用户名: 密码: 验证码:
高强变形铝合金触变成形及缺陷控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
变形铝合金在航空航天等领域应用十分广泛。目前变形铝合金主要采用锻造技术进行加工,加工成本高、效率低,且由于机械加工量过大资源浪费严重。基于现代工业对近净成形和高力学性能产品的双重需求,迫切需要一种能同时发挥出合金的性能优势和成形效率优势的新型加工技术。半固态金属加工技术(Semi-Solid Metal Processing, SSP)是一种新型的近净成形技术,为高强变形铝合金的应用和发展开辟了新的途径。触变成形是半固态加工技术的一种,该技术利用了半固态金属的触变特性,比较适合于变形铝合金等高性能合金。但变形铝合金的触变成形存在很多技术困难,如成形裂纹倾向大,半固态加工温度区间小等。此外7系高强铝合金发生再结晶较为困难,采用常规的固相法难以制备球晶化良好的半固态坯料。本文基于变形铝合金触变成形的可控难点,提出了针对性的研究思路:半固态坯料制备→半固态拉伸力学与断裂行为研究→触变成形缺陷分析→成形缺陷控制,对7075、2024和2A50等高强变形铝合金触变成形及缺陷产生机理和控制方法开展了创新性的系统研究。
     本文将分级热处理工艺引入到再结晶重熔法(Recrystallization and partialremelting,RAP)中,研究了常规RAP法和分级热处理RAP法制备7075铝合金半固态坯料的球晶组织形成机制和组织演变规律。研究表明:7075铝合金在过高温加热过程中发生了充分的再结晶;半固态晶粒尺寸随着过高温保温时间和半固态重熔时间的延长而增加,但前者的影响更为明显。在665℃保温5min后,再于620℃保温5min的条件下,挤压态7075铝合金的微观组织由均匀细小的球状晶粒组成,晶粒尺寸约为45μm,远优于采用常规RAP法(620℃保温40min)所制备的半固态坯料(晶粒尺寸约为120μm)。
     利用Gleeble1500D热力模拟机进行了7075铝合金从高温固态到半固态温度(400℃~580℃)的拉伸试验。研究发现7075铝合金的拉伸力学及断裂行为可分为三个阶段:固相决定阶段、固液共同影响阶段和液相决定阶段;断裂方式从延性断裂→脆性断裂→液相导致断裂转变;半固态温度下为延晶断裂。7075铝合金在半固态温度存在一定的脆性温度区间,在此温度区间内,合金仍能承受一定的拉应力,但几乎不能承受拉应变,因此表现出较高的裂纹倾向。
     分别通过对2A50和2024铝合金典型零件的直接和间接触变成形研究,分析了成形力学条件对制件微观组织和力学性能的影响,以及触变成形裂纹和缩孔等缺陷的产生机理和控制措施。结果表明:裂纹和缩孔等缺陷的影响因素包括成形过程中半固态坯料的拉伸变形、凝固收缩导致的拉应力以及模具结构限制等;微观缩孔附近的晶粒之间结合强度较低,因此容易成为微裂纹的扩展源;使半固态坯料在触变成形末期处于三向压应力状态,可以获得组织性能均匀且无缺陷的触变成形件。本研究提出将复合加载-局部补缩技术应用于铝合金半固态触变成形,保证半固态坯料在触变成形过程中处于三向压应力状态,抑制成形缺陷的产生,实现成形件组织和性能均匀化控制。
     在前期研究的基础上,分别采用常规和分级热处理的RAP法制备7075铝合金半固态坯料,系统研究了复合加载-局部补缩技术对7075铝合金触变成形过程中力学条件的影响,以及不同补缩量对制件微观组织和力学性能的影响;研究了适用于7075铝合金触变成形件的强化热处理工艺。结果表明:采用分级热处理RAP法制备的7075铝合金半固态坯料,其触变模锻件的微观组织相对于常规RAP法更为均匀,力学性能也相对更高。复合加载补缩量从1mm增加到5mm时,制件法兰区域的成形缺陷逐渐消失,抗拉强度增加幅度较小,屈服强度甚至稍有下降,但延伸率增幅为97.4%;中心区域的屈服强度和抗拉强度有小幅增加,延伸率却小幅下降。通过采用复合加载-局部补缩形式,触变模锻件的成形缺陷得到抑制,且整体组织和力学性能的均匀化程度大幅提高。7075铝合金触变模锻制件采用强化T6热处理(465℃固溶2t→480℃固溶8t→淬火→125℃时效24t)后,制件的延伸率稍许降低,但屈服强度和抗拉强度明显提升。
     本论文通过高强变形铝合金半固态坯料制备、半固态拉伸力学及断裂行为、触变成形缺陷和成形过程控制等一系列的系统研究,提出了分级热处理RAP法、复合加载-局部补缩技术等创新思想,为高强变形铝合金的半固态触变成形和缺陷控制打下了坚实的理论和试验基础,为半固态加工技术在变形铝合金领域的研究和应用提供了技术支持。变形铝合金触变成形是一种可行的近净成形技术,具有广阔的工业化应用前景。
Wrought aluminum alloys are widely used for aerospace applications. Nowthese alloys are mainly prepared by forging, which involves high cost and lowefficiency, and it will cause much waste after maching. Based on the requirement bymodern industry to near net shaping and high performance products, there is astrong drive to develop a novel processing technology which could not only exertthe high performance of alloys, but also has high processing efficiency. Semi-solidmetal processing is one potential near net