用户名: 密码: 验证码:
盐酸千金藤碱(CH)逆转肝癌多药耐药性与P-gp ATP酶活性的关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景和目的:
     肝细胞癌(hepatocellular carcinoma,HCC)是一种高发性肿瘤,其发病率在全世界位列第五,而在肿瘤导致的死亡中位列第三。在北美和西欧一些国家中,每100 000人中大约有10人会因为患有肝癌而导致死亡,而在亚洲和非洲一些国家中,每100 000人中会有50-150因此而死亡。尽管在过去的50年中,对肝癌的治疗大有改进,但肝癌细胞容易对一些化疗药物产生多药耐药(multidrug resistance, MDR)而导致治疗效果一直不佳。MDR是指肿瘤细胞对一种抗肿瘤药物产生抗药性的同时对其他结构和作用机理不同的抗肿瘤药物也产生交叉抗药性。其中产生多药耐药的一个很重要原因是P-糖蛋白(P-glycoprotein, P-gp)的过度表达。P-gp是膜转运系统超家族成员之一,定位于细胞膜。Loo TW等等发现P-gp由两个相似的部分组成,每一部分都有六个跨膜区和一个核苷酸结合域。另外,Loo TW等通过对P-gp二硫键的分析,发现近其质膜侧的第六跨膜区和第八跨膜区具有膜转运功能,据此认为P-gp具有通道蛋白性质。Kimura Y等发现在真核生物中ABC转运子(ATP-binding cassette transporter)具有运输调节通道功能,而P-gp是ABC转运子超家族中最主要的成员,P-gp主要通过ATP的水解而实现其运输功能。许多文献都报道了P-gp是介导肿瘤耐药的重要因素,在许多肿瘤耐药细胞中,如肝癌耐药细胞、肺癌耐药细胞、乳腺癌耐药细胞、白血病耐药细胞等,均可检测到P-gp的高表达,其介导肿瘤耐药的机制主要为P-gp能够识别抗肿瘤药物,并且利用ATP产能,把抗肿瘤药物从细胞内不断地泵出到细胞外,从而使抗肿瘤药物在细胞内不能达到所期待的浓度,降低药物的疗效。
     为克服MDR需寻找有效的逆转剂,有相关文献表明一些逆转剂如维拉帕米和环孢素A等可逆转肿瘤耐药,但这些药物应用于体内会产生很大的毒性从而限制其临床应用。盐酸千金藤碱(cepharanthine hydrochloride, CH)是从防已科千金藤属植物的块茎中提取分离出来的一种双苄基异喹啉类生物碱单体化合物千金藤[14]与盐酸成盐而得,具有多种生物学活性。目前,有文献表明其具有体外逆转多柔比星等一些抗肿瘤药物产生的耐药性,但对于逆转肝癌多药耐药的体内研究,比较少见,尤其从P-gp ATP酶活性方面来研究其机制的文献更是少见。在临床上,有观察发现,肝癌患者更易对多柔比星(adriamycin, ADR)、顺铂(cis-dichlorodiamineplatinum, CDDP)5一氟尿嘧啶(5-flurouracil,5一FU)产生耐药,本课题在模拟临床FAP(ADR+CDDP+5-FU)方案[15-16]建立BALB/c小鼠肝癌多药耐药模型基础上[17],研究CH联合FAP对P-gp ATP酶活性的影响,从而进一步探讨CH联合FAP对肝癌多药耐药的逆转作用及其机制。
     材料与方-法:
     在建立BALB/c小鼠肝癌多药耐药的模型基础上,应用MTT法测定CH和维拉帕米对H22/FAP耐药细胞的无毒剂量;MTT法测定肝癌H22/FAP细胞对多柔比星(adriamycin, ADR),顺铂(cis-dichlorodiamineplatinum, CDDP),和5-氟尿嘧啶(5-fluorouracil,5-FU)的耐药性,并计算其耐药倍数(resistance index,RI);观察用药后BALB/c小鼠的生存时间,并计算小鼠生命延长率,评价CH联合FAP对肝癌多药耐药的逆转作用;试验用雌性BALB/c小鼠腹腔接种H22/FAP肝癌细胞(每只0.2ml,1×105个细胞/m1),随机分组,尾静脉给药,连续用药7天后,按参考文献法制备质膜;用考马斯亮蓝法取20ug上述步骤中的质膜,并用定磷法检测P-gp ATP酶的活性;
     结果:
     1、MTT法检测CH与VER对H22/FAP的无毒剂量(抑制率<10%):结果显示,CH和VER剂量分别为1.0mg/ml,0.15mg/ml时,对H22/FAP细胞的抑制率<10%;
     2、用MTT法检测ADR, CDDP,和5-FU对H22肝癌细胞的IC50分别为:0.12±0.01,0.10±0.02,6.36±0.23;ADR, CDDP,和5-FU对H22/FAP肝癌多药耐药细胞的IC50分别为:3.33±0.07,1.02±0.21,71.23±0.24:H22/FAP肝癌多药耐药细胞对ADR,CDDP,和5-FU的耐药倍数分别为27.75,10.20,11.20,证实实验所用的H22/FAP细胞为一多药耐药细胞。
     3、对小鼠生命延长率的评价发现:CH10mg/kg,CH5mg/kg,VER1.25mg/kg组均可明显延长H22/FAP MDR小鼠的生存时间,生存天数分别为29.46±2.33,31.08±2.42,29.21±1.47,与单纯用化疗药的FAP组(20.89±1.21)对比,对小鼠的生命延长率分别为40.1%,48.8%,39.8%,有统计学意义(P<0.05);
     4、通过对体内P-gp ATP酶活性的检测发现,CH联合FAP能有效提高基础ATP酶活性,Km大约为为1.11mg/kg,Vmax大约为184nmol/(min·mg)
     结论:
     1、通过对小鼠生命延长率的实验发现,CH联合FAP能明显延长BALB/c小鼠生存时间,逆转H22/FAP肝癌细胞的耐药;
     2、CH逆转耐药的机制之一可能为通过提高P-gp ATP酶活性,抑制P-gp的外排,增加细胞内化疗药物的浓度。
