用户名: 密码: 验证码:
抗鼻咽癌中草药的筛选和盐酸千金藤碱对鼻咽癌细胞生长的影响及其机制的初步探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景及目的:
     鼻咽癌主要发生在我国南方沿海地区,是严重影响我国人民群众身体健康的恶性肿瘤之一。目前治疗鼻咽癌的主要手段为放射治疗,5年生存率较低;化学治疗在鼻咽癌病人尤其晚期病例仍占有重要地位,但其毒副作用大,往往影响疗程的完成。中草药药效温和,毒副作用小,具有合成药物不可替代的特点。我国的传统医学在采用天然药物治疗肿瘤方面有丰富的临床经验。虽然广西中草药资源丰富,又是鼻咽癌的高发区,但针对鼻咽癌防治应用的药物研究尚为空白,有许多抗鼻咽癌活性成分和方剂急待筛选开发应用。因此,通过药物筛选寻找针对鼻咽癌更有效、毒副反应更少的中草药是临床治疗迫切需要解决的问题之一。
     课题组通过两种途径对中草药的抗鼻咽癌作用进行初步筛选:一、采用血清药理学方法制备中草药的含药血清,在体外用MTT法对含药血清的抗鼻咽癌作用进行筛选;二、在体外用MTT法直接对中草药的提取物进行抗鼻咽癌作用的筛选。筛选实验显示半枝莲、肿节风等的含药血清和茶多酚、薏苡仁的提取物在体外可以有效抑制鼻咽癌细胞的生长。签于资料显示青蒿、千金藤在抗肿瘤方面的作用,本实验在课题组工作的基础上分别通过同样的两种途径对青蒿含药血清和千金藤的提取物(盐酸千金藤碱)在体外用MTT法进行了抗鼻咽癌作用的初步筛选,并对盐酸千金藤碱对鼻咽癌癌细胞生长的抑制作用及其作用机制进行了探讨。
     材料与方法:
     (1)采用MTT法检测盐酸千金藤碱和含青蒿血清在体外鼻对咽癌细胞CNE-1、CNE-2、5-8F、SUNE-1的生长抑制作用,筛选抗鼻咽癌中草药;
     (2)盐酸千金藤碱处理的人鼻咽癌CNE-1、CNE-2、5-8F、SUNE-1细胞株后,采用ATP法对其进行细胞活力测定、流式细胞术分析其细胞周期及透射电镜观察其细胞形态;
     (3)采用基因芯片技术检测盐酸千金藤碱处理前后CNE-2细胞的基因表达谱改变;用实时荧光定量PCR对部分基因芯片结果进行验证;
     (4)实验数据用SPSS13.0统计软件进行分析处理。
     结果:
     (1)MTT法发现青蒿对CNE-1、5-8F、SUNE-1、CNE-2细胞的抑制作用不明显;盐酸千金藤碱对四株鼻咽癌细胞的抑制作用较明显,并且在CNE-1、5-8F、SUNE-1且呈剂量-效应关系和时间-效应关系,在CNE-2成剂量-效应关系;
     (2)ATP法发现盐酸千金藤碱对四株鼻咽癌细胞生长有抑制作用,其效应关系同MTT结果;流式细胞仪检测发现盐酸千金藤碱处理四株鼻咽癌细胞后细胞周期停滞于G_0/G_1期,并可见凋亡峰;透射电镜可见四株鼻咽癌细胞出现细胞凋亡形态学改变;
     (3)基因芯片检测得到138个上调基因和63个下调基因。依据其生物学功能可以分为细胞增殖相关基因、细胞周期相关基因、细胞凋亡相关的基因、DNA修复基因等。采用实时荧光定量PCR对部分基因进行验证,结果与基因芯片结果相符。
     结论:
     (1)盐酸千金藤碱(千金藤的提取物)在体外可以有效的抑制鼻咽癌细胞的生长;青蒿在体外对鼻咽癌细胞的生长没有明显的影响;
     (2)盐酸千金藤碱在体外将CNE-1、CNE-2、5-8F、SUNE-1细胞阻滞于G_0/G_1期,使细胞增殖受到抑制;
     (3)盐酸千金藤碱在体外可诱导CNE-1、CNE-2、5-8F、SUNE-1凋亡,可有效抑制其生长;
     (4)盐酸千金藤碱可以诱导CNE-2细胞201(138个上调,63个下调)基因的差异表达。
     (5)参与盐酸千金藤碱对CNE-2细胞生长的影响的基因主要有细胞增殖相关基因、细胞周期相关基因、细胞凋亡相关的基因、DNA修复基因等。推测盐酸千金藤碱对CNE-2的抑制可能是多种基因共同作用的结果。
Background and Objective:
     Nasopharyngeal carcinoma(NPC),which is threating people's health seriously,is one of the most common malignant tumors in Southern China.The radiation therapy play an important role in early stage of NPC patients,but the five years survival rate is lower.Chemotherapy has the deep significance for late stage of NPC patients,but Chemotherapy often can't be finished because of its serious side effects.Our traditional medicines have the rich experiences in tumors therapy with naturally occurring drugs.The drug action of Chinese herbal medicine,which the side effect is negligible,is mild.However,the synthetic drug has not these features.It is a stringent question to find a kind of Chinese herbal medicine which have more efficient and less side effect on anti-NPC through drug screening.The project group had screened anti-NPC Chinese herbal medicine through two methods.One method is applying blood-serum pharmacology to prepare drug serum and screening them in vitro by MTT.The other method is screening the extractive of