shaping technology, which provides newroute for the application and development of high performance wrought aluminumalloys. Thixoforming is one of SSP technology, which bases on the thixotropicproperty of semi-solid alloys, and it’s very suitable for processing wroughtaluminum alloys. However, there are also some difficulties. For example, largecrack sensitivity, small processing windows (for temperature) and so on. Besides,some high performance aluminum alloys are difficult to be recrystallized, such as7075alloy, so it is difficult to prepare semi-solid feedstock with sphericalmicrostructures by regular solid phase route. In this research, based on thedifficulties of thixoforming of wrought aluminum alloys, some specific researchideas were proposed: billet preparing→research on semi-solid tensile meachnicalbehaviour and fracture behaviour→defect analysis in thixoforming→formingcontrolling.7075,2A50and2024aluminum alloys were prepared by thixoforming,and the defect mechanism and controlling methods were studied innovatively andsystematically.
     Multistep reheating treatment was introduced in Recrystallization and partialremelting (RAP) route, and the forming mechanism of spherical structures andmicrostructure evolution of semi-solid7075aluminum alloy prepared byconventional and multistep reheating RAP routes were studied. The results showthat,7075aluminum alloy was fully recrystallized during hyperthermally reheating;the semi-solid grain sizes increase when hyperthermal holding time or isothermalholding time increase, and the effect of the former one is larger. By reheating to665℃for5min holding, followed by isothermally holding at620℃with total heatingtime of10min, the microstructure consist of homogeneous and fine spherical grainswith size of about45μm. The semi-solid grain size is about120μm underconventional RAP route.
     The tensile properties of7075aluminum alloy in high temperature solid andsemi-solid states (400℃~580℃) were studied. The results show that the tensileand fracture behaviors could be divided into three stages: solid dominating stage, combined influences of solid and liquid stage and liquid dominating stage, while thefracture mechanism changes from ductile fracture to brittle fracture, and liquidresulting in fracture. The crack is intergranular in the semi-solid state. A brittletemperature region exists in the semi-solid state, and at these temperatures, the alloycould still sustain some tensile stress but with amost no ductility, which is prone tohot cracks.
