用户名: 密码: 验证码:
盐酸千金藤碱逆转肿瘤多药耐药性的作用及其机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,临床肿瘤的化学治疗仍然是主要的治疗方法之一。但随着化疗药物的大量应用,临床肿瘤患者产生多药耐药性(multidrug resistance, MDR)越加严重,直接影响临床肿瘤病人的治疗效果,其中多药耐药基因MDR1编码的P糖蛋白(P-glycoprotein, P-gp)过度表达是MDR的重要机制之一。鉴于此,寻找肿瘤MDR逆转剂,提高肿瘤对化疗的敏感性,是医药学界当前亟待解决的问题。国内外虽然发现了一些逆转MDR的化合物,一部分已经进入了Ⅰ/Ⅱ期临床研究,但多数都由于毒副作用较大,限制了其临床应用。因此,研发低毒、高效的逆转MDR药物尤为重要。
     盐酸千金藤碱(cepharanthine hydrochloride, CH)是从千金藤属植物中提取分离的一种单体化合物,经半合成而获得。本课题组前期研究证实CH逆转MDR涉及多种机制。但国内外尚无CH调控JNK信号转导通路及其体内逆转MDR作用的研究,本课题将对此进行研究,共分三部分:第一部分是在转录水平和蛋白水平研究CH对P-gp表达的信号转导通路调控的机制,为CH进一步开发提供理论和实验依据。第二部分旨在通过检测CH给药前后荷耐药肿瘤小鼠外周血CD8+细胞中P-gp活性的变化,探讨一种在动物模型中评价以P-gp为靶点的耐药逆转剂效果的方法,并考察CH在体内的肿瘤耐药逆转作用,从而为CH或者其他潜在的MDR逆转剂的研究提供科学依据。第三部分首先分析非小细胞肺癌(non-small cell lung carcinoma, NSCLC)化疗不敏感患者外周血CD56+细胞中P-gp的表达和功能变化,探讨CD56+细胞作为预测多药耐药指标的可能性,为临床提供一种检测NSCLC化疗耐药的简便方法,然后通过检测CH对外周血CD56+细胞P-gp功能的抑制作用,间接评价其对体内肿瘤细胞P-gp的抑制作用,为CH进一步应用到临床提供科学依据,同时探讨一种以临床肿瘤患者外周血CD56+细胞为替代分析指标,对P-gp抑制剂的逆转效果进行评价的方法。
     第一部分盐酸千金藤碱逆转肿瘤多药耐药性的信号转导机制研究
     目的:
     JNK信号通路与肿瘤MDR的发生及调控MDRI基因的表达具有密切关系。本研究的目的是观察盐酸千金藤碱在人慢性粒性白血病K562耐多柔比星细胞株K562/ADR中,逆转肿瘤MDR的信号转导机制。
     方法:
     采用Western blot和RT-PCR法分别检测CH单用及与JNK抑制剂SP600125合用后,耐药性K562/ADR细胞中P-gp及MDR1mRNA表达的变化,考察CH对JNK通路的调控;采用Western blot法检测CH对转录因子c-Jun蛋白表达和磷酸化的影响,考察CH对c-Jun和磷酸化c-Jun的调节作用。
     结果:
     1、随着CH浓度的增加(5.0、10.0、20.0μM),对MDR1mRNA的抑制作用逐渐增强;随着CH(10.0μM)作用时间的延长(0、12、24、36和48h),对P-gp2MDR1mRNA的抑制作用逐渐增强;
     2、CH联合JNK抑制剂SP600125后,CH对P-gp2MDR1mRNA的抑制作用减弱;
     3、随着CH(10.0μM)作用时间的延长(0、6、12、24h),转录因子c-Jun的表达和磷酸化逐渐增加。
     小结:
     CH能够时间和浓度依赖性地下调MDR1mRNA的表达,并能够时间依赖性地下调P-gp的表达,其机制可能是活化JNK/c-Jun。
     第二部分盐酸千金藤碱逆转动物体内肿瘤多药耐药性的实验研究
     目的:
     本研究旨在通过检测CH给药前后荷耐药肿瘤小鼠外周血CD8+细胞中P-gp活性的变化,以及CH联合临床FAP化疗方案对耐药性肿瘤生长的抑制作用,评价CH逆转体内肿瘤MDR的作用,探讨一种在动物模型中评价以P-gp为靶点的MDR逆转剂疗效的方法,从而为CH或者其他MDR逆转剂的研究提供科学依据。
     方法:
     采用小鼠肝癌多药耐药细胞株Hca/FAP通过腋下接种建立耐药实体型肿瘤动物模型,在该模型中研究CH在体外、体内干预后外周血CD8+细胞P-gp功能的变化。利用CD8+细胞中的罗丹明123(Rho123)蓄积作为一个替代分析指标,采用流式细胞术检测CD8+细胞内Rho123的平均荧光强度(MFI),其变化反映P-gp功能的改变。
     结果:
     1、给小鼠尾静脉注射0.5、1.0、2.5、5.0、7.5mg/kg的Rho123剂量后,外周血CD8+细胞中的MFl分别为2.6±0.3、3.9±0.4、8.6±0.4、16.4±±0.5、21.9±0.5,呈剂量依赖性变化;
     2、体外全血中,不同浓度CH(10.0、5.0、2.5μM)或维拉帕米(VER)5.01.tM或生理盐水(NS)均分别合用0.5μg/mL Rho123后全血中CD8+细胞中的MFI依次为29.8±0.9、25.4±1.0、22.9±0.5、20.0±0.3、14.4±0.3,经统计差异具有显著性(P<0.05),CH浓度依赖性地增加Rho123的蓄积;
     3、给荷Hca/FAP肿瘤的小鼠尾静脉注射不同剂量CH(10.0、5.0、2.5mg/kg)或VER5.0mg/kg或NS,均分别联合注射2.5mg/kg Rho123后外周血CD8+细胞中的MFI依次为18.9±0.8、13.1±0.8、11.9±0.4、10.2±0.2、8.6±0.1,经统计各组之间差异具有显著性(P<0.05),CH剂量依赖性地增加Rho123的蓄积;
     4、不同浓度的CH (10.0、5.0、2.5mg/kg)联合FAP化疗方案对Hca/FAP荷瘤小鼠的肿瘤生长有不同程度的抑制作用,与FAP组相比,联用CH组的抑瘤作用增强,且抑瘤作用与CH呈剂量依赖性,10.0mg/kg CH联合FAP化疗组的抑瘤作用最强。