Chinese herbal medicines in vitro by MTT.At result,we found scutellariae barbatae serum、Sarcandra serum and the extractive of tea polyphenol、Semen coicis can inhibit the growth of nasopharyngeal carcinoma cells.However,the anti-NPC effect of Sweet Wormwood Herb and Cepharanthine Hydrochiorid(the extractive of Stephania japonica) have been not reported.So our project screen the two Chinese herbal medicines on anti-NPC effect in the same methods as that of the project group,and study on the actions and its mechnism of the Cepharanthine Hydrochiorid(CH) on human nasopharyngeal carcinoma cell lines.
     Material and Methods:
     (1) MTT assay had been used to evaluate the growth inhibition of the human nasopharyngeal carcinoma cell line—SUNE-1、CNE-1、CNE-2、5-8F treated with CH and Sweet Wormwood Herb serum,in order to find Chinese herbal medicines whether can inhibit the growth of human nasopharyngeal carcinoma cells;
     (2) In the human nasopharyngeal carcinoma cell line—SUNE-1、CNE-1、CNE-2、5-8F treated with CH,we used the ATP method to test the vigor,used the flow cytometry to analysis the cell cycle and used the electron microscopes electrophores to observe morphology;
     (3) DNA microarray had been used to search the different-expressed genes of human nasopharyngeal carcinoma cell CNE-2 before and after treated with CH;And some of different-expressed genes were confirmed by real time-PCR;
     (4) All experimental data were analyzed with SPSS13.0 for window.
     RESULTS:
     (1) MTT results showed that the growth of human nasopharyngeal carcinoma cell line—SUNE-1、CNE-1、CNE-2、5-8F were not obviously inhibited by Sweet Wormwood Herb.The CH could inhibit the growth of human nasopharyngeal carcinoma cell line—SUNE-1、CNE-1、CNE-2、5-8F in vitro conspicuously.There were obviously dosage-effect and time-effect correlation in SUNE-1、CNE-1、5-8F cells,but there was only dosage-effect in CNE-2 cell;
     (2) ATP method,which results were coherent with the results of MTT, showed CH could inhibit the vigor of four human nasopharyngeal carcinoma cell lines;flow cytometry analysis founded that G_1 arrest and apoptosis peak occurred in the four human nasopharyngeal carcinoma cells treated with CH; Morphological apoptosis of the four human nasopharyngeal carcinoma cells could be observed by means of electron microscope;
     (3) There were 16450 Unigene tested by DNA microarray in all.There were 138 up-regulated genes and 63 down-regulated genes.According to their biological function,these genes can be classed the genes related to cell proliferation,the genes related to cell apoptosis,DNA repair genes and so on. Parts of genes were confirmed by real time-PCR and the results were corresponded to that of DNA microarray.