     Tpical parts of2A50and2024aluminum alloys prepared by direct and indirectthixoforming were studied, respectively. The effect of mechanical conditions on themicrostructures and mechanical properties were discussed, and the generationmechanism and controlling method of micro-cracks and micro-shrinkages were alsoanalysed. The results show that the distribution of mechanical conditions has greateffect on thixoformed microstructures, and the thixoformed parts will behomogeneous and with no defect under three-dimensional compression stress; theinfluencing factors of microcracks include tensile deformation during thixoforming,tensile stress caused by solidification shrinkage and mechanical constraint; the bondstrength between solid grains near the microshrinkage is very low, so microcracksare likely to generate here. The compound loading-local feeding method wasproposed to be applied in thixoforming of aluminum alloys. In this ways, thesemi-solid billet could be in three-dimensional compression stress state duringthixoforming process, therefore, the microcracks could be controlled, and themicrostructures and mechanical properties could be homogenized.
     The effect of compound loading-local feeding method on the mechanicalconditions during thixoforming of7075aluminum alloys was studied, and the effectof feeding amount on the microstructures and mechanical properties was alsoresearched. A novel heat treatment suitable for7075aluminum alloy was proposed.The results show that, the microstructures and mechanical properties of thixoformedparts prepared by multistep reheating RAP route are better, compared withconventional RAP route. When the feeding amount increases from1mm to5mm,the defects at flange region disappeared gradually, the ultimate tensile strengthincreases a little, and the yield syrength even decreases little, however, theelongation increases evidently; the yield strength and the ultimate tensile strength ofcentral region increases a little, but the elongation decreases evidently. Byemploying compound loading-local feeding method, the thixoforming defects werecontrolled effectively, and the homogeneities on microstructures and mechanicalproperties of the thixoformed parts were improved evidently. The ultimate tensilestrength and the yield strength both increase evidently after reinforcing T6heattreatment (solution at465℃for2t→solution at480℃for8t→quenching→aging at125℃for24t), however the elongation decreases a little.
     In this paper, the semi-solid billet preparing of high performance wrought aluminum alloys, tensile and feacture behaviors in the semi-solid state, thixoformingdefects and controlling of thixoforming were studied systematically, and some novelmethods were proposed, such as multistep reheating RAP route and compoundloading-local feeding method. The results could build theoretical and experimentalfoundation for thixoforming and defects controlling of high performance wroughtaluminum alloys, and provide useful instruction to the research and application ofsemi-solid processing in wrought aluminum alloys. Thixoforming of wroughtaluminum alloys is proved to be a feasible near net shaping technology withpromising industry applications.
引文
[1]潘复生,张丁非.铝合金及应用[M].北京:化学工业出版社,2006:57-59.
    [2]刘静安,谢水生.铝合金材料应用与开发[M].北京:冶金工业出版社,2011:71-168.
    [3]徐骏,田战峰,曾怡丹,张志峰,石力开.铝合金半固态加工技术的应用研究[J].特种铸造及有色合金,2007,27(8):603-607.
    [4]康永林,毛卫民,胡壮麒.金属材料半固态加工理论与技术[M].北京:科学出版社,2004:198-269.
    [5] H. V. Atkinson. Modelling the semisolid processing of metallic alloys [J].Progress in Materials Science,2005,50:341-412.
    [6]谢水生,黄声宏.半固态金属加工技术及其应用[M].北京:冶金工业出版社,1999:1-8.
    [7]康永林,宋仁伯,杨柳青,张帆.金属材料半固态凝固及成形技术进展[J].中国材料进展,2010,29(7):27-33.
    [8]陈体军,郝远.金属的半固态成形技术与应用[J].铸造,2001,50(11):645-649.
    [9] P. Kapranos, P. J. Ward, H. V. Atkinson, D. H. Kirkwood. Near net shaping bysemi-solid metal processing[J]. Materials&Design,2000,21(4):387-394.
    [10]罗守靖,程远胜,单巍巍.半固体金属流变学[M].北京:国防工业出版社,2011:7-8.
    [11]陈强.合金加工流变学及其应用[M].北京:冶金工业出版社,2012:103-127.
    [12]毛卫民.半固态金属流变铸造技术的研究进展[J].特种铸造及有色合金,2010,1(30):24-35.