Backgrounds and Objective
     Hepatocellular carcinoma (HCC) is the fifth most common disease in the world and the third major cause of cancer-related deaths. The incidence of this tumor type ranges from approximately 10 cases per 100 000 in North America and Western Europe to 50-150 per 100 000 in Asia and Africa. Despite improvement in liver surgery,patient prognoses after surgical resection for hepatocellular carcinoma(HCC) remain unsatisfied.One of the obstacles in managing post-operative recurrence is multidrug resistance (MDR) to chemotherapy. Multidrug resistance (MDR) is a phenomenon encountered in cancer treatments in which the tumors become resistant to a variety of cytotoxic chemotherapeutic agents. The molecular basis for one major type of MDR is the overexpression of the P-glycoprotein (P-gp), a plasma membrane glycoprotein with molecular masses ranging from 130 to 170 kDa, confering resistance to a broad range of commonly used chemotherapeutic drugs and other hydrophobic agents. Anticancer agents, such as anthracycline derivatives including adriamycin(ADR),cis-dichlorodiamineplatinum (CDDP), and 5-fluorouracil (5-FU), have been used for these treatments. HCC, however, is often resistant to these drugs. The key for succeeding in chemotherapy against HCC is highly dependent on how we can control drug resistance.
     Cepharanthin hydrochloride (CH), is a natural bisbenzy- lisoquinoline alkaloid extracted from the roots of Stephania cepharantha and salificatied with Hydrochloric Acid. Recently, cepharanthine has been reported to potentiate the activity of some anticancer agents including ADR and to restore the effect of anticancer drugs in multidrug resistant cancer cells.
     It is, therefore, fascinating to consider the potential benefit of CH when treating HCC mice and the study demenstrates the positive effect of Ch in overcoming MDR by inhibiting the drug efflux through p-gp.
     Materials and Methods
     Drug sensitivity testing with [3-(4,5-dimethylthi-azol-2-yl)-2,5 diphenyl-terazolium bromide] MTT assay showed that CH significantly enhanced cytotoxicity of adriamycin(ADR), cis-dichlorodiamineplatinum (CDDP),and 5-flurouracil(5-FU), but only in resistant cells, while,using the ATP-hydrolisis,we showed that compared with VER,CH increased ATPase activity approximately with a Km of 1.11mg/kg and Vmax of 184nmol/(min-mg).Life-prolongation test showed that CH combined with ADR,CDDP,5-FU significantly prolong the survival time of the mice.