     CONCLUSIONS:
     (1) The growth of human nasopharyngeal carcinoma cell lines were not inhibited by Sweet Wormwood Herb,but CH could inhibit the proliferation of human nasopharyngeal carcinoma cell lines;
     (2) CH could arrest the cell cycle of CNE-1、CNE-2、5-8F、SUNE1 at G_1 and inhibite cell proliferation.
     (3) CH could induce apoptosis of CNE-1、CNE-2、5-8F、SUNE1.impact the growth of the human nasopharyngeal carcinoma cell line-SUNE-1、CNE-1、CNE-2、5-8F obviously and arrest cell cycle in G_0/G_1 and induce apoptosis in vitro;
     (4)CH can induce the defferent expression of 201genes(138 up-regulated genes and 63 down-regulated genes).
     (5)The genes which relate to the impact on CNE-2 growth treated with CH can be classed to:the genes relate to cell proliferation,the genes relate to cell cycle,the genes relate to cell apoptosis,DNA repair genes,and so on.we surppose that the molecular mechanism of CH on the inhibition CNE-2 cells growth may be relate to multigenes action.
引文
[1]薛洁,谢梅林.中药血清药理学的方法学研究近况[J].中草药,2003,34(6):9-11.
    [2]Motoi Mukai,Xiao-Fang Che.Reversal of the resistance to STI571 in human chronic myelogenous leukemia K562 cells.Cancer Sci,2003,94(6):557-63.
    [3]武亚玲 王庆瑞 盐酸千金藤素逆转K562/ADR细胞的多药耐药性及其与bcl-2的关系.河南省肿瘤杂志,2005,18(2):93-5.
    [4]Kenjiro AOGI1,Masahiko NISHIYAMA,Ryungsa KIMl.et al.Overcom CPT-11 resistance by using a biscoclaurine alkaloid,cepharanthine,to modulate plasma trans-memebrane potential,Cancer,1997,72:295-300.
    [5]Ryuji Ikeda,Xiao-Fang Che.Cepharanthine potently enhances the sensitivity of anticancer agents in K562 cells,Cancer Sci,2005,96(6):372-6.
    [6]Wu J,Suzuki H,Akhand A.A.Zhou.Modes of activation of mitogen-activated protein kinases and their roles in cepharanthine-induced apoptosis in human leukemia cells.Cell Signal,2002,14:509-15.
    [7]K Harada,T Bando.Characteristic of antitumor activity of Cepharanthine against a human adenosquamous cell carcinoma cell line.Oral Oncology,2001,37:643-51.
    [8]Kamal Krishna Biswasa,Salunya Tancharona.Cepharanthine triggers apoptosis in a human hepatocellular carcinoma cell line(HUH-7) through the activation of JNK1/2 and the downregulation of Akt.FEBS Letters 2006,580:703-10.
    [9]杨彦芳,王玉芹.中药复方血清药理学方法规范化探讨.中国中西医结合杂志,2000.05.20;20(5):380-2.
    [10]李振光,王净.关于中药血清药理学方法的思考.中国中医药信息杂志, 2002,9(2):5-6.
    [11]Iwama H,Amagaya S,Ogihara Y.Effect of shosaikoto a Japanese and Chinese traditional herbal medical mixture,on the mitogenic activitity of lipopolysaccharide a new pharmacological testing method[J],J Ethnopharmacol.1987 Sep-Oct;21(1):45-53.
    [12]Umeda M,Amagaya S,Ogihara Y.Effect of certain herbal medicines on the biotransfirmation of arachidonic acid a new pharmacological testing method using serum.J Ethnopharmaco 1988;23(1);91-8.