    [13] R. Shibata, T. Kaneuchi, T. Soda. New semi-liquid metal casting process [C].In: D. H. Kirkwood, P. Kapranos. Proc of the4th Int. Conf. on Semi-SolidProcessing of Alloys and Composites, Sheffield, UK, June19-21,1996.Department of Engineering Materials, University of Sheffield, UK,1996:296-300.
    [14] Z. Fan, S. Ji, M. J. Bevis. Twin-screw rheomolding? A new semi-solidprocessing technology [C]. in: G. L. Chiarmetta, M. Rosso. Proc. of the6th Int.Conf. on Semi-Solid Processing of Alloys and Composites, Turin, Italy,Sept27th-29th,2000. Materials Science and Chemical Engineering Department,Politecnico DI Torino,2000:61-66.
    [15] S. Ji, Z. Fan, M. J. Bevis. Semi-solid processing of engineering alloys by atwin-screw rheomolding process [J]. Materials Science and Engineering A,2001,299:210-217.
    [16] Z. Fan, S. Ji, X. Fang. Rheo-diecasting of aluminum alloys and components [C].In: D. Apelian, A. Alexandrou, G. Georgiou, J. Jorstad, M. Makhlouf, eds. Proc.8th Int. Conference on the Processing of Semi-Solid Alloys and Composite.Limassol, Cyprus, Sept21st-23rd,2004. The Worcester polytechnic and theMetals Processing Institute.2004:02-03.
    [17] Ube Industries Ltd. Method and apparatus for shaping semisolid metals [P].Japan: European Patent, EPO745694A1.1996
    [18] M. C. Flemings, R. A. Martinez, A. M. De Figueredo, et al. Metal alloycompositions and process [P]: United States Patent,6645323.2003.
    [19] J. A. Yurko, R. A. Martinez, M. C. Flemings. Development of the semi-solidrheocasting (SSR) process [C]. in: Y. Tsutsui, M. Kiuchi, A. Ichikaw. Proc. ofthe7th Int. Conf. on Semi-Solid Processing of Alloys and Composites,Tsukuba Japan, Sept25th-27th,2002. National Institute of Advanced IndustrialScience and Technology, Japan Society for Technology of Plasticity,2002:659-664.
    [20] R. A. Martinez, M. C. Flemings. Evolution of particle morphology insemi-solid processing [J]. Metallurgical Transactions,2005,36:2205-2210.
    [21] S. P. Midson. Rheocasting processes for semi-solid casting of aluminum alloys[J]. Die Casting Engineer,2006,50(1):48-51.
    [22]赵立津,门海豹,赵高瞻,陈强,鲁美琪,王艳彬,赵志翔.半固态压铸技术的现状与前景[J].精密成形工程,2012,4(4):31-38.
    [23]赵祖德,罗守靖.轻合金半固态成形技术[M].北京:化学工业出版社,2007:126-171.
    [24]王开坤.铝镁合金半固态成形理论与工艺技术[M].北京:机械工业出版社,2010:7-11.
    [25] K. P. Young, C. P. Kyonka, J. A. Courtois. Fine grained metal composition [P].US Patent,4,415,374,1982.
    [26] N. Wang, Z. M. Zhou, G. M. Lu. Microstructural evolution of6061alloy duringisothermal heat treatment [J]. Journal of Materials Science&Technology,2011,27(1),8-14.
    [27] H. Arami, R. Khalifehzadeh, H. Keyvan, F. Khomamizadeh. Effect ofpredeformation and heat treatment conditions in the SIMA process onmicrostructural and mechanical properties of A319aluminum alloy [J]. Journalof Alloys and Compounds,2009,468:130-135.
    [28] A. Bolouri, M. Shahmiri, C. G. Kang. Study on the effects of the compressionratio and mushy zone heating on the thixotropic microstructure of AA7075aluminum alloy via SIMA process [J]. Journal of Alloys and Compounds,2011,509:402-408.