     Results
     1、Cell toxicity test showed the small toxicity of CH and VER on BALB/c mice is 1.0mg/ml and 0.15mg/ml respectively;
     2、Statistical analysis with the MTT method showed resistance index (RI) of H22/FAP tumor cells (RI(H22/ADR)=27.75,RI(H22/CDDP)=10.20,RI (H22/5-FU)=11.20), and it supported powerfully that a HCC multidrug resistance model was established successfully. IC50 of H22/ADR cells (≈3.33) increased by 26.75 fold vs the group of H22 cells (≈0.12), respectively with H22/CDDP cells increased by 9.20 fold and H22/5-FU increased by 10.20 fold.
     3、CH10mg/kg,CH5mg/kg,VER1.25mg/kg in combination with FAP prolonged the life of BALB/c mice with the life prolongation rate about 40.1%,48.8%,39.8% (P<0.05,vs FAP group);
     4、In vivo, CH increased ATPase activity approximately with a Km of 1.11mg/kg and Vmax of 184nmol/(min·mg).
     Conclusions
     1、The data showed CH combined with FAP agents prolonged the life of mice significantly.
     2、One of the mechanism is that CH combined with FAP can increase the activity of P-gp ATPase.
引文
[1]El-Serag HB. Hepatocellular carcinoma and hepatitis C in the United States[J]. Hepatology 2002;36:S74-83.
    [2]But DY, Lai CL, Yuen MF. Natural history of hepatitis-related hepatocellular carcinoma[J]. World J Gastroenterol 2008; 14:1652-1656.
    [3]El-Serag HB, Davila JA, Petersen NJ, McGlynn KA. The continuing increase in the incidence of hepatocellular carcinoma in the United States:an update[J]. Ann Intern Med 2003; 139:817-823.
    [4]Shields A, Reddy KR. Hepatocellular carcinoma: currenttreatment strategies [J]. Curr Treat Options Gastroenterol 2005;8:457-466.
    [5]Clark HP, Carson WF, Kavanagh PV, Ho CP, Shen P,Zagoria RJ. Staging and current treatment of hepatocellularcarcinoma[J]. Radiographics 2005;25 Suppl 1:S3-23.
    [6]Schwartz JM, Ham JM. Treatment of HepatocellularCarcinoma[J]. Curr Treat Options Gastroenterol 2003;6:465-472.
    [7]Van Thiel DH, Brems J, Holt D, Hamdani R, YongS. Chemosensitivity of primary hepatic neoplasms: a potential new approach to the treatment of hepatoma[J]. Hepatogastroenterology 2002;49:730-734.
    [8]Feng Yan, Xiao-Min Wang. JNK1, JNK2, and JNK3 are involved in P-glycoprotein-mediated multidrug resistance of hepatocellular carcinoma cells[J]. Hepatobiliary Pancreat Dis Int, Vol9, No 3·June 15,2010.
    [9]Ambudkar SV,Dey S,Hrycyna CA,et al.Biochemical,cellular,and pharmacological aspects of the multidrug transporter[J].Annu Rev Pharmacol Toxicol,1999,39:361-98.
    [10]Gottesman MM,Fojo T,Batas SE.Multidrug resistance in cancer:role of ATP-dependent transporters[J].Nat Rev Cancer,2002,2(l):48-58.
    [11]Loo TW, Bartlett MC, Clarke DM. Vall33 and Cys137 in transmembrane segment 2 are close to Arg935 and Gly939 in transmembrane segment 11 of human P-glycoprotein[J]. J Biol Chem.2004,279(18):182 32-18238.
    [12]Loo TW, Bartlett MC, Clarke DM. Disulfide Cross-linking Analysis Shows That Transmembrane Segments 5 and 8 of Human P-glycoprotein Are Close Together on the Cytoplasmic Side of the Membrane[J]. J. Biol. Chem.2004,279(9):7692-7697.
    [13]Kimura Y, Matsuo M, Takahashi K, et al. ATP hydrolysis-dependent multidrug efflux transporter: MDR1/P-glycoprotein[J]. Curr Drug Metab.2004,5(1):1-10.
    [14]Tomita M, Fujitani K, Aoyagi Y. Synthesis of dl-cepharanthine. Tetrahedron Lett,1967,13:1201-6.
    [15]朱金水,周信达主编.现代消化系肿瘤临床治疗学(第1版)[M].上海:上海中医药大学出版社,2005,230.
    [16]韩锐,孙燕主编.新世纪癌的化学预防与治疗(第1版)[M].北京:人民军医出版社,2005,795-796.