     小结:
     CH在体内对肿瘤MDR有逆转作用,CH在体内对CD8+细胞P-gp功能的抑制作用可能反映了其对体内肿瘤耐药细胞P-gp的抑制,小鼠外周血CD8+细胞可以作为评价潜在P-gp抑制剂体内逆转作用的一个替代分析指标。
     第三部分盐酸千金藤碱对人外周血CD56+细胞中P糖蛋白功能的调节及CD56与肿瘤耐药的相关性研究
     目的:
     本研究通过分析非小细胞肺癌(NSCLC)化疗不敏感患者外周血CD56+细胞中P-gp的表达和功能变化,探讨CD56+细胞作为预测多药耐药指标的可能性,为临床提供一种检测肿瘤化疗耐药的简便方法,并以此为基础,研究CH对CD56+细胞中P-gp的抑制作用,间接评价其对体内肿瘤细胞P-gp的抑制作用,为CH将来作为MDR逆转剂进行临床疗效评价奠定基础。
     方法:
     选临床27例对化疗不敏感的NSCLC患者及31例初始化疗的NSCLC患者,并设正常对照组,分别抽取外周血,采用磁珠分选分离纯化CD56+细胞,采用荧光定量PCR方法检测各组CD56+细胞中MDR1、多药耐药相关蛋白1(MRP1) mRNA的变化;采用流式细胞术检测CD56+细胞在CH体外干预下P-gP功能的变化,其功能变化通过Rho123在细胞内MFI的变化表示。
     结果:
     1、化疗不敏感患者27例与正常对照组相比,前者外周血CD56+细胞中MDR1mRNA表达显著增高(2-10倍),MRP1mRNA表达增加1-3倍(平均约2倍),经统计均具有显著性差异(P<0.05);而MDR1和MRP1mRNA在化疗初始对照组与正常对照组之间无显著性差异(P>0.05);
     2、化疗不敏感组、化疗初始对照组和正常对照组外周血CD56+细胞中Rho123的荧光强度分别为15.1±2.1、20.8±2.6和21.0±2.5,与化疗初始对照组31例和正常对照组相比,化疗不敏感组患者外周血CD56+细胞中P-gp的功能增加具有显著性(P<0.05),而化疗初始对照组与正常对照组之间无显著性差异;
     3、化疗不敏感患者外周血CD56+细胞的P-gp功能在CH干预下,随着CH浓度的增加逐步恢复到正常水平,而化疗初始对照组患者外周血CD56+细胞的P-gp功能在CH干预下与正常对照组无统计学差异(P>0.05)。
     小结:
     1、NSCLC化疗不敏感患者外周血CD56+细胞中MDR1mRNA表达和P-gP功能均明显增强,提示CD56+细胞可能是诊断NSCLC化疗耐药的一个重要生物标志物,MRP1mRNA在NSCLC化疗不敏感患者外周血CD56+细胞中表达较低,以上结果为临床NSCLC耐药的诊断提供了一个简单可行的方法;
     2、CH在体外人外周血中对GD56+细胞中P-gp功能的调节可能能够充分反映其对体内肿瘤细胞中P-gp的调节作用,这为潜在P-gp抑制剂的临床疗效评价提供了一个科学、可行的方法,但仍需要进一步的临床试验研究。
     全文总结:
     1.CH通过活化JNK/c-Jun而调节MDR1mRNA和P-gp的表达,发挥其逆转肿瘤MDR的作用。
     2.耐药性实体型动物肿瘤模型结合小鼠外周血CD8+细胞中P-gp功能检测可作为P-gp抑制剂体内肿瘤耐药逆转活性评价的一个方法,CH通过抑制P-gp的功能而发挥其体内肿瘤多药耐药逆转作用。
     3. NSCLC化疗不敏感患者外周血CD56+细胞中P-gp的表达和功能检测可作为诊断肺癌化疗耐药性的一个重要方法;CH在体外全血中对CD56+细胞中P-gp功能的调节可能能够充分反映其对体内肿瘤细胞中P-gp的调节作用,这为临床肿瘤MDR逆转剂的疗效评价提供了一个科学、可行的方法,但仍需要进一步的临床试验研究。
Chemotherapy is one of the main treatments for cancer in clinical currently. However, it is more and more serious that the multidrug resistance (MDR) occurred in the cancer patients as the anti-cancer drugs widely used, which affected the patients'treatment directly. The overexpression of P-glycoprotein (P-gp), encoding by multidrug resisgance gene MDR1, is one of the important mechanisms involved in MDR. For that reason, it is a problem that should be solved quickly to search MDR reversor and improve the chemotherapy sensitivity for medicine academia currently. Although foreign researchers have already found some compounds reversering MDR and some of the compounds have already been in phase Ⅱ clinical trial, most of the compounds have been limited because of its serious toxicity. Therefore, it is even more important to develop the drug reversing MDR with high efficiency and low toxicity.
