用户名: 密码: 验证码:
CoSb_3纳米热电材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热电发电系统能否实用化其关键是高性能热电材料的研究和开发,在中温领域(500~800K),由于目前所使用的PbTe系热电材料存在性能指数低(ZT_(max)=0.9),在使用过程中性能恶化及Pb对环境的污染等缺点,因此迫切需要研究和开发新型环境协调型高性能中温热电材料。CoSb_3方钴矿化合物作为一种具有潜在高热电性能指数的新型中温热电材料具有大的载流子移动度、高的电导率和较大的Seebeck系数,但由于热导率较大,因此要提高CoSb_3方钴矿化合物的热电性能,降低其热导率是当前研究的热点之一。本研究通过晶体结构纳米化来降低材料热导率,提高材料Seebeck系数,改善材料热电性能。
     采用固相反应法合成了平均晶径约为3μm单相CoSb_3粉体,采用高能球磨法制备了纳米CoSb_3化合物粉体,研究了球磨参数(球料比、级配、转速和时间)对粉体颗粒尺寸的影响。在适当的参数条件下制备出平均颗粒尺寸约为50nm的纳米粉末。
     以纳米和微米CoSb_3粉末为原料,用放电等离子烧结(SPS)方法制备CoSb_3块体材料,并探讨了烧结温度和时间对烧结体晶粒尺寸的影响。结果表明:随着烧结温度的增加和烧结时间的延长,烧结体的晶粒有明显长大。当烧结温度为625℃,烧结时间7min时,得到了最小平均晶粒尺寸为100nm的CoSb_3密实块体材料。
     通过对一系列不同晶粒尺寸CoSb_3化合物的热导率、电导率和Seebeck系数的测定,讨论了晶粒尺寸大小对结构纳米化对热导率、电导率和Seebeck系数的影响,结果表明:随着CoSb_3化合物晶粒尺寸的减小,晶格热导率κ_L显著降低,从而导致CoSb_3化合物的热导率κ的降低;电导率σ也有一定的降低;以及Seebeck系数α显著增加。因此,晶粒尺寸对CoSb_3化合物的性能指数(ZT)影响很大,当晶粒尺寸为200nm时CoSb_3化合物的性能指数(ZT)最大,在700K时ZT可达到0.43。
In order to make thermoelectric generation system practicable, high-performance thermoelectric material should be developed. At present, in all of the middle- temperature thermoelectric materials, PbTe is used the most widely but it has a severe pollution to environment. And its thermoelectric performance figure (ZTmax=0.9) is still very low. Therefore it is necessary to develop new type high-performance and environment friendly middle-temperature thermoelectric materials. As a type of potentially good thermoelectric materials, CoSb3 compounds with the skutterudite crystal structure MX3 have attracted attention widely, because of their high carrier mobility, large electrical conductivities, and large Seebeck coefficients. However, the thermal conductivity of skutterudite is too large, so, ZT is low. Therefore reducing the thermal conductivity of CoSb3 has becomed a main research way at present. In this research, nano-structure CoSb3 was prepared and its thermoelectric performance figure is better than microm
    eter structure CoSb3.
    CoSb3 micrometer powder has been synthesized by solid-state reaction. CoSb3 nano-powders were prepared by high-energy ball-milling respectively. The influence of mass ratio of big balls and small balls, milling speed and time on particles size of CoSb3 powder, were investigated. In appropriate conditions, CoSb3 powders with particles size of 50nm were prepared.
    CoSb3 nano-powders were used as starting materials, and bulk thermoelectric materials were prepared by Spark Plasma Sintering (SPS). We have investigated the influence of sintering temperature and sintering time on grains size. The results show that the grain size of CoSb3 grows with increasing sintering temperature or sintering time. When sintering temperature and sintering time are 625 C and 7min respectively, the densenfied bulk thermoelectric materials with mean grains size of 100nm were prepared.