    [17]王欣,张艳,王宁,等.小鼠腹水型肝癌多药耐药模型的建立[J].郑州大学学报(医学版),2010,45(6):920-923.
    [18]刘燕.P-糖蛋白与肿瘤多药耐药[J].海南医学,2010,1:117-119.
    [19]Huang CC, Wu MC, Xu GW, Li DZ, Cheng H, Tu ZX, et al.Overexpression of the MDR1 gene and P-glycoprotein in human hepatocellular carcinoma. [J]Natl Cancer Inst 84:262-264,1992.
    [20]Teeter LD, Hsu HC, Curley SA, Tong MJ and Tien Kuo M:Expression of multidrug resistance (P-glycoprotein) MDR1 and MDR2 genes in human hepatocellular carcinoma and liver metastases of colonic tumors. Int J Oncol 2:73-80,1993.
    [21]Isshiki K, Nakao A, Ito M, Hamaguchi M and Takagi H:P-glycoprote in expression in hepatocellular carcinoma. [J] Surg Oncol.52:21-25,1993.
    [22]Takanishi K, Miyazaki M, Ohtsuka M and Nakajima N:Inverse relationship between P-glycoprotein expression and its proliferative activity in hepatocellular carcinoma. Oncology[J] 54:231-237,1997.
    [23]Kato A, Miyazaki M, Ambiru S, Yoshitomi H, Ito H,Nakagawa K, et al:Multidrug resistance gene (MDR-1)expression as a useful prognostic factor in patients with human hepatocellular carcinoma after surgical resection.[J] Surg Oncol.52:21-25.
    [24]Teodori E,Dei S,Quidu P, et al. Design, synthesis, and in vitro activity of Catamphiphilic reverters of mltidrug resistance: discovery of a selective, highly efficacious chemosensitizer with potency in the nanomolar range [J]. J Med Chem,1999, 42:1687.
    [25]王庆端,江金花,孙文欣,等.千金藤素抗炎镇痛作用的实验研究[J].中国药学杂,志,1999,34(9):594-597.
    [26]Kobuchi H, et al. Inhibition of neutrophil priming and tyrosyl phosphorylation by cepharanthine, a nonsteroidal anti-inflammatory drug[J]. Cell Strut Funct,1992,173:85.
    [27]夏薇,马方,江金花,等.盐酸千金藤碱对环磷酰胺所致小鼠白细胞减少的治疗作用[J].郑州大学学报(医学版),2007,42(3):494-496.
    [28]Sato T, Moria I, Fujita H, et al.Kimishima A, Tomiyama J and Murota S:Pharmacological Characterization of Cepharanthin in Chronic idiopathic thrombo-cytopenic purpura. PIatelets,2001,12(3):156-162.
    [29]Wu JH, Suzuki Ⅱ, Akhand AA. et al. Modes of activation of mitogen-activated protein kinases and their roles in cepharanthine-induced apoptosis in human leukemia cell[J]. Cellular Signalling,2002,14(6):509-515.
    [30]Harada K, Bando T, Yoshida H, et al. Characteristic of antitumor activity of cepharanthin against a human adenosquamous cell carcinoma cell line[J]. Oral Oncology,2001,37(8): 643-651.
    [31]Biswasa K, Tancharon S, Sarker K, et al. Cepharanthine triggers apoptosis in a human hepatocellular carcinoma cell line(HuH-7) through the activation of JNK1/2 and the downregulation of Akt[J]. FEBS Letters,2006,580(2):703-710.
    [32]Aogi K, Nishiyama M, Kim R, et al. Overcoming CPT-11 resistance by using a biscoclaurine alkaloid, cepharanthine, to modulate plasmatran-memebrance potential [J]. International Journal of Cancer,1997,72(2):295-300.
    [33]Iked R, Che XF, Yamaguchi T. Cepharanthine potently enhances the sensitivity of anticancer agents in K562 cells[J]. Cancer Science,2005,96(6):372-376.
    [34]罗十德,等主编.抗爱滋病病毒活性化合物[M].云南科技出版社,1992,2:03.
    [35]Okamoto M, et al. Potent inhibition of HIV type 1 replication by an anti-inflammatory alkaloid, cepharanthine, in chronically infected monocytic cells. AIDS Res Hum Retroviruses,1998,14(14)1:239.