     Cepharanthine hydrochloride (CH), manufactured by salification from cepharanthine, which is a biscoclaurine alkaloid, extracted from Stephania cepharantha Hayata has a reversed effect involving in multi-mechanisms from our previous studies. However, there is no study for CH on regulating JNK signal transduction pathway and its MDR reversing effect in vivo in the world currently. This study is keep going on to research the reversed mechanisms of CH based on the previous studies and to evaluate the reversed effect of CH in vivo. This study includes3parts, the part one is to research the signal transduction mechanism of CH on reversing tumor multidrug resistance at transcriptional level and protein level, to provide theory and experiment bases for the further development of CH. The part two is to explore a method for evaluating the multidrug resistance reversing effect in vivo of the inhibitor with P-gp as the target point by determining the changes of P-gp activations in peripheral blood CD8+cells in the mice models bearing MDR solid tumors before and after CH administration, and to study the reversed effect of CH in vivo, thereby to provide scientific bases for researching CH and other potential P-gp inhibitors. In the part three, we first analyzed the changes of the expression and function of P-gp in the peripheral blood CD56+cells collected and separated from the selected patients with non-small cell lung cancer (NSCLC) to explore the possibility of CD56+cells as an indicator to predict the multidrug resistance of NSCLC. And then we used the CD56+cells as a surrogate indicator to determine the P-gp inhibition effect of CH in the peripheral blood CD56+cells and to evaluate indirectly the reversing effect for tumor cells in the patients, thereby to provide scientific basis for the clinical apply of CH. In the meanwhile, we want to explore a method to evaluate the the P-gp modulating effect of the P-gp reversors in clinical using the collected peripheral blood CD56+cells from the patients as a surrogate indicator.
     Part one:The Signal Transduction Mechanism of Cepharanthine Hydrochloride on Reversing Tumor Multidrug Resistance
     Purpose:
     c-Jun NH2-terminal kinase (JNK) signal transduction pathway has tight connection with the occurrence of multidrug resistance and the regulation of MDR1mRNA expression. The purpose of the study is to determine the signal transduction mechanism of cepharanthine hydrochloride on reversing tumor multidrug resistance in K562/ADR cells.
     Methods:
     A western blot and a RT-PCR analysis were used to determine the effect of CH on the expression of P-glycoprotein and MDR1mRNA in K562/ADR cells when CH used alone and combined with SP600125, a JNK inhibitor, to explore the regulation effect of CH on JNK signal transduction pathway. A Western blot analysis was used to determine the effect of CH on c-Jun protein expression and phosphorylation, to explore the regulation effect of CH on c-Jun and phosphorylated c-Jun (p-c-Jun) proteins.
     Results:
     1. The inhibition effect of CH on MDR1mRNA increased with the concentrations of CH increased (5.0,10.0,20.0μM), and the inhibition effect of CH on P-glycoprotein and MDRl mRNA expression increased with the incubation time (0,12,24,36and48hours).
     2. The inhibition effect was weakened after CH combined with SP600125.
     3. The expressions of c-Jun and p-c-Jun proteins were increasing with the incubation time of CH increased (0,6,12and24hours).
     Conclusions:
     CH down-regulated the expressions of MDR1mRNA and P-glycoprotein in a time-and concentration-manner, the mechanism may be mediated via activating the JNK/c-Jun.
     Part two:The Evaluation of the Multidrug Resistance Reversed Effect of Cepharanthine Hydrochloride in Animal Models in vivo
     Purpose:
     The study is to explore a method for evaluating the multidrug resistance reversing effect in vivo of the inhibitor with P-gp as the target point by determining the changes of P-gp activations in peripheral blood CD8+cells before and after CH administration and the anti-tumor effect when CH combined with FAP chemotherapy regimen in the mice models bearing MDR solid tumors, and to evaluate the reversed effect of CH in animal models in vivo, thereby to provide scientific bases for researching CH and other P-gp inhibitors.
     Methods:
     The mice models bearing MDR solid tumors were established by injecting Hca/FAP tumor cells subcutaneously in the right axilla of the mice, and the changes of P-gp function in the collected peripheral blood CD8+cells were studied before and after CH administration in the mice models. Using rhodamine123accumulations in CD8+cells as a surrogate indicator to study the P-gp modulating effect of CH in vivo by flow cytometry (FCM), the mean fluorescence intensities (MFI) changes of the Rho123in the CD8+cells reflect the changes of P-gp function.
     Results:
     1. The intravenous injection (i.v.) administration of Rho123(0.5,1.0,2.5,5.0and7.5mg/kg) in mice produced a dose-dependent fluorescence fashion in peripheral blood CD8+cells, the MFIs in peripheral blood CD8+cells were2.6±0.3,3.9±0.4,8.6±0.4,16.4±0.5and21.9±0.5, respectively;
     2. The MFIs of CD8+cells in the samples treated with the vehicle,5.0μM of verapamil (VER) and2.5,5.0and10.0μM of CH were14.4±0.3,20.0±0.3,22.9±0.5,25.4±1.0and29.8±0.9, respectively. Statistical significance was observed in the different groups (P<0.05);
     3. Rho123accumulations were increased after administration of either VER (positive control) or CH and presented a clear dose dependent relationship with CH (2.5,5and10mg/kg) compared with vehicle control in the mice models. The MFIs of CD8+cells in the mice administrated with CH (10.0,5.0,2.5mg/kg), VER5.0mg/kg and the vehicle were18.9±0.8,13.1±0.8,11.9±0.4,10.2±0.2and8.6±0.1, respectively. Statistical significance was observed in the different groups (P<0.05);
     4. The FAP combination chemotherapy plus10.0mg/kg of CH provided the maximum antitumor activity of the treatments studied. Compared with the FAP chemotherapy group, the antitumor effect was increased in a dose-dependent manner when the FAP combined chemotherapy plus various concentrations of CH (10.0,5.0,2.5mg/kg) was used.