    [13]Body M R,Paull KD.Some Practical considerations and aPPlications of the National Cancer Institute in vitro anticancer drug discovery serene[J].Drug Develo Pment Res,1995,34:91-109.
    [14]Monks A,Seudiero DA,Johnson GS,et al.The NCI anti-cancer drug screen:a Smart screen to identify effectors of novel targets[J].Anti-Cancer Drug Design,1997,12:533-41.
    [15]Duffaud F,lay JY.Gastrointestinal stromal tumors biology and treatment[J].Ontology,2003,65(3):187-97.
    [16]Mans DR,da Roeha AB,Sehwartsmann G.Anti-cancer drugs discovery and development in Brazil:Targeted plant collection as a Rational strategy to acquire candidate anti-cancer compounds[J].Oncologist,2000:5(3):185-98.
    [17]康敏.抗鼻咽癌中草药筛选模型的建立及应用[学位论文],广西医科大学,2005
    [18]Cree IA,Kurbacher CM.ATP-based tumor chemosensitivity testing:assisting new agent developmrnt.Anticancer Drugs,1999,10(5):431-5.
    [19]Rafael Nunez.流式细胞术原理与科研应用简明手册.北京:化学工业出版社,2005:28-30.
    [20]Zinnen SP,Domenico K,Wilson M,et al.Selection,design,and characterization of a new potentially therapeutic ribozyme.RNA,2002 Feb;8(2):214~28.
    [21]Wilda M,Fuchs U,Wossmann W,et al.Killing of leukemic cells with a BCR/ABL fusion gene by RNA interference(RNAi).Oncogene,2002 Aug 22;21(37):5716~24.
    [22]Fornace A J Jr,Alamo I Jr,Hollander M C.DNA damage-inducible transcripts in mammalian cells.Proc Natl Acad Sci.U.S.A,1988,85(23):8800~4.
    [23]Papathanasiou M A,Fornace A J Jr.DNA-damage inducible genes.Cancer Treat Res,1991,57:13~36.
    [24]Jin S,Fan F,Fan W,et al.Transcription factors Oct-1 and NF-YA regulate the p53-independent induction of the GADD45 following DNA damage.Oncogene,2001,20 (21):2683~90.
    [25]Takahashi S,Saito S,Ohtani N,et al.Involvement of the Oct-1 regulatory element of the gadd45 promoter in the p53-independent response to ultraviolet irradiation.Cancer Res,2001,61 (3):1187~95.
    [26]Fan W,Jin S,Tong T,et al.BRCA1 regulates GADD45 through its interactions with the OCT-1 and CAAT motifs.J BioChem,2002,277 (10):8061~7.
    [27]Zhao H,Jin S,Fan F,et al.Activation of the transcription factor Oct-1 in response to DNA damage.Cancer Res,2000,60 (22):6276~80.
    [28]Jin S,Tong T,Fan W,et al.GADD45-induced cell cycle G2-M arrest associates with altered subcellular distribution of cyclin Bland is independent of p38 kinase activity.Oncogene,2002,21 (57):8696~704.
    [29]Takekawa M,Saito H.A family of stress-inducible GADD45-likeproteins mediate activation of the stress-responsive MTK1/MEKK4 MAPKKK.Cell,1998,95 (4):521~30.
    [30]Vairapandi M,Balliet A G,Fornace AJ Jr.et al.The differentiation primary response gene MyDl 8,related to GADD45,encodes for a nuclear protein which interacts with PCNA and p21WAFl/CIPl.Oncogene,1996,12 (12):2579~94.
    [31]Butterfield L,Storey B,Maas L,et al.c-Jun NH2-terminal kinase regulation of the apoptotic response of small cell lung cancer cells to ultraviolet radiation.J Biochem,1997,272 (15):10110~6
    [32]Chen Y R,Meyer C F,Tan T H.Persistent activation of c-Jun N-terminal kinase 1 (JNK1)in gamma radiation-induced apoptosis.J Biochem,1996,271 (2):631~4.