    [36]刘新建,王一飞,张美英,等.千金藤素抗单纯疱疹病毒Ⅰ型(HSV-Ⅰ)初探[J].中药材,2004,27(2):107-110.
    [37]宋玉成,夏薇等.盐酸千金藤素逆转EAC/ADR细胞多药耐药性的作用及其机制.药学学报,[J],2005,40(3):204-207.
    [38]武亚玲,王庆端.盐酸千金藤素逆转K562/ADR细胞的多药耐药性及其与bcl-2的关系.河南肿瘤学杂志[J],2005,18(2):93-95.
    [39]Mosmann T. Rapid colorimetric assay for cellular growth and surival:application to proliferation and cytotoxicity assay[J].J Jmmunol Methods,1983,65(1-2):55-63.
    [40]吕秋军.新药药理学研究方法[M].化学工业出版社,2001,246-247.
    [41]Asaumi J, Nishikawa K, Matsuoka H, et al. Direct antitumor effect of cepharanthin and combined effect with adriamycin against Ehrlich ascites tumor in mice[J] Anticancer Res, 1995,15(1):67-70.
    [42]Er-jia Wang, Christopher N. Casciano。Two transport binding sites of P-glycoprotein are unequal yet contingent: initial rate kinetic analysis by ATP hydrolysis demonstrates intersite dependence。Biochimica et Biophysica Acta[J] 1481:63-74,2000.
    [43]HE Ling,LIU Guo-Qing.Interaction of multidrug resistance reversal with P-glycoprotein ATPase activity on blood-brain barrier.Acta Pharmacol Sin[J],2002 May:23(5):423-429.
    [44]姬汴生,何玲.氨氯地平衍生物CJX1对人耐药肿瘤细胞P-gp ATP酶活性的影响.中国药理学通报[J],2008 Dec;24(12):1603-1606.
    [45]Serrone L, Horsey P. The chemoresistance of human malignant melanoma:an update. Melanoma Res,1999,9:51-58.
    [46]Gadducci A, Cosio S, Muraca S, et al. Molecular mechanisms of apoptosis and chemosensitivity to platinum and paclitaxel in ovarian cancer: biological data and clinical implications. Eur J Gynaecol Oncol,2002,23 (5):390-396.
    [47]Gregory DL, Tito F, Susan EB. The Role of ABC Transporters in Clinical Practice[J]. The Oncologist.2003,8:411-424.
    [48]Chen Bo, Jing F, Lu XL, et al. Effect of PKC Inhibitor on P-gp Expression and Drug-resistance in MGC-803 Cells[J]. Chinese Journal of Cancer.2004,23(4):396-400.
    [49]Sarkadi B, Price EM,Boucher R C, et al. Expression of the human multidrug resistance cDNA in insect cells generates a high activity drug-stimulated membrane ATPase [J]. J B iol Chem,1992,267(7):4854-8.
    [50]GarrigosM,Mir L M,Orlowski S. Competitive and non2competitive inhibition of the multidrug-resistance-associated P-glycoprotein ATPase-further experimental evidence for a multisite model[J]. Eur JB iochem,1997,244 (2):664-73.
    [51]Ambudkar SV, Kimchi SC, Sauna ZE, et al. P-glycoprotein:from genomics to mechanism [J].Oncogene.2003,22(47):7468-85.
    [52]Haus-Cohen M, Assaraf YG, Binyamin L, et al. Disruption of P-glycoprotein anticancer drug efflux activity by a small recombinant single-chain Fv antibody fragment targeted to an extracellular epitope[J]. Int J Cancer.2004,109(5):750-758.
    [53]Stouch TR, Gudmundsson O. Progress in understanding the structure-activity relationships of P-glycoprotein[J]. Adv Drug Deliv Rev,2002,54 (3):315-28.
    [54]王天晓,赵玮,雷凯健.异汉防己碱逆转白血病K562/DOX细胞多药耐药性的实验研究[J].中国老年学杂志,2008,28:947-949
    [55]Asaumi J, Kawasaki S, Nishikawa K, et al. Effects of hyperthermia and cepharan-thin on adriamycin accumulation with changes in extracellular pH[J]. Int J Hyperthermia, 1995,11:27-35.
    [56]Nishikawa K, Asaumi J, Kawasaki S, et al. Influence of cepharanthin on the intra-cellular accumulation of adriamycin in normal liver cells and spleen cells of mice in vitro and in vivo[J]. Anticancer Res,1997,17:3617-21.