     Conclusions:
     CH has MDR reversed effect in vivo and ex vivo; the P-gp inhibition effect of CH in CD8+cells in vivo may reflect the inhibition effect for P-gp in the MDR tumor cells. Mice peripheral blood CD8+cells can be as a surrogate indicator to evaluate the reversing effect in vivo for the potential P-gp inhibitors.
     Part three:The Study of P-glycoprotein Modulating Effect of Cepharanthine Hydrochloride in Human Peripheral Blood CD56+Cells and the Relationship between CD56and MDR
     Purpose:
     The study is to explore the possibility of CD56+cells as an indicator to predict the multidrug resistance of non-small cell lung cancer by analyzing changes of the expression and function of P-gp in the peripheral blood CD56+cells collected and separated from the selected patients with non-small cell lung cancer, thereby to provide an easy method to detect MDR for NSCLC in clinical. Based on this, the P-gp inhibition effect was evaluated indirectly in the tumor cells in vivo by studying the P-gp inhibition effect of CH in the CD56+cells ex vivo, thereby to lay the foundations for future clinical trial to evaluate its clinical P-gp modulation effect.
     Methods:
     Using microbead technology and a RT-qPCR methodology, we evaluated the expression levels of MDR1and MRP1mRNA in the purified CD56+cells in the27chemoresistance and31chemo-naive NSCLC patients compared with that in the healthy volunteers. Flow cytometric analysis was used to investigate the changes of P-gp function in the CD56+cells between the three cohorts after CH administration ex vivo, the changes of P-gp function was reflected by the mean fluorescence intensities (MFI) changes of the Rho123in the CD56+cells.
     Results:
     1. Compared with that in the healthy volunteers, all the chemoresistance blood samples revealed about twofold-tenfold elevation markedly in the purified CD56+cells for MDR1mRNA, all the chemoresistance blood samples revealed just about onefold-to-threefold changes (about average twofold) in case of MRP1mRNA. All the chemo-naive blood samples almost had no fold changes in the level of MDR1and MRP1mRNA (P>0.05);
     2. The MFIs in the total gated CD56+cells were15.1±2.1,20.8±2.6and21.0±2.5for the chemoresistance patients, the chemo-naive patients and the normal healthy volunteers, respectively. Compared with that in the healthy volunteers and31chemo-naive NSCLC patients, the changes of P-gp function in CD56+cells in the chemoresistance patients has statistical significance (P<0.05). No statistical significance (P>0.05) was seen with respect to the function of P-gp between the chemo-naive and the healthy cohorts.
     3. The P-gp function was returned gradually after added different concentrations of CH in the blood collected from chemoresistance patients, and there were almost no changes for the P-gp function in the chemo-naive patients compared with the normal volunteers after added the different concentrations of CH (P>0.05).
     Conclusions:
     1. MDR1mRNA expression and P-gp function in peripheral CD56+cells demonstrated possible clinical relevance as one of important predictive biomarkers for the identification of chemoresistance in NSCLC, while MRP1may not play a significant role in the drug resistance in NSCLC, these results will provide a simple and feasible method to diagnose and manage the chemoresistance in NSCLC patients;
     2. P-glycoprotein modulating effect of CH in peripheral blood CD56+cells ex vivo may reflect its P-gp inhibition effect in the tumor cells in vivo, this will provide a scientific and feasible method to evaluate the effect of the potential P-gp inhibitors in clinical, but it need further verification in clinical.
     Conclusions for full paper:
     1. The mechanism of CH download-regulated the expressions of MDR1mRNA and P-gp to reverse MDR may be mediated via activating the JNK/c-Jun.
     2. CH has MDR reversed effect in the animal models in vivo by inhibiting P-gp activity; the detection of P-gp function in CD8+cells in mouse model bearing MDR solid tumor may be as a surrogate indicator to evaluate the reversing effect in vivo for the potential P-gp inhibitors.
     3. P-gp in peripheral CD56+cells demonstrated possible clinical relevance as one of important predictive biomarkers for the identification of chemoresistance in NSCLC, this will provide a simple and feasible method to diagnose and manage the chemoresistance in NSCLC patients. P-glycoprotein modulating effect of CH in peripheral blood CD56+cells ex vivo may reflect its P-gp inhibition effect in the tumor cells in vivo, this will provide a scientific and feasible method to evaluate the effect of the potential P-gp inhibitors in clinical, but it need further verification in clinical.
引文
[1]Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin.2011.61(2):69-90.
    [2]Higgins CF. Multiple molecular mechanisms for multidrug resistance transporters. Nature. 2007.446(7137):749-57.
    [3]Goldman B. Multidrug resistance:can new drugs help chemotherapy score against cancer. J Natl Cancer Inst.2003.95(4):255-7.
    [4]Sau A, Pellizzari TF, Valentino F, Federici G, Caccuri AM. Glutathione transferases and development of new principles to overcome drug resistance. Arch Biochem Biophys.2010. 500(2):116-22.
    [5]Lee PC, Lee HJ, Kakadiya R, Sanjiv K, Su TL, Lee TC. Multidrug-resistant cells overexpressing P-glycoprotein are susceptible to DNA crosslinking agents due to attenuated Src/nuclear EGFR cascade-activated DNA repair activity.LID-10.1038/onc. 2012.133 [doi]. Oncogene.2012.
    [6]Kaye SB. Clinical drug resistance:the role of factors other than P-glycoprotein. Am J Med. 1995.99(6A):40S-44S.
    [7]Sharom FJ. ABC multidrug transporters:structure, function and role in chemoresistance. Pharmacogenomics.2008.9(1):105-27.