    [33]Chen Y R,Wang X,Templeton D,et al.The role of c-Jun N-terminal kinase (JNK)in apoptosis induced by ultraviolet C and gamma radiation.Duration of JNK activation may determine cell death and proliferation.J Biochem,1996,271 (50):31929~36.
    [34]Zanke B W,Boudreau K,Rubie E,et al The stress-activated protein kinase pathway mediates cell death following iniury induced by cis-platinum,UV irradiation or heat.Curr Biol,1996,6 (5):606~13.
    [35]Tong T,Ji J,Jin S,et al.Gadd45a expression induces Bim dissociation from the cytoskeleton and translocation to mitochondria.Mol Cell Biol,2005,25 (11):4488~500.
    [36]Puthalakath H,Huang D C,OReilly L A.et al.The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex.Mol Cell Biol,1999,3 (3):287~96.
    [37]Smith M L,Ford J M,Hollander M C.et al.p53-mediated DNA repair responses to UV radiation:studies of mouse cells lacking p53,p21,and/or gadd45 genes.Mol Cell Biol,2000,20 (10):3705~14.
    [38]Maeda T,Hanna A N,Sim A B,et al.GADD45 regulates G2/M marrest,DNA repair,and cell death in keratinocytes following ultraviolet exposure.J Invest Dermatol,2002,119 (1):22~26.
    [39]Liu X,Zou H,cslaughter.DFF,a heterodimerion protein that functions dowmstram of caspase3 to trigger DNA fragmentation during apoptosis.Cell,1997,89(2):175-84.
    [40]Pwidla K,Li P,Wang X.Cleavage preference of the apoptotic endonuclease DFF40 on naked DNA chromatin substrates.J Biochem,2000,275(11):8226~32.
    [41]Yang X,Khosrav Ifar R,Chang H Y,et al.Daxx,a novel Fas-binding protein that activates JNK and apoptosis.Cell,1997,89 (7):1067~76.
    [42]M Ichaelson J S,Leder P.RNAi reveals antiapoptotic and transcriptionally repressive activities of DAXX.J Cell Sci,2003,116 (2):345~52.
    [43]Chen L Y,Chen J D.Daxx silencing sensitizes cells to multiple apoptotic pathways.Mol Cell Biol,2003,23 (20):7108-21.
    [44]Okamura H,Yoshida K,Morimoto H,et al.PTEN exp ression elicited by EGR-1 transcrip tion factor in calyculin A-induced apop totic cells.J Cell Biochem,2005,94 (1):117~25.
    [45]Al-Sarraj A,Day RM,Thiel G Specificity of transcrip tional regulation by the zinc finger transcrip tion factors Spl,Sp3,and Egr-1.J Cell Biochem,2005;94 (1):153 ~67.
    [46]Sharma P,Veeranna,SharmaM,et al.Phosphorylation of MEK1 by cdk5 /p35 down-regulates the mitogen-activated protein kinase pathway.J Biol Chem,2002,277 (1):528~34.
    [47]WongWK,Ou XM,Chen K,et al.Activation of human monoamine oxidase B gene expression by aprotein kinase CMAPK signal transduction pathway involves c-Jun and Egr-1.J Biol Chem,2002,277(25):222-30.
    [48]Krones-Herzig A,Adamson E,Mercola D.Early growth response 1 protein,an upstream gatekeeper of the p53 tumor suppressor,controls replicative senescence.Proc Natl Acad Sci USA,2003,100(6):3233-8.
    [49]Wu Q,Liu S,Ye X-F,et al.Dual roles of Nur77 in selective regulation of apoptosis and cell cycle by TPA and ATRA in gastric cancer cells.Carcinogenesis(Lond.),2002,23:1583-92.