    [1]El-Serag HB. Hepatocellular carcinoma and hepatitis C in the United States[J]. Hepatology 2002;36:S74-83.
    [2]But DY, Lai CL, Yuen MF. Natural history of hepatitis-related hepatocellular carcinoma[J]. World J Gastroenterol 2008;14:1652-1656.
    [3]El-Serag HB, Davila JA, Petersen NJ, McGlynn KA. The continuing increase in the incidence of hepatocellular carcinoma in the United States:an update[J]. Ann Intern Med 2003;139:817-823.
    [4]Clark HP, Carson WF, Kavanagh PV, Ho CP, Shen P,Zagoria RJ. Staging and current treatment of hepatocellularcarcinoma[J]. Radiographics 2005;25 Suppl 1:S3-23.
    [5]Schwartz JM, Ham JM. Treatment of HepatocellularCarcinoma[J]. Curr Treat Options Gastroenterol 2003;6:465-472.
    [6]Van Thiel DH, Brems J, Holt D, Hamdani R, YongS. Chemosensitivity of primary hepatic neoplasms:a potential new approach to the treatment of hepatoma[J]. Hepatogastroenterology 2002;49:730-734.
    [7]Feng Yan, Xiao-Min Wang. JNK1, JNK2, and JNK3 are involved in P-glycoprotein-mediated multidrug resistance of hepatocellular carcinoma cells[J]. Hepatobiliary Pancreat Dis Int,2010,9(3):3.
    [8]Frehlick LJ,Eirin-Lopez JM,Ausio J.New insights into the nucleophosmin/nucleoplasmin family of nuclear chaperones.Bioessays,2007,29(1):49-59.
    [9]Silverman J A. Multidrug-resistance transporters [J].Pharm Biotechnol,1999,12:353.
    [10]Szabo D, K eyzerH, K aiserHE, et a.l Reversal of multidrug resistance of tumor cell[J].Anticancer Res,2000,20(6B):4261-4274.
    [11]刘燕.P-糖蛋白与肿瘤多药耐药[J].海南医学,2010,1:117-119.
    [12]Chan H S L,Haddad G.P-glycoprotein expression as a predictor of the outcome of therapy for neuroblastoma [J].N Engl J Med,1991,325:1608.
    [13]Mickisch GH, Merlino GT, Galski H, et al. Transgenic mice that express the human multidrug - resistance gene in bone marrow enable a rap id identification of agents that reverse drug resistance[J].Proc Natl Acad Sci USA,1991,88:547-551.
    [14]Yasuhiro TAD A, Morimasa WADA.Increased expression of multidrug resistance associated p roteins in bladder cancer during clinical course and drug resistance to doxorubicin [J]. Int. J. Cancer: 2002,98:630-635.
    [15]冷卫东,王大章,冯弋,等.肿瘤耐药蛋白在舌鳞癌中的表达及意义[J].华西口腔医学医学杂志,2004,20(1):23-25.
    [16]田阳斌.冯选民P-gp在乳腺粘液腺癌中的表达及意义[J].重庆医学.2011,39(22):3016-3018.
    [17]Gottesman M M. How cancer cells evade chemotherapy:sixteenth richard and hinda rosenthal foundation award lecture[J]. Cancer Res,1993,53:747.
    [18]Zhu B.T. A novel hypothesis for the mechanismof action of P-glycoprotein as a multidrug transporte[J]. Mol Carcinog,1999,25(1):1.
    [19]Mayer U,Wagenaar E.Dorobek B, et al. Full blockade of intestinal P - glycoprotein and extensive inhibition of blood - brain barrier P - glycprotein by oral treatment of mice with PSC833 [J]. J Clin Invest,1997,100 (10):2430.
    [20]SandlerA, GordonM,De AlwisD P, et al. A Phase I trial of a potent P-glycoprotein inhibitor, zosuquidar trihydrochloride(LY335979), administered intravenously in combination with doxorubicin in patientswith advanced malignancy[J]. Clin Cancer Res,2004,10(10) 3265-3272.
    [21]Borst P, Evers R, KoolM, et al. A family of drug transporters: the multidrug resistance 2associated p roteins [J]. J Natl Cancer Inst,2000,92.
    [22]Doyle LA,Ross DD. Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2) [J]. Oncogene,2003,22(47):7340.