    [8]Gottesman MM, Ling V. The molecular basis of multidrug resistance in cancer:the early years of P-glycoprotein research. FEBS Lett.2006.580(4):998-1009.
    [9]Aller SG, Yu J, Ward A, et al. Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science.2009.323(5922):1718-22.
    [10]Bates S, Kang M, Meadows B, et al. A Phase I study of infusional vinblastine in combination with the P-glycoprotein antagonist PSC 833 (valspodar). Cancer.2001. 92(6):1577-90.
    [11]Bates SE, Bakke S, Kang M, et al. A phase Ⅰ/Ⅱ study of infusional vinblastine with the P-glycoprotein antagonist valspodar (PSC 833) in renal cell carcinoma. Clin Cancer Res. 2004.10(14):4724-33.
    [12]Lee CH. Reversing agents for ATP-binding cassette drug transporters. Methods Mol Biol. 2010.596:325-40.
    [13]Cripe LD, Uno H, Paietta EM, et al. Zosuquidar, a novel modulator of P-glycoprotein, does not improve the outcome of older patients with newly diagnosed acute myeloid leukemia:a randomized, placebo-controlled trial of the Eastern Cooperative Oncology Group 3999. Blood.2010.116(20):4077-85.
    [14]Fletcher JI, Haber M, Henderson MJ, Norris MD. ABC transporters in cancer:more than just drug efflux pumps. Nat Rev Cancer.2010.10(2):147-56.
    [15]Deferme S, Van Gelder J, Augustijns P. Inhibitory effect of fruit extracts on P-glycoprotein-related efflux carriers:an in-vitro screening. J Pharm Pharmacol.2002. 54(9):1213-9.
    [16]Romiti N, Pellati F, Nieri P, Benvenuti S, Adinolfi B, Chieli E. P-Glycoprotein inhibitory activity of lipophilic constituents of Echinacea pallida roots in a human proximal tubular cell line. Planta Med.2008.74(3):264-6.
    [17]N. Gyemant, H. Engi, Z. Schelz, et al, "In vitro and in vivo multidrug resistance reversal activity by a Betti-base derivative of tylosin," Br J Cancer, vol.103, no.2, pp.178-85,2010.
    [18]Nemoto K, Yoshida K, Nisimura M, Seki M. [The effects of Cepharanthin on the recovery of hematopoietic stem cells after X-ray irradiation]. Gan To Kagaku Ryoho.1991.18(1): 81-4.
    [19]Furusawa S, Wu J. The effects of biscoclaurine alkaloid cepharanthine on mammalian cells:implications for cancer, shock, and inflammatory diseases. Life Sci.2007.80(12): 1073-9.
    [20]Igari R, Iseki K, Abe S, et al. [Binocular diplopia and ptosis due to snakebite (Agkistrodon blomhoffi "mamushi")--a case report]. Brain Nerve.2010.62(3):273-7.
    [21]宋玉成,夏薇,王庆端等.盐酸千金藤素逆转EAC/ADR细胞多药耐药性的作用及其机制.药学学报.2005.40(3).
    [22]武亚玲,王庆端.盐酸千金藤素逆转K562/ADR细胞的多药耐药性及其与bcl-2的关系.河南肿瘤学杂志.2005.18(2).
    [23]彭有梅,王宁,王庆端等.盐酸千金藤碱逆转K562/ADR细胞多药耐药性及其机制.药学学报.2012.47(05):594-599.
    [24]Syvanen S, Hammarlund-Udenaes M. Using PET studies of P-gp function to elucidate mechanisms underlying the disposition of drugs. Curr Top Med Chem.2010.10(17): 1799-809.
    [25]Kurdziel KA, Kiesewetter DO. PET imaging of multidrug resistance in tumors using 18F-fluoropaclitaxel. Curr Top Med Chem.2010.10(17):1792-8.
    [26]Egashira M, Kawamata N, Sugimoto K, Kaneko T, Oshimi K. P-glycoprotein expression on normal and abnormally expanded natural killer cells and inhibition of P-glycoprotein function by cyclosporin A and its analogue, PSC833. Blood.1999.93(2):599-606.
    [27]Leite DF, Echevarria-Lima J, Salgado LT, Capella MA, Calixto JB, Rumjanek VM. In vivo and in vitro modulation of MDR molecules in murine thymocytes. Int Immunopharmacol.2006.6(2):204-15.
    [28]Green LJ, Marder P, Slapak CA. Modulation by LY335979 of P-glycoprotein function in multidrug-resistant cell lines and human natural killer cells. Biochem Pharmacol.2001. 61(11):1393-9.
    [29]McCluggage WG, McKenna M, McBride HA. CD56 is a sensitive and diagnostically useful immunohistochemical marker of ovarian sex cord-stromal tumors. Int J Gynecol Pathol.2007.26(3):322-7.
    [30]夏轶姿,朱宝玲,陈慧等.急性髓性白血病患者外周血T淋巴细胞亚群及CD56+细胞的临床意义的分析.中国卫生检验杂志.2011.(01):154-155+158.
    [31]Montesinos P, Rayon C, Vellenga E, et al. Clinical significance of CD56 expression in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and anthracycline-based regimens. Blood.2011.117(6):1799-805.
    [32]Y. Hayakawa, N. D. Huntington, S. L. Nutt and M. J. Smyth, "Functional subsets of mouse natural killer cells," Immunol Rev, vol.214, pp.47-55,2006.
    [33]Perez-Tomas R. Multidrug resistance:retrospect and prospects in anti-cancer drug treatment. Curr Med Chem.2006.13(16):1859-76.
    [34]Dong X, Mumper RJ. Nanomedicinal strategies to treat multidrug-resistant tumors:current progress. Nanomedicine (Lond).2010.5(4):597-615.
