    [256]Xu,X.H.N.;Brownlow,W.J.;Kyriacou,S.V.;Wan,Q.;Viola,J.J.Real-time probing of membrane transport in living microbial cells using single nanoparticle optics and living cell imaging.Biochemistry,2004,43:10400-10413.
    [257]Fischer,H.;Li,L.;Pang,K.S.;Chan,W.C.W.Pharmacokinetics of nanoscale quantum dots:in vivo distribution,sequestration,and clearance in the rat.Adv. Funct.Mater.,2006,16:1299-1305.
    [258]张志强.纳米二氧化硅疏水改性的计算化学研究.北京,北京化工大学,2006.
    [259]刘丰;郑秋红;李小红;丁涛;张治军.可分散性纳米二氧化硅增强硅橡胶.复合材料学报,2006,6:57-63.
    [260]徐如人;庞文琴.分子筛与多孔材料化学,科学出版社,2004.
    [261]Etienne,M.;Lebeau,B.;Walcarius,A.Organically-modified mesoporous silica spheres with MCM-41 architecture.New J.Chem.,2002,26:384-386.
    [262]Fowler,C.E.;Khushalani,D.;Mann,S.Interfacial synthesis of hollow microspheres of mesostructured silica.Chem.Commun.,2001:2028-2029.
    [263]Guo,R.;Yu,J.G.;Zhao,L.;Zhao,X.J.An investigation on the formation mechanisms and preparation of monodispersed urea-formaldehyde(UF)polymer/SiO2 composite microspheres.Acta Chim.Sinica,2004,62:493-497.
    [264]Ni,P.G.;Dong,P.;Cheng,B.V.;Li,X.Y.;Zhang,D.Z.Synthetic SiO2 Opals.Adv.Mater.,2001,13:437-441.
    [265]Nooney,R.L.;Thirunavukkarasu,D.;Chen,Y.M.;Josephs,R.;Ostafin,A.E.Synthesis of Nanoscale Mesoporous Silica Spheres with Controlled Particle Size.Chem.Mater.,2002,14:4721-4728.
    [266]Vacassy,R.;Flatt,R.J.;Hofmann,H.;Choi,K.S.;Singh,R.K.Synthesis of Microporous Silica Spheres.J.Colloid Interface Sci.,2000,227:302-315.
    [267]Ma,Y.R.;Qi,L.M.;Ma,J.M.;Wu,Y.Q.;Liu,O.;Cheng,H.M.Micrometer-Sized Mesoporous Silica Spheres Grown under Static Conditions.Chem.Mater.,1998,10:1623-1626.
    [268]Lefevre,B.;Galarneau,A.;Iapichella,J.;Petit-to,C.;Di Renzo,F.;Fajula,F.;Bayram-Hahn,Z.;Skudas,R.;Unger,K.Synthesis of Large-Pore Mesostructured Micelle-Templated Silicas as Discrete Spheres.Chem.Mater.,2005,17:601-607.
    [269]Ohmori,M.;Matijevic,E.Preparation and properties of uniform coated colloidal particles.Ⅶ.Silica on hematite.J.Colloid Interface Sci.,1992,150:594-598.
    [270]Krassimir,P.V.;van Blaaderen,A.Synthesis and Characterization of Monodisperse Core-Shell Colloidal Spheres of Zinc Sulfide and Silica.Langmuir,2001,17:4779-4786.
    [271]Ryan,J.N.;Elimelech,M.;Baeseman,J.L.;Magelky,R.D.Silica-Coated Titania and Zirconia Colloids for Subsurface Transport Field Experiments.Environ.Sci.Technol.,2000,34:2000-2005.
    [272]Iler,R.K.U.S.Patent,No.2,885,366:1959.
    [273]赵丽;余家国;程蓓;赵修建.单分散二氧化硅球形颗粒的制备与形成机理.化学学报,Acta Chimica Sinica,2003,61(4):562-566.
    [274]Bogush,G.H.;Zukoski IV,C.F.Uniform silica particle precipitation:An aggregative growth model.J.Colloid and Interface Sci.,1991,142:19-34.
    [275]Philipse,A.P.;Vrij,A.J.Preparation and properties of nonaqueous model dispersions of chemically modified,charged silica spheres.Colloid and Interface Sci.,1989,128:121-136.
    [276]Philipse,A.P.Quantitative aspects of the growth of(charged) silica spheres.Colloid and Polymer Science,1988,266:1174-1180.
    [277]Blaaderen,A.V.;Geest,J.V.;Vru,A.Monodisperse colloidal silica spheres from tetraalkoxysilanes:Particle formation and growth mechanism.J.Colloid and Interface Sci.,1992,154:481-501.
    [278]Bogush,G.H.;Tracy,M.A.;Zukoski,C.F.J.Preparation of monodisperse silica particles:Control of size and mass fraction.Non-Cryst.Solids,1988,104:95-106.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700