    [23]Kiyotaka Y,Genichiro I,Tomoyuki Y,et al. Breast cancer resistance protein impact clinical outcome in platinum-based chemotherapy for advanced non-small cell lung cancer [J]. Clin Cancer Res,2004,10 (3):1691.
    [24]Meschini S,Mara M,Calcabrini A,et al. Role of resistance-correlated protein (LRP) in the drug sensitivity of cultured tumor cells [J]. Toxicol Vit ro,2002,16 (4):389.
    [25]于冬青,易永芬.多药耐药相关蛋白和肺耐药蛋白在胃癌组织中的表达[J].实用癌症杂志,2003,18(1):47.
    [26]Wang C, Zhang JX, Shen XL, et al. Reversal of P-glycoprotein-mediated multidrug resistance by Alisol B 23-acetate [J]. Biochem Pharmacol,2004,68(5):843-855.
    [27]Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamidegels to nitrocellulose sheets:procedure and some applications [J]. Proc Natl Acad Sci USA,1979,76(9):4350-4353.
    [28]Egashira M, Kawamata N, Sugimoto K, et al. P-glycoprotein expression on normal and abnormally expanded natural killer cells and inhibition of P-glycoprotein function by cyclosporinA and its analogue, PSC833 [J].Blood,1999,93(2):599-606.
    [29]Wang C, Zhang JX, Shen XL, et al.Reversal of P-glycoprotein-mediated multidrug resistance by Alisol B 23-acetate [J]. Biochem Pharmacol,2004,68(5):843-855.
    [30]Fong WF, Shen XL, Globisch C, et al. Methoxylation of 3',4'-aromatic side chains improves P-glycoprotein inhibitory and multidrug resistance reversal activities of 7,8-pyranocoumarin against cancer cells [J]. Bioorg Med Chem,2008,16(7):3694-3703.
    [31]Shen XL, Chen GY, Zhu GY, et al. (±)-3'-O,4'-O-di- cynnamoyl-cis-khellactone, a derivative of (±)-praeruptorin A,reverses P-glycoprotein mediated-multidrug resistance incancer cells [J]. Bioorg Med Chem,2006,14(21):7138-7145.
    [32]Mechetner EB, Schott B, Morse BS, et al. P-glycoprotein function involves confonnational transitions detecTable By differential immunoreactivity [J]. Proc Natl Acad Sci USA,1997, 94(24):12908-12913.
    [33]Nagy H, Goda K, Arceci R, et al. P-Glycoprotein conformational changes detected by antibody competition [J]. Eur J Biochem,2001,268(8):2416-2420.
    [34]Maki N, Hafkemeyer P, Dey S. Allosteric modulation of human P-glycoprotein. Inhibition of transport by preventing substrate translocation and dissociation [J]. J Biol Chem,2003, 278(20):18132-18139.
    [35]李玲,胡汛等.五味子乙素对MRP介导的肿瘤多药耐药逆转作用的研究[J].同济大学学报(医学版)2006,27(6):19-23.
    [36]李凌,王弢等.五味子乙素对转染多药耐药1基因的MCF-7细胞的多药耐药逆转作用[J].中华医学杂志,2005,85(23):1633-1637.
    [37]Huang M, Jin J, Sun H, et al. Reversal of P-glycoproteinmediated multidrug resistance of cancer cells by five schizandrins isolated from the Chinese herb Fructus Schizandrae[J]. Cancer Chemother Pharmacol,2008,62(6):1015-1026.
    [38]Pan QR, Lu QH, Zhang K, et al. Dibenzocyclooctadiene lingnans: a class of novel inhibitors of P-glycoprotein [J].Cancer Chemother Pharmacol,2006,58(1):99-106.
    [39]曾祥英,劳邦盛,董玉莲,等.十大功劳中异汉防己碱的提取与分析[J].分析测试学报,2003;22(6):89-91.
    [40]王天晓,赵玮等.异汉防已碱逆转白血病K562/DOX细胞多药耐药性的实验研究.中国老年学杂志,2008,28:947-949.
    [41]徐萌,周蓓.汉防己甲素逆转肺癌化疗耐药和凋亡抗性的实验研究.新中医,2006,38(6):90-91.
    [42]He QY, Meng FH, Zhang HQ. Reduction of doxorubicin resistant human leukemia (HL60) cells [J]. Acta Pharmacol Sin,1996,17(2):179-181.