    [35]Zhu AX. Systemic treatment of hepatocellular carcinoma:dawn of a new era. Ann Surg Oncol.2010.17(5):1247-56.
    [36]Kinoshita M, Eguchi Y, Hynynen K. Activation of Bak in ultrasound-induced, JNK- and p38-independent apoptosis and its inhibition by Bcl-2. Biochem Biophys Res Commun. 2007.353(2):515-21.
    [37]Zhou J, Liu M, Aneja R, Chandra R, Lage H, Joshi HC. Reversal of P-glycoprotein-mediated multidrug resistance in cancer cells by the c-Jun NH2-terminal kinase. Cancer Res.2006.66(1):445-52.
    [38]Miao ZH, Ding J. Transcription factor c-Jun activation represses mdr-1 gene expression. Cancer Res.2003.63(15):4527-32.
    [39]Enokida H, Gotanda T, Oku S, et al. Reversal of P-glycoprotein-mediated paclitaxel resistance by new synthetic isoprenoids in human bladder cancer cell line. Jpn J Cancer Res.2002.93(9):1037-46.
    [40]Song YC, Xia W, Jiang JH, Wang QD. [Reversal of multidrug resistance in drug-resistant cell line EAC/ADR by cepharanthine hydrochloride and its mechanism]. Yao Xue Xue Bao.2005.40(3):204-7.
    [41]Shtil AA, Azare J. Redundancy of biological regulation as the basis of emergence of multidrug resistance. Int Rev Cytol.2005.246:1-29.
    [42]Zhang Y, Chen F. Reactive oxygen species (ROS), troublemakers between nuclear factor-kappaB (NF-kappaB) and c-Jun NH(2)-terminal kinase (JNK). Cancer Res.2004. 64(6):1902-5.
    [43]Seubwai W, Vaeteewoottacharn K, Hiyoshi M, et al. Cepharanthine exerts antitumor activity on cholangiocarcinoma by inhibiting NF-kappaB. Cancer Sci.2010.
    [44]Sullivan K, El-Hoss J, Little DG, Schindeler A. JNK inhibitors increase osteogenesis in Nfl-deficient cells. Bone.2011.49(6):1311-6.
    [45]Valesio EG, Zhang H, Zhang C. Exposure to the JNK inhibitor SP600125 (anthrapyrazolone) during early zebrafish development results in morphological defects. LID-10.1002/jat.1708 [doi]. J Appl Toxicol.2011.
    [46]Dunn C, Wiltshire C, MacLaren A, Gillespie DA. Molecular mechanism and biological functions of c-Jun N-terminal kinase signalling via the c-Jun transcription factor. Cell Signal.2002.14(7):585-93.
    [47]Albanito L, Reddy CE, Musti AM. c-Jun is essential for the induction of Il-lbeta gene expression in in vitro activated Bergmann glial cells. Glia.2011.59(12):1879-90.
    [48]Sui H, Zhou S, Wang Y, et al. COX-2 contributes to P-glycoprotein-mediated multidrug resistance via phosphorylation of c-Jun at Ser63/73 in colorectal cancer. Carcinogenesis. 2011.32(5):667-75.
    [49]Zhou J, Liu M, Aneja R, Chandra R, Lage H, Joshi HC. Reversal of P-glycoprotein-mediated multidrug resistance in cancer cells by the c-Jun NH2-terminal kinase. Cancer Res.2006.66(1):445-52.
    [50]Miao ZH, Ding J. Transcription factor c-Jun activation represses mdr-1 gene expression. Cancer Res.2003.63(15):4527-32.
    [51]Bark H, Choi CH. PSC833, cyclosporine analogue, downregulates MDR1 expression by activating JNK/c-Jun/AP-1 and suppressing NF-kappaB. Cancer Chemother Pharmacol. 2010.65(6):1131-6.
    [52]Herzog CE, Tsokos M, Bates SE, Fojo AT. Increased mdr-1/P-glycoprotein expression after treatment of human colon carcinoma cells with P-glycoprotein antagonists. J Biol Chem.1993.268(4):2946-52.
    [1]van WRA, Lagas JS, Wagenaar E, et al. Absence of both cytochrome P450 3A and P-glycoprotein dramatically increases docetaxel oral bioavailability and risk of intestinal toxicity. Cancer Res,2009,69(23):8996-9002.
    [2]Egashira M, Kawamata N, Sugimoto K, et al. P-glycoprotein expression on normal and abnormally expanded natural killer cells and inhibition of P-glycoprotein function by cyclosporin A and its analogue, PSC833. Blood,1999,93(2):599-606.
    [3]Leite DF, Echevarria-Lima J, Salgado LT, et al. In vivo and in vitro modulation of MDR molecules in murine thymocytes. Int Immunopharmacol,2006,6(2):204-15.
    [4]Green LJ, Marder P, Slapak CA. Modulation by LY335979 of P-glycoprotein function in multidrug-resistant cell lines and human natural killer cells. Biochem Pharmacol, 2001,61(11):1393-9.
    [5]McCluggage WG, McKenna M, McBride HA. CD56 is a sensitive and diagnostically useful immunohistochemical marker of ovarian sex cord-stromal tumors. Int J Gynecol Pathol,2007,26(3):322-7.
    [6]Abraham J, Edgerly M, Wilson R, et al. A phase I study of the P-glycoprotein antagonist tariquidar in combination with vinorelbine. Clin Cancer Res,2009,15(10):3574-82.
    [7]Morschhauser F, Zinzani PL, Burgess M, et al. Phase Ⅰ/Ⅱ trial of a P-glycoprotein inhibitor, Zosuquidar.3HCl trihydrochloride (LY335979), given orally in combination with the CHOP regimen in patients with non-Hodgkin's lymphoma. Leuk Lymphoma,2007,48(4): 708-15.