    [29]李东成.铝合金及其颗粒增强复合材料的SIMA半固态成型研究[D].长春:吉林大学博士论文,2009:40-85.
    [30]姜巨福.新SIMA法制备AZ91D半固态坯及其触变模锻研究[D].哈尔滨:哈尔滨工业大学博士论文,2005:49-64.
    [31] J. F. Jiang, S. J. Luo. Preparation of semi-solid billet of magnesium alloy andits thixoforming [J]. Transactions of Nonferrous Metals Society of China.2007,17(1):46-50.
    [32] D. H. Kirkwood, C. M. Sellars, L. G. Elias-Boyed. Thixotropic materials [P].European Patent,0305375B1,1992.
    [33] H. V. Atkinson, D. Liu. Microstructural coarsening of semi-solid aluminiumalloys [J]. Materials Science and Engineering A,2008,496:439-446.
    [34] Y. Birol. Comparison of thixoformability of AA6082reheated from the as-castand extruded states [J]. Journal of Alloys and Compounds,2008,461:132-138
    [35]陈兴润,张志峰,徐骏,石力开.电磁搅拌法制备半固态浆料过程电磁场、流场和温度场的数值模拟[J].中国有色金属学报,2010,20(5):937-945.
    [36]徐跃,康永林,王朝辉.机械搅拌制备半固态浆料固相颗粒形貌的研究[J].特种铸造及有色合金,2006,26(1):36-38.
    [37]秦孝华,范存淦,韩维新,戎利建,李依依.液态机械搅拌法制备陶瓷颗粒增强铝基复合材料.金属学报,2002,38(8):885-887.
    [38] M. C. Flemings. Behaviour of Metal Alloys in the Semi-solid state [J].Metallurgical Transactions,1991,22B(6):269-293.
    [39]黄卫东,李涛,林鑫,刘振侠.半固态加工技术分析及进展[J].特种铸造及有色合金,2001,中国压铸、挤压铸造、半固态加工学术年会论文集:186-191.
    [40]李涛,林鑫,刘振侠,黄卫东.半固态凝固组织形成机理初探[J].特种铸造及有色合金,2001,中国压铸、挤压铸造、半固态加工学术年会论文集:194-197.
    [41]李涛,黄卫东,林鑫.半固态处理中球晶形成与演化的直接观察[J].中国有色金属学报,2000,10(5):635-639.
    [42] S. C. Wang, Y. Y. Li, W. P. Chen, X. P. Zheng. Microstructure evolution ofsemi-solid2024alloy during two-step reheating process [J]. Transactions ofNonferrous Metals Society of China,2008,18:784-788.
    [43] G. Vaneetveld, A. Rassili, J. C. Pierret, J. Lecomte-Brckers. Conception oftooling adapted to thixoforging of high solid fraction hot-crack-sensitivealuminium alloys [J]. Transactions of Nonferrous Metals Society of China,2010,20:1712-1718.
    [44] M. Alipour, M. Emamy. Effects of Al–5Ti–1B on the structure and hardness ofa super high strength aluminum alloy produced by strain-induced meltactivation process [J]. Materials&Design,2011,32:4485-4492.
    [45] F. Rikhtegar, M. Ketabchi. Investigation of mechanical properties of7075Alalloy formed by forward thixoextrusion process [J]. Materials&Design,2010,31:3943–3948.
    [46] A. Bolouri, M. Shahmiri, E. N. H. Cheshmeh. Microstructural evolution duringsemisolid state strain induced melt activation process of aluminum7075alloy[J]. Transactions of Nonferrous Metals Society of China,2010,20:1663-1671.
    [47] Y. Birol. Response to T6heat treatment of extruded and thixoformed EN AW2014alloys [J]. Materials Science and Engineering A,2011,528:5636-5641.
    [48] Y. Birol. Age hardening of EN AW2014alloy extruded in the semi-solid state[J]. Materials Chemistry and Physics,2012,131(3):694-697.