    [43]He QY, Zhou WD, Ji L, et al. Characteristics of harringtonine- resistant human leukemia HL60 cell [J]. Acta Pharmacol Sin,1996,17(5):463-467.
    [44]Tian H, Pan QC. A comparative study on effect of two bisbenzylisoquinolines,tetrandrine and berbamine, on reversal of multidrug resistance [J]. Acta Pharma Sin,1997,32(4): 245-250.
    [45]童小麟.儿茶素的理化性质、生物学作用及其开发应用研究进展[J].茶叶通讯,2008,28:947-949.
    [46]郑树,吴金民,潘宏铭,等.一种新型的肿瘤多药抗药性逆转剂2中国专利,发明专利中请公开说明书,专利号95103936.9.
    [47]Jodoin J, Demeule M, Beliveau R. Inhibition of the multidrug resistance P-glycoprotein activity by green tea polyphenols[J]. Biochim Biophys Acta,2002,1542(1-3):149-159.
    [48]朱爱芝,王祥云等.茶多酚对肿瘤细胞多药耐药性逆转作用的研究[J].北京大学学报(自然科学版),2001,37(4):496-501.
    [49]冉铁成,王毅.茶多酚主要成分对肿瘤多药耐药性的逆转作用[J].核化学与放射化学,2003,25(2):74-79.
    [50]杨纯正.肿·瘤耐药研究的若干问题[J].中华医学杂志,2001,81(24):1475-1478.
    [51]程光,章翔,费舟等.苦参碱对BT325胶质瘤细胞的增殖抑制和诱导凋亡作用[J].第四军医大学学报,2002,23(23):2152-2154.
    [52]张金廷,崔慧先,李庆星等.苦参碱对KB及其多药耐药细胞KBv200增殖与凋亡影响的对比研究[J].中国肿瘤临床,2005,32(9):520-523.
    [53]李旭芬,张苏展,郑树.苦参碱对K562及其多药耐药细胞K562/Vin的细胞生物学影响[J].中国病理生理杂志,2002,18(10):1233-1237.
    [54]李贵海,王玫,孙付军等.苦参碱逆转小鼠S180肿瘤细胞获得性多药耐药基因相关表达产物过度表达的研究[J].中药材,2006,29(1):4142.
    [55]Kim SW, Kwon HY, Chi DW, et al. Reversal of P-glycoprotein-mediated multidrug resistance by ginsenoside Rg(3) [J]. Biochem Pharmacol,2003,65(1):75-82.
    [56]张晖,王华庆,张会来等.人参皂甙Rh2逆转P-gp介导的MCF-7/ADM多药耐药性的基础研究[J].肿瘤,2007,27(5):365-369.
    [57]朴丽华,韩春姬,金元哲等.人参皂苷Rh2对耐药乳腺癌细胞P-糖蛋白和基质金属蛋白酶及其诱导物表达的影响[J],临床与实验病理学杂志,2010,26(4):471-476.
    [58]史曦凯,张翼军,赵春景.人参皂苷单体Rb1联合异搏定对人多药耐药细胞系K562/HTT的耐药逆转作用[J].重庆医学,2003,32(6):706-707.
    [59]立彦,王白正,于腾飞.人参皂苷Rb1对耐长春新碱的急性早幼粒白血病(HL60/VCR)细胞多药耐药逆转的实验研究[J].放射免疫学杂志,2005,18(5):362-365.
    [60]Fong WF, Wang C, Zhu GY, et al. Reversal of multidrug resistance in cancer cells by Rhizoma Alismatis extract [J].Phytomedicine,2007,14(2-3):160-165.
    [61]范青,范广俊,杨佩满,等.丹参酮微乳逆转肿瘤细胞多药耐药的研究[J].中国中药杂志,2004,29(11):1079-1081.
    [62]梅英,石毓君,左国庆.川芎嗪逆转细胞HepG2ADM多药耐药性的体外研究[J].中国中药杂志,2004,10(29):970-973.
    [63]孙慧君,王晓琦,于丽敏.丹皮酚对MDR逆转作用的研究[J].解剖科学进展(Prog Anatom Sci),2000,6(1):59-62.
    [64]Teodori E,Dei S,Quidu P, et al. Design, synthesis, and in vitro activity of Catamphiphilic reverters of mltidrug resistance:discovery of a selective, highly efficacious chemosensitizer with potency in the nanomolar range [J]. J Med Chem, 1999,42:1687.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700