    After testing thermal conductivity (K), electrical conductivity ( ) and See-beck coefficient (a), the results demonstrate that for CoSb3 nano-materials, with
    
    
    decreasing in grains size lattice thermal conductivity falls, electrical conductivity decreases and Seebeck coefficient increases. Thermoelectric performance figure (ZT) CoSbs nano-compound with grains size of 200nm has reached 0.43.
引文
1.徐桂英,葛昌纯,热电材料的研究和发展方向,材料导报,11(2000),38-41.
    2.刘宏,王继扬,半导体热电材料研究进展,功能材料,31(2002),116-123.
    3.李伟文,赵新兵,周邦昌,Skutterudite结构热电材料的研究进展,材料导报,16(2002),19-21.
    4. G.D. Mahan, Good Thermoelectrics, Solid State Physics, (1998), 51-54.
    5.李红星,赵新兵,李伟文,新型热电材料研究进展,材料导报,16(2002),20-23.
    6. A.F. Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling, Infosearch Ltd, London, (1957), 8-10.
    7.朱文,杨君友,崔昆,张同俊,热电材料在发电和制冷方面的应用前景及研究进展,材料科学与工程,20(2002),585-588.
    8.刘长洪,何元金,热电物理的研究进展,物理,26(1997),134-139.
    9.其木苏荣,刘文瑞,关于焦耳效应和焦-汤效应的比较,大学物理,22(2003),59-60.
    10.吴丽清,陈金灿,严子浚,汤姆孙效应对半导体制冷器性能的影响,半导体学报,18(1997),148-153.
    11.江山,王志圭著,大学物理,中国科学技术大学出版社,(1988),218-219.
    12. Tang Xin-feng, Chen Li-dong, Goto T., Hirai T. Yuan Run-zhang, Thermoelectric Properties of p-Type Ba_yFe_xCo_(4-x)Sb_(12), Acta Phys. Sin., 50 (2001) 1553-1560.
    13.刘恩科等,半导体物理学,国防工业出版社,1994,291-292.
    14. Kurosaki, Ken., Kosuga, Atsuko, Yamanaka, Shinsuke, Thermoelectric properties of TiBiTe_2, J. Alloys Compounds, 351 (2003), 279-283.
    15. Tang X F, Chen L D, Goto T, Hirai T and Yuan R Z, Solid State Reaction Synthesis and Structure of Filled Skutterudite Compounds Ba_yFe_xCo_(4-x)Sb_(12) Acta Phys. Sin., 49 (2000),2196-2200.
    16.唐新峰,陈立东等,R_yM_xCo_(4-x)Sb_(12)化合物的晶格热导率,物理学报,53(2004),1463-1468.
    17. V. Keppens, D. Mandrus, B. C. Sales, B. C. Chakoumakos, P. Dai, R. Coldea, M. B. Maple, D. A. Gajewski, E. J. Freeman, S. Bennington, Localized vibrational modes in metallic solids, Letters to nature, 34(1999), 876-880.
    18. W. Chen, J. S. Dyck, C. Uher, L. D. Chert, X. F. Tang, T. Hirai, Low Temperature
    
    Thermoelectric properties of Ni Doped n-type Filled Skutterudites, 20th International Conference on Thermoelectric, IEEE, 2001, 69-73.
    19. T. Caillat and J. P. Fleurial, New Low Thermal Conductivity Material for Thermoelectric Applications, 16th Int. Conf. on Thermoelectric, Piscataway, U.S.A., IEEE, 1997, 446-453.
    20. J. O. Sofo, G. D. Mahan, Electronic structure of CoSb_3: A narrow-band-gap semiconductor, Phys. Rev., B58 (1998), 620-623.
    21. X. F. Tang, Chen L D, Goto T, Hirai T and Yuan R Z, Thermoelectric Properties of n-Type Ba_yNi_xCo_(4-x)Sb_(12), Acta Phys. Sin., 51 (2002), 2823-2828.