    [49] H. K. Jung, C. G. Kang. Reheating process of cast and wrought aluminumalloys for thixoforging and their globularization mechanism [J]. Journal ofMaterials Processing Technology,2000,104:244-253.
    [50] C. G. Kang, P. K. Seo, Y. P. Jeon. Thixo diecasting process for fabrication ofthin-type component with wrought aluminum alloys and its formabilitylimitation [J]. Journal of Materials Processing Technology.2005.160:59-69.
    [51] D. Abolhasani, H. R. Ezatpour, S. A. Sajjadi, Q. Abolhasani. Microstructureand mechanical properties evolution of6061aluminum alloy formed byforward thixoextrusion process [J]. Materials&Design,2013,49:784-790.
    [52] Y. Birol. Analysis of macro segregation in twin-roll cast aluminium strips viasolidification curves [J]. Journal of Alloys and Compounds,2009,486:168-172
    [53] D. Liu, H. V. Atkinson. Effect of heat treatment on properties of thixoformedhigh performance2014and201aluminum alloys [J]. Journal of MaterialsScience,2004,39:99-105.
    [54] A. M. Camacho, H. V. Atkinson, P. Kapranos, B. B. Argent. Thermodynamicpredictions of wrought alloy compositions amenable to semi-solid processing[J]. Acta Materialia,2003,51:2319-2330.
    [55] D. Liu, H. V. Atkinson, H. Jones. Thermodynamic prediction of thixo-formability in alloys based on the Al–Si–Cu and Al–Si–Cu–Mg systems [J].Acta Materialia,2005,53:3807-3819.
    [56] D. Liu, H. V. Atkinson, P. Kapranos, W. Jirattiticharoean, H. Jones.Microstructural evolution and tensile mechanical properties of thixoformedhigh performance aluminium alloys [J]. Materials Science and Engineering A.2003,361:213-224.
    [57] H. V. Atkinson, D. Liu. Development of high performance aluminum alloys forthixoforming [C]. In: Y. Tsutsui, M. Kiuchi, K. Ichikawa. Proc. Of the7th Int.Conf. on Semi-Solid Processing of Alloys and Composites, Tsukuba, Japan,Sept25th-27th,2002, National Institute of Advanced Industrial Science andTechnology, Japan Society for Technology of Plasticity:51-56.
    [58] W. G. Cho, C. G. Kang. Mechanical properties and their microstructureevaluation in the thixoforming process of semi-solid aluminum alloys [J].Journal of Materials Processing Technology,2000,105:269-277.
    [59] C. G. Kang, P. K. Seo. The effect of gate shape on the filling limitation in thesemi-solid forging process and the mechanical properties of the products [J].Journal of Materials Processing Technology,2003,135:144-157.
    [60] Y. Birol. Thixoforming of EN AW-2014alloy at high solid fraction [J]. Journalof Materials Processing Technology,2011,211:1749-1756.
    [61] J. Dong, J. Z. Cui, Q. C. Le, G. M. Lu. Liquidus semi-continuous casting,reheating and thixoforming of a wrought aluminum alloy7075[J]. MaterialsScience and Engineering A,2003,345:234-242.
    [62] S. Yu, D. Li, N. Kim. Microstructure evolution of SIMA processed Al2024[J].Materials Science and Engineering A.2006,420(1-2):165-170.
    [63]刘海,刘昌明,胡锋涛,石成芳.铝合金半固态触变模锻成形过程流动充型模拟[J].铝加工,2006,169:14-18.
    [64] T. J. Chen, Y. Hao, J. Sun. Formation of liquid pools entrapped within solidgrains of ZA27alloys during partial remelting [J]. Journal of Materials Scienceand Technology,2002,18(6):481-483.
    [65]余忠土,张恒华,邵光杰.铝合金半固态成形件固溶热处理工艺优化的研究[J].铸造.2003,52(11):1078-1081.
    [66] E. A. Vieira, M. Ferrante. Prediction of rheological behaviour and segregationsusceptibility of semi-solid aluminium–silicon alloys by a simple backextrusion test [J]. Acta Materialia,2005,53:5379-5386.