    [50]Li H,Kolluri S K,Gu J,et al.Cytochrome c release and apoptosis induced by mitochondrial targeting of nuclear orphan receptor TR3.Science(Wash.DC),2000,289:1159-64.
    [51]Harada K,Supriatno,Yamamoto S,et al.Cepharanthine exerts antitumor activity on oral squamous cell carcinoma cell lines by induction of p27Kip1.Anticancer Res.2003,23(2B):1441-8.
    [52]Michael T,Tetzlaff,Chang Bai,et al.Cyclin F Disruption Compromises Placental Development and Affects Normal Cell Cycle Execution.Mol Cell Biol.2004,24(6):2487-98.
    [53]于新凤,刘芝华.Id蛋白与肿瘤关系的进展.世界华人消化杂志,2005,13(7):880-3.
    [54]Norton J.D.ID helix-loop-helix proteins in cell growth,differentiation and tumorigenesis.Cell Sci,2000:113,3897-905.
    [55]Gil J,Bernard D,Peters G.Role of polycomb group proteins in stem cell self-renewal and cancer.DNA Cell Biol.2005 Feb;24(2):117-25.
    [56]Gil J,Bernard D,Martinez D.et al.olycomb CBX7 has a unifying role in cellular lifespan.Nat Cell Biol,2004,6(1):67-72.
    [57]Scott CL,Gil J,Hernando E.et al.Role of the chromobox protein CBX7 in lymphomagenesis.Proc Natl Acad Sci USA,2007,104 (13):5389~94.
    [58]Bernard D,Martinez Leal JF,Rizzo S,et al.CBX7 controls the growth of normal and tumor-derived prostate cells by re-pressing the Ink4a/Arf locus.Oncogene,2005,24 (36):5543~51.
    [59]Momand J,Wu HH,Dasgup ta G MDM master regulator of the p53 tumor supp ressor p rotein.Gene,2000,242 (122):15~29.
    [60]Agarwal ML,Taylor WR,Stark GR,et al.The p53 network.J Biochem,1998,273 (1):1~4.
    [61]Kuerbitz SJ,Plunkett BS,KastanMB,et al.Wild-type p53 is a cell cycle checkpoint determinant following irradiation.Proc.Natl.Acad.Sci U.S.A,1992,89 (16):7491~5.
    [62]Yin Y,TainskyMA,Wahl GM,et al.Wild-type p53 restores cell cycle control and inhibits gene amp lification in cellswith mutant p53 alleles.Cell,1992,70 (6):937~48.
    [63]KastanMB,Zhan Q,E12DeiryWS,et al.A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia.Cell,1992,71 (4):587~97.
    [64]Stark GR,TaylorWR.Analyzing the G2 /M checkpoint.Methods Mol Biol,2004,280 (1):51~82.
    [65]Norbury CJ,Zhivotovsky B.DNA damage-induced apoptosis.Oncogene,2004,23 (16):2797~808.
    [66]Harris SL,Levine AJ.The p53 pathway:positive and negative feedback loop s.Oncogene,2005,24 (17):2899~908.
    [67]Kawabata M,Kawabata T,Nishibori M.Role of recA/RAD51 family proteins in mammals.Acta Med Okayama,2005,59(1):1~9.
    [1]周曦,忠东.三氧化二砷对宫颈癌HeLa细胞体外生长的影响[J].美国中华临床医学杂志,2005,7(2):124-6.
    [2]马润娣,于立坚,苏伟明.土贝母苷甲诱导HeLa细胞周期阻滞和凋亡[J]中国临床药理学与治疗学,2004,9(3):261-9.
    [3]叶象权.药物学.广州:广东科技出版社,1997.235-6.
    [4]胡彬雅,田道法,任基浩.益气解毒颗粒对鼻咽癌细胞株HNE1凋亡诱导活力的研究.中国耳鼻咽喉头颈外科,2007,14(3):153-5.
    [5]李勇,刘冀红,赵群等.大蒜素对人胃腺癌BGC-823细胞影响的研究.中国中西医结合外科杂志,2001,7(5):307-10.