    [8]Y. Hayakawa, N. D. Huntington, S. L. Nutt and M. J. Smyth, "Functional subsets of mouse natural killer cells," Immunol Rev, vol.214, pp.47-55,2006.
    [9]WANG Xin ZY, WANG Ning JJ, ZHENG Li-Yun WQ. Establishment of Hca Multidrug Resistance Mouse Model. Journal of ZhengZhou University (Medical Science), 2010,45(6):920-923.
    [10]Marques-Santos LF, Harab RC, de Paula EF, et al. The in vivo effect of the administration of resistance-modulating agents on rhodamine 123 distribution in mice thymus and lymph nodes. Cancer Lett,1999,137(1):99-106.
    [11]Kim YI, Shin MK, Lee JW, et al. Decreased expression of KAI1/CD82 metastasis suppressor gene is associated with loss of heterozygosity in melanoma cell lines. Oncol Rep,2009,21(1):159-64.
    [12]Jaganathan SK, Mondhe D, Wani ZA, et al. Effect of honey and eugenol on Ehrlich ascites and solid carcinoma. J Biomed Biotechnol,2010,2010:989163.
    [13]Worns MA, Galle PR. Future perspectives in hepatocellular carcinoma. Dig Liver Dis, 2010,42 Suppl 3:S302-9.
    [14]Miyoshi N, Yano M, Takachi K, et al. Myelotoxicity of preoperative chemoradiotherapy is a significant determinant of poor prognosis in patients with T4 esophageal cancer. J Surg Oncol,2009,99(5):302-6.
    [15]Kim JH, Chung JB, Park IS, et al. Combined use of tamoxifen, cyclosporin A, and verapamil for modulating multidrug resistance in human hepatocellular carcinoma cell lines. Yonsei Med J,1993,34(1):35-44.
    [16]Shiraga K, Sakaguchi K, Senoh T, et al. Modulation of doxorubicin sensitivity by cyclosporine A in hepatocellular carcinoma cells and their doxorubicin-resistant sublines. J Gastroenterol Hepatol,2001,16(4):460-6.
    [17]Baer MR, George SL, Dodge RK, et al. Phase 3 study of the multidrug resistance modulator PSC-833 in previously untreated patients 60 years of age and older with acute myeloid leukemia:Cancer and Leukemia Group B Study 9720. Blood,2002,100(4): 1224-32.
    [18]Kyle-Cezar F, Echevarria-Lima J, Rumjanek VM. Independent regulation of ABCB1 and ABCC activities in thymocytes and bone marrow mononuclear cells during aging. Scand J Immunol,2007,66(2-3):238-48.
    [19]Valente RC, Capella LS, Nascimento CR, et al. ABCB1 (P-glycoprotein) but not ABCC1 (MRP1) is downregulated in peripheral blood mononuclear cells of spontaneously hypertensive rats. Pflugers Arch,2008,456(2):359-68.
    [20]Sada-Ovalle I, Torre-Bouscoulet L, Valdez-Vazquez R, et al. In vitro cytotoxicity of CD8+ T cells in multi-drug-resistant tuberculosis. A preliminary report. Respirology,2009, 14(4):574-8.
    [21]Tanaka S, Masuda M, Nakajima K, et al. P-glycoprotein function in peripheral T lymphocyte subsets of myasthenia gravis patients:clinical implications and influence of glucocorticoid administration. Int Immunopharmacol,2009,9(3):284-90.
    [22]Liang G, Tang A, Lin X, et al. Green tea catechins augment the antitumor activity of doxorubicin in an in vivo mouse model for chemoresistant liver cancer. Int J Oncol, 2010,37(1):111-23.
    [23]N. Gyemant, H. Engi, Z. Schelz, et al, "In vitro and in vivo multidrug resistance reversal activity by a Betti-base derivative of tylosin," Br J Cancer, vol.103, no.2, pp.178-85,2010.
    [24]Daoud R, Kast C, Gros P, et al. Rhodamine 123 binds to multiple sites in the multidrug resistance protein (MRP1). Biochemistry,2000,39(50):15344-52.
    [25]Asaumi J, Nishikawa K, Matsuoka H, et al. Direct antitumor effect of cepharanthin and combined effect with adriamycin against Ehrlich ascites tumor in mice. Anticancer Res, 1995,15(1):67-70.
    [26]O'Neil MJ. The Merck Index:An Encyclopedia of Chemicals, Drugs, and Biologicals. 14th Editioned. Whitehouse Station, NJ:Merck and Co., Inc,2006:1772.
    [27]Candussio L, Decorti G, Crivellato E, et al. Toxicologic and pharmacokinetic study of low doses of verapamil combined with doxorubicin. Life Sci,2002,71(26):3109-19.
    [28]Bates SE, Bakke S, Kang M, et al. A phase Ⅰ/Ⅱ study of infusional vinblastine with the P-glycoprotein antagonist valspodar (PSC 833) in renal cell carcinoma. Clin Cancer Res, 2904,10(14):4724-33.
    [1]Jemal A, Bray F, Center MM, et al. Global cancer statistics. CA Cancer J Clin,2011,61 (2):69-90.
    [2]Molina JR, Yang P, Cassivi SD, et al. Non-small cell lung cancer:epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc,2008,83(5):584-94.
    [3]Merk J, Rolff J, Dorn C, et al. Chemoresistance in non-small-cell lung cancer:can multidrug resistance markers predict the response of xenograft lung cancer models to chemotherapy. Eur J Cardiothorac Surg,2011,40(1):e29-33.
    [4]Roy S, Kenny E, Kennedy S, et al. MDRl/P-glycoprotein and MRP-1 mRNA and protein expression in non-small cell lung cancer. Anticancer Res,2007,27(3A):1325-30.