    [67] P. K. Seo, S. W. Youn, C. G. Kang. The effect of test specimen size andstrain-rate on liquid segregation in deformation behavior of mushy statematerial [J]. Journal of Materials Processing Technology,2002,130-131:551-557.
    [68] C. Monroe, C. Beckermann. Development of a hot tear indicator for steelcastings [J]. Materials Science and Engineering A,2005,413-414:30-36.
    [69] D. Fabrègue, A. Deschamps, M. Suery, J. M. Drezet. Non-isothermal tensiletests during solidification of Al–Mg–Si–Cu alloys: Mechanical properties inrelation to the phenomenon of hot tearing [J]. Acta Materialia,2006,54:5209-5220.
    [70] N. Wang, S. Mokadem, M. Rappaz, W. Kurz. Solidification cracking ofsuperalloy single-and bi-crystals [J]. Acta Materialia,2004,52:3173-3182
    [71]王仲仁,苑世剑,胡连喜.弹性与塑性力学基础[M].哈尔滨:哈尔滨工业大学出版社,1997:144-157.
    [72] D. G. Eskin, Suyitno, L. Katgerman. Mechanical properties in the semi-solidstate and hot tearing of aluminium alloys [J]. Progress in Materials Science,2004,49:629-711.
    [73] A. B. Phillion, S. L. Cockcroft, P. D. Lee. A three-phase simulation of the effectof microstructural features on semi-solid tensile deformation [J]. ActaMaterialia,2008,56:4328-4338.
    [74] L. J. Colley, M. A. Wells, D. M. Maijer. Tensile properties of as-cast aluminumalloy AA5182close to the solidus temperature [J]. Materials Science andEngineering A,2004,386:140-148.
    [75] A. B. Phillion, S. Thompson, S. L. Cockcroft, M. A. Wells. Tensile propertiesof as-cast aluminum alloys AA3104, AA6111and CA31218at above solidustemperatures [J]. Materials Science and Engineering A,2008,497:388-394.
    [76] K. Hu, A. B. Phillion, D. M. Maijer, S. L. Cockcroft. Constitutive behavior ofas-cast magnesium alloy Mg-Al3-Zn1in the semi-solid state [J]. ScriptaMaterialia,2009,60:427-430.
    [77] W. M. van Haaften, W. H. Kool, L. Katgerman. Tensile behaviour of semi-solidindustrial aluminium alloys AA3104and AA5182[J]. Materials Science andEngineering A,2002,336:1-6.
    [78] A. B. Phillion, S. L. Cockcroft, P. D. Lee. A new methodology for measurementof semi-solid constitutive behavior and its application to examination of as-castporosity and hot tearing in aluminum alloys [J]. Materials Science andEngineering A,2008,491:237-247.
    [79] A. B. Phillion, S. L. Cockcroft, P. D. Lee. X-ray micro-tomographicobservations of hot tear damage in an Al–Mg commercial alloy [J]. ScriptaMaterialia,2006,55:489-492.
    [80] M. R. Rokni, A. Zarei-Hanzaki, Ali A. Roostaei, A. Abolhasani. Constitutivebase analysis of a7075aluminum alloy during hot compression testing [J].Materials&Design,2011,32:4955-4960.
    [81]王涛,尹志民.高强变形铝合金的研究现状和发展趋势[J].稀有金属,2006,30(2):197-202.
    [82]李俊鹏,沈健,闫晓东,毛柏平,闫亮明.温度对7075铝合金热变形显微组织演化的影响[J].中国有色金属学报,2008,18(11):1951-1957.
    [83] H. Wang, Y. B. Luo, P. Friedman, M. H. Chen, L. Gao. Warm forming behaviorof high strength aluminum alloy AA7075[J]. Transactions of NonferrousMetals Society of China,2012,22:1-7.
    [84] H. V. Atkinson, K. Burke, G. Vaneetveld. Recrystallisation in the semi-solidstate in7075aluminium alloy [J]. Materials Science and Engineering A,2008,490:266-276.