    22. Gao Min and D. M. Rowe, Thermoelectric figure-of-merit barrer at minimum lattice thermal conductivity, Appl.Phys.Lett., 77(2000), 860-862.
    23. Riffat, S.B., Ma, Xiaoli, Thermoelectrics: a review of present and potential applications, Applied Thermal Engineering. 23 (2003) 913-916.
    24. J. L. Feldman, D. J. Sing, I. I. Mazin, Lattice dynamics and reduced thermal conductivity of filled skutterudites, Phys. Rev., B61 (1998), 9209-9212.
    25. Maciá, Enrique, Quasicrystals as thermoelectric materials: a theoretical prospective, J. Alloys and Compounds,342(2002), 460-465.
    26. Sales, Brian C, Novel thermoelectric materials, Current Opinion in Solid State & Materials Science, 2(1997), 284-289.
    27. Kurosaki, Ken; Kosuga, Atsuko; Yamanaka, Shinsuke, Thermoelectric properties of Chevrel phase Mo_6Te_(8-x)S_x, Journal of Alloys and Compounds, 351(2003) 208-214.
    28. Rowe, D.M., "Evaluation of thermoelecric modules for power generation" Journal of Power Sources (1998), 193-198.
    29. Shin, Woosuck; Murayama, Norimitsu, High performance p-type thermoelectric oxide based on NiO, Materials Letters, 45 (2000), 302-308.
    30. Goldsmid H J., Thermoelectric Refrigeration. New York, Plenum, 1964, 16-17.
    31. D. Y. Chung, T. Hogan, P. Brazis, M. Rocci-lane, etc, CsBi_4Te_6: A High-Performance Thermoelectric Material for Low-Temperature Applications, Science, 287(1999), 1024-1027.
    32. G. J. Snyder, T. Caillat, J. P. Fleurial, Thermoelectric, transport, and magnetic properties of the polaron semiconductor Fe_xCr_(3-x)Se_4, Phys. Rev., B62 (2000), 10185-10193.
    33. Sokolov, O.B., Skipidarov, S.Ya., Duvankov, N.I. The variation of the equilibrium of chemical reactions in the process of (Bi_2Te_3)(Sb_2Te_3)(Sb_2Se_3) crystal growth, Journal
    
    of Crystal Growth, 236(2002) 181-187.
    34. Yuhara, J., Matsuda, K., Hattori, Y., Morita, K., Studies on thermal property and atomic structure of the (Bi,Sb)/Si(111) surface, Applied Surface Science 162 (2000), 368-372.
    35. Zhao, X.B., Cao, G.S. A study of Zn_4Sb_3 as a negative electrode for secondary lithium cells Electrochimica Acta 46(2001) 891-895.
    36. Ur, Soon-Chul, Nash, Philip, Kim, Il-Ho, Solid-state syntheses and properties of Zn_4Sb_3 thermoelectric materials Journal of Alloys and Compounds, 361 (2003), 84-88.
    37. Shin, Woosuck, Murayama, Norimitsu, Electronic structure of NaCo_2O_4 Materials Letters, 49, (2001), 262-268.
    38. Ruckenstein, E., Hu, Y.H. Carbon dioxide reforming of methane over nickel/alkaline earth metal oxide catalysts, Applied Catalysis A: General, 133(1995), 149-154.
    39. Lambert, Sébastien, Leligny, Henri, Grebille, Dominique, Three Forms of the Misfit Layered Cobaltite [Ca_2CoO_3] [CoO_2]_(1.62)·A 4D Structural Investigation, Journal of Solid State Chemistry, 160, (2001), 322-326.
    40. B. C. Sales, B. C. Chakoumakos, D. Mandrus, Thermoelectric properties of thallium-filled skutterudites, Phys. Rev., B 61 (1999), 2475-2481.
    41. D. T. Morelli, T. Caillat, J. P. Fleurial, A. Borshchevsky and J. Vandersande, Low-temperature transport properties of p-type CoSb_3, Phys. Rev., B51 (1995), 9622-9628.