    [6]何松,左国庆,张燕等.苦参碱对肝癌细胞Hep G2端粒酶活性调控的体外研究,重庆医学,2008,37(3):291-5.
    [7]丁向萍,马力,魏书堂等.虫草素诱导人肝癌Hep G22细胞凋亡及对端粒酶活性影响的研究.中华肿瘤防治杂志,2008,15(2):109-3.
    [8]罗昕.中药沙棘提取液对血液肿瘤细胞杀伤作用研究 中国实用医药.2008.3(2n):97-8.
    [9]Shi Z F,Fan Y.Advances in studies on the pharmaco logical role of Hypericum perforatum.Chin J Mod Appl Pharm(中国现代应用药学),2000,17(3):190-3.
    [10]Li W,Hu KW.Present situation of study on multidrug resistance of tumor Chin J Inf Trad Chin Med(中国中医药信息杂志),2000,7(7):6-8.
    [11]张金廷,崔慧先,李庆星等.苦参碱对KB及其多药耐药细胞KBv200增殖与凋亡影响的对比研究.中国肿瘤临床,2005,(9):520-3.
    [12]许明君,施华球,苏晓蓉.白花蛇舌草注射液逆转K562/ADM细胞多药耐药的作用和机制.2008,30(3):327-9.
    [13]刘丽丽,刘艳娥,房国涛.三七总皂苷逆转乳腺癌细胞MCF-7/ADM 多药耐药的实验研究,时珍国医国药2008,19(4):954-6.
    [14]Mukai M,Che XF,Furukawa T,et al.Reversal of the resistance to STI571in human chronic myelogenous leukemia K562 cells.Cancer Sci.2003,94(6):557-63.
    [15]Yancopoulos G D,Davis S,Gale N W,et al.Vascular-specific growth factors and blood vessel formation.Nature,2000,407(6801):242-8.
    [16]纪术峰,吴爱国.PTEN和血管内皮生长因子在乳腺癌中的表达及其意义.实用医学杂志,2006,22(81):893-5.
    [17]于秀,谢阳桂,史锦云.子宫内膜癌与VEGF、PTEN、CD44、P27基因标志物的研究.实用医学杂志,2006,22(17):2066-7.
    [18]邱敏,梁志清,王玲.VEGF-A与卵巢癌淋巴管生成及淋巴结转移的关系研究.实用医学杂志,2005,21(22):2474-6.
    [19]Chen W H,Chen Y,Cui G H,et al.Effects of TNF-alpha and curcumin on the expression of VEGF in Raji and U937 cells and on angiogenesis in ECV304cells.Chin Med J(Engl),2005,118(24):2052-7.
    [20]刘芳,崔国惠,张纯等.雷公藤内酯醇对Raji细胞血管内皮生长因子表达的影响.中国医院药学杂志,2004,24(7):413-5.
    [21]冯刚,孔庆志,黄冬生等.薏苡仁注射液对小鼠移植性S180肉瘤血管形成抑制的作用[J].肿瘤防治研究,2004,1(4):229-30.
    [22]席孝贤,贺新怀.中药相关成分对T细胞亚群的调节作用[J].陕西中医学院学报,2002,25(2):51-3.
    [23]欧阳素贞,王双山,田素香等.淫羊藿-蜂胶合剂促进鸡细胞免疫的研究[J].畜牧兽医学报,2006,37(1):80-3.
    [24]胡宇莉,廖晓兵,黎建华等.穿心莲对肉鸡体液免疫的影响[J].中国兽药杂志,2004,40(9):24-27.
    [25]吴小丽,蔡云清,赵岩等.蒲公英提取物对小鼠免疫功能的调节作用[J].南京医科大学学报(自然科学版),2005,25(3):163-5.
    [26]储岳峰,颜新敏,胡元亮等.几种中药成分的免疫增强活性及其作用效果[J].中国兽医科技,2005,35(1):67-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700