    [85] S. Chayong, H. V. Atkinson, P. Kapranos. Thixoforming7075aluminium alloys[J]. Materials Science and Engineering A,2005,390:3-12.
    [86]隋少华,宋天革,赵洪运.循环处理工艺对LC9铝合金半固态组织的影响[J].铸造,2007,56(1):10-13.
    [87]王祝堂,田荣璋.铝合金及其加工手册[M].长沙:中南大学出版社,1989:254-258.
    [88] J. T. Staley. Aluminium alloys: their physical and mechanical properties [C]. in:L. Arnberg, O. Lohne, E. Nes, N. Ryum, Eds. Proceedings of the3rdInternational Conference on Aluminium Alloys, Trondheim, Norway,Norwegian Institute of Technology, SINTEF, June,1992:107-129.
    [89] L. B ckerud, E. Król, J. Tamminen, Wrought Alloys [M], vol.1, SkanAluminium, Oslo,1986.
    [90]崔忠圻,刘北兴.金属学与热处理原理[M].哈尔滨:哈尔滨工业大学出版社,2004:157-168.
    [91] A. M. Kliauga, M. Ferrante. Liquid formation and microstructural evolutionduring re-heating and partial melting of an extruded A356aluminium alloy [J].Acta Materialia,2005,53:345-356.
    [92] E. Tzimas, A. Zavaliangos. Evolution of near-equiaxed microstructure in thesemisolid state [J]. Materials Science and Engineering A,2000,289(1-2):228-240.
    [93] E. Tzimas, A. Zavaliangos. A comparative characterization of near-equiaxedmicrostructures as produced by spray casting, magnetohydrodynamic castingand the stress induced, melt activated process [J]. Materials Science andEngineering A,2000,289:217-227.
    [94] V. A. Snyder, J. Alkemper, P. W. Voorhees. Transient Ostwald ripening and thedisagreement between steady-state coarsening theory and experiment [J]. ActaMaterialia,2001,49(4):699-709.
    [95] E. D. Manson-Whitton, I. C. Stone, J. R. Jones, P. S. Grant, B. Cantor.Isothermal grain coarsening of spray formed alloys in the semi-solid state [J].Acta Materialia,2002,50:2517-2535.
    [96] S. Chayong, H. V. Atkinson, P. Kapranos. Multistep induction heating regimesfor thixoforming7075aluminium alloy [J]. Materials Science and Technology,2004,20:490-496.
    [97]崔约贤,王长利.金属断口分析[M].哈尔滨:哈尔滨工业大学出版社,1998:34-45.
    [98]褚武扬,乔利杰,陈奇志,高克玮.断裂与环境断裂[M].北京:科学出版社,2000:22-28.
    [99] C. P. Chen, C. Y. A. Tsao. Semi-solid deformation of non-dendritic structures-I.phenomenological behavior [J]. Acta Materialia,1997,45(5):1955-1968.
    [100]Z. M. Du, G. Chen, Y. S. Cheng, S. S. Xie. Inhomogeneity of density andmechanical properties of A357aluminum alloy backward extruded insemi-solid state [J]. Transactions of Nonferrous Metals Society of China,2011,21:2285-2293
    [101]S. Nafisi, O. Lashkari, R. Ghomashchi, F. Ajersch, A. Charette. Microstructureand rheological behavior of grain refined and modified semi-solid A356Al-Sislurries [J]. Acta Materialia,2006,54:3503-3511
    [102]C. M. Gourlay, A. K. Dahle, T. Nagira, N. Nakatsuka, K. Nogita, K. Uesugi, H.Yasuda. Granular deformation mechanisms in semi-solid alloys [J]. ActaMaterialia,2011,59:4933-4943.
    [103]E. J. Zoqui, M. H. Robert. Structural modifications in rheocast Al-Cu alloys byheat treatment and implications on mechanical properties [J]. Journal ofMaterials Processing Technology.1998,78:198-203.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700