    42. C. Uher, S. Hu, J. H Yang, Cerium Filling and Lattice Thermal Conductivity of Skutterudites, 17th Int. Conf. on Thermoelectric, IEEE, 1998, 306-309.
    43.唐新峰,陈立东,後藤孝,平井敏雄,袁润章,Fe对Ce_yFe_xCo_(4-x)Sb_(12)化合物结构和热电传输性质的影响,物理学报.49(2000):2437-2442.
    44.唐新峰,陈立东,後藤孝,平井敏雄,袁润章,Ce填充分数对p型Ce_yFe_(1.5)Co_(2.5)Sb_(12)化合物热电传输特性的影响,物理学报,49(2000),2460-2465.
    45.唐新峰,陈立东,後藤孝,平井敏雄,袁润章,skutterudite化合物Fe_xCo_(4-x)Sb_(12)的固相反应合成及热电特性,物理学报,49(2000),1120-1123.
    46. G. R Meisner, D. T. Morelli, S. Hu, J. Yang, C. Uher, Skutterudite and Lattice Thermal Conductivity of Fractionally Filled Skutterudites: Solid Solutions of Fully Filled and Unfilled End Members, Phys. Rev., B80 (1998), 3551-3554.
    47. G. S. Nolas, G. A. Slack, D. T. Morelli, A. C. Ehrlich, The Effect of rare-earth filling on the lattice thermal conductivity of skutterudites, J. Appl. Phys., 79(1996), 4002-4008.
    48. L. Chen, X. Tang, T. Goto, and T. Hirai, Synthesis of filled skutterudite compounds:
    
    Ba_yFe_xCo_(4-x)Sb_(12), J. Mater. Res., 15(2000), 2276-2279.
    49. H. Anno, K. Matsubara, A new approach to research for advanced thermoelectric materials: CoSb_3 and Yb-filled skutterudites, Appl. Phys. Lett., 3(2000), 1-8.
    50. H. Anno, Y. Nagamoto, K. Ashida, E. Taniguchi, T. Koyanagi, K. Matsubara, Effect of on Thermoelectric Properties of Co_(1-x)M_xSb_3 (M=Pd,Pt) Skutterudites, 19th Int. Conf. on Thermoelectric, IEEE, 2000, 130.
    51. H. Takizawa, K. Miura, M. Ito, T. Suzuki, T. Endo, Atom insertion into the CoSb_3 skutterudite host lattice under high pressure, J. of alloys and Compounds, 252(1999), 79-84
    52. H. Armo, K. Matsubara, K. Akai, M. Matsuura, T. Caillat, J.-P.Fleurial, Valence -Band Structure of the Skutterudite compounds CoAs_3, CoSb_3 and RhSb_3 Studied by X-ray Photoelectron Spectroscopy, Phys. Rev., B62 (2000), 1-7.
    53. J. L. Feldman, D. J. Sing, I. I. Mazin, Lattice dynamics and reduced thermal conductivity of filled skutterudites, Phys. Rev., B 61 (1998), 9209-9213.
    54. L. Chen, X. Tang, T. Goto, and T. Hirai, Synthesis of filled skutterudite compounds: Ba_yFe_xCo_(4-x)Sb_(12), J. Mater. Res., 15(2000), 2276-2280.
    55. X. F. Tang, L. D. Chen, T. Goto, T. Hirai, Effects of Ce filling fraction and Fe content on the thermoelectric properties of Co-rich Ce_yFe_xCo_(4-x)Sb_(12), J. Mater. Res., 16(2001), 837-840.
    56. S K Mishra, S Satpathy, O. Jepsen and Hicks L D, Electronic structure and thermoelectric properties of bismuth telluride and bismuth selenide J. Phys: Condens. Matter 9 (1997) 461-465.
    57. PJ Lin-Chung and TL Reinecke, Thermoelectric Figure of Merit of Composite Superlattice Systems, Phys. Rev. B 51(1995) 13244-13249.
    58. Anno.H, Hatada.K, Shimizu.H, Structural and electronic transport properties of polycrystalline p-type CoSb_3 J.Appl.Phys, 83(1998), 5270-5280.
    59. I. Sur, A. Casian and A. Balandin, Electronic thermal conductivity and thermoelectric figure of merit of n-type Pb Te/Pb_(1-x)Eu_xTe quantum wells, Phys. Rev. B 69, (2004),7-12.
    60. S. Chakraborty, C. A. Kleint, A. Heinrich, C. M. Schneider, J. Schumann, M. Falke, and S. Teichert, Thermal conductivity in strain symmetrized Si/Ge superlattices on Si, Appl. Phys. Lette., 83 (2003) 4184-4190.
    61. R. Venkatasubramanian, E. Silvola, T. Colpitts, B. Oquinn, Thin-film thermoelectric devices with high room-temperature figures of merit, Phys. Rev., B59 (1999), 597-602.
    
    
    62. M S Jeong, O H Cha, X L Huang, J Y Kim, E-K Suh and H J Lee Photoelectric transient process in Si_(1-x)Ge_x/Si superlattices, Semicond. Sci. Technol. 15 (2000), 130-138
    63. Venkatasubramanian, R., et al. Thin-film thermoelectric devices with high roomtemperature figures of merit. Nature 413(2001) 597-602.
    64. M. N. Touzelbaev, P. Zhou, R. Venkatasubramanian, and K. E. Goodson, Thermal characterization of Bi_2Te_3/Sb_2Te_3 superlattices, Journal of Applied Physics, 90(2001) 763-768.
    65. Hao Cui, Ishwara Bhat and R. Venkatasubramanian, In-situ Monitoring of the Growth of Bi2Te3 and Sb2Te3 Films and Bi2Te3-Sb2Te3 Superlartice Using Spectroscopic Ellipsometry, J. of electronic materials, 30 (2001)1376-1381.
    66. G. Jin, J. L. Liu, and K. L. Wang, Temperature effect on the formation of uniform self-assembled Ge dots, Appl. Phys. Lett. 83 (2003), 2847-2851.
    67. J. L. Liu, J. Wan, Z. M. Jiang, A. Khitun, K. L. Wang, and D. P. Yu, Optical phonons in self-assembled Ge quantum dot superlattices: Strain relaxation effects, J. Appl. Phys. 92 (2002), 6804-6809.
    68. A. Houghton, S. Lee, J. B. Marston, Violation of the Wiedemann-Franz Law in a Large-N Solution of the t-J Model, Phys. Rev. B 65, (2002) 220503-220509.
    69. G. D. Mahan and M. Bartkowiak, Wiedemann-Franz law at boundaries, Applied. Physics Letters, 74 (1999), 953-958.
    70. Young Il Lee, Jong-Heun Lee, Seong-Hyeon Hong and Doh-Yeon Kim, Preparation of nanostructured TiO_2 ceramics by spark plasma sintering, Materials Research Bulletin 38 (2003), 925-930.
    71. S.W. Wang,a) L.D. Chen, and T. Hirai, Densification of Al_2O_3 powder using spark plasma sintering, J Mater. Res., 15 (2000), 982-987.
    72.H.H.Weider[美],李达汉译,半导体材料电磁性能参数的测量,计量出版社,北京,1986-1987.
    73.王英华著,X光衍射技术基础,原子能工业出版社,198-199.
    74. B. C. Sales, D. Mandrus, B. C. Chakoumakos, V. Keppens and J. R. Thompson, Phy. Rev.,B 56 (1997), 15087-15092.
    75.关振锋,张中太,焦金生著,无机材料物理性能,清华大学出版社,1992,276-277.
    76.张立德,牟季美著,纳米材料和纳米结构,科学出版社,2002,60-61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700