    [5]Berger W, Setinek U, Hollaus P, et al. Multidrug resistance markers P-glycoprotein, multidrug resistance protein 1, and lung resistance protein in non-small cell lung cancer: prognostic implications. J Cancer Res Clin Oncol,2005,131(6):355-63.
    [6]Scheper RJ, Broxterman HJ, Scheffer GL, et al. Overexpression of a M(r) 110,000 vesicular protein in non-P-glycoprotein-mediatedmultidrug resistance. Cancer Res, 1993,53(7):1475-9.
    [7]Merk J, Rolff J, Dorn C, et al. Chemoresistance in non-small-cell lung cancer:can multidrug resistance markerspredict the response of xenograft lung cancer models to chemotherapy. Eur J Cardiothorac Surg,2011,40(1):e29-33.
    [8]Lanier LL, Testi R, Bindl J, et al. Identity of Leu-19 (CD56) leukocyte differentiation antigen and neural celladhesion molecule. J Exp Med,1989,169(6):2233-8.
    [9]Robertson MJ, Ritz J. Biology and clinical relevance of human natural killer cells. Blood, 1990,76(12):2421-38.
    [10]Woll PJ OM, Fossella F MS, Y.Clinch JO, et.al. Phase I study of lorvotuzumab mertansine (IMGN901) in patients with CD56-positive solid tumors. Annals of oncology:official journal of the European Society for Medical Oncology,2010,21(Suppl.8):viii175.
    [11]Jusufovic E, Iljazovic E, Kosnik M, et al. Local CD4+, CD8+ and CD56+ reactions to lung cancer in regard topathohistological type and clinical stage. Med Glas Ljek komore Zenicko-doboj kantona,2011,8(1):101-8.
    [12]Al OSY, Marshall E, Middleton D, et al. Increased numbers but functional defects of CD56+CD3+cells in lung cancer. Int Immunol,2012.
    [13]Egashira M, Kawamata N, Sugimoto K, et al. P-glycoprotein expression on normal and abnormally expanded natural killer cells and inhibition of P-glycoprotein function by cyclosporin A and its analogue, PSC833. Blood,1999,93(2):599-606.
    [14]Abraham J, Edgerly M, Wilson R, et al. A phase I study of the P-glycoprotein antagonist tariquidar in combination with vinorelbine. Clin Cancer Res,2009,15(10):3574-82.
    [15]Morschhauser F, Zinzani PL, Burgess M, et al. Phase Ⅰ/Ⅱ trial of a P-glycoprotein inhibitor, Zosuquidar.3HCl trihydrochloride (LY335979), given orally in combination with the CHOP regimen in patients with non-Hodgkin's lymphoma. Leuk Lymphoma,2007,48(4): 708-15.
    [16]夏轶姿,朱宝玲,陈慧,等.急性髓性白血病患者外周血T淋巴细胞亚群及cD56+细胞的临床意义的分析.中国卫生检验杂志,2011,(01):154-155+158.
    [17]Montesinos P, Rayon C, Vellenga E, et al. Clinical significance of CD56 expression in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and anthracycline-based regimens. Blood,2011,117(6):1799-805.
    [18]Strati A, Markou A, Parisi C, et al. Gene expression profile of circulating tumor cells in breast cancer by RT-qPCR. BMC Cancer,2011,11:422.
    [19]Zhou J, Liu M, Aneja R, et al. Reversal of P-glycoprotein-mediated multidrug resistance in cancer cells by the c-Jun NH2-terminal kinase. Cancer Res,2006,66(1):445-52.
    [20]Hu X, Wu N, Xia P, et al. Correlation between low-level expression of the tumor suppressor gene TAp73 and the chemoresistance of human glioma stem cells. Cancer Chemother Pharmacol,2012,69(5):1205-12.
    [21]Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc,2008,3(6):1101-8.
    [22]Stewart A, Steiner J, Mellows G, et al. Phase I trial of XR9576 in healthy volunteers demonstrates modulation of P-glycoprotein in CD56+lymphocytes after oral and intravenous administration. Clin Cancer Res,2000,6(11):4186-91.
    [23]d'Amato TA, Landreneau RJ, McKenna RJ, et al. Prevalence of in vitro extreme chemotherapy resistance in resected nonsmall-cell lung cancer. Ann Thorac Surg, 2006,81(2):440-6; discussion 446-7.
    [24]Carr LL, Finigan JH, Kern JA. Evaluation and treatment of patients with non-small cell lung cancer. Med Clin North Am,2011,95(6):1041-54.
    [25]Schena M, Guarrera S, Buffoni L, et al. DNA repair gene expression level in peripheral blood and tumour tissue from non-small cell lung cancer and head and neck squamous cell cancer patients. DNA Repair (Amst),2012,11(4):374-80.
    [26]Wang LE, Yin M, Dong Q, et al. DNA repair capacity in peripheral lymphocytes predicts survival of patients with non-small-cell lung cancer treated with first-line platinum-based chemotherapy. J Clin Oncol,2011,29(31):4121-8.
    [27]Kelly RJ, Draper D, Chen CC, et al. A pharmacodynamic study of docetaxel in combination with the P-glycoprotein antagonist tariquidar (XR9576) in patients with lung, ovarian, and cervical cancer. Clin Cancer Res,2011,17(3):569-80.
    [28]Bates SE, Bakke S, Kang M, et al. A phase Ⅰ/Ⅱ study of infusional vinblastine with the P-glycoprotein antagonist valspodar (PSC 833) in renal cell carcinoma. Clin Cancer Res, 2004,10(14):4724-33.
    [29]Moon YJ, Zhang S, Morris ME. Real-time quantitative polymerase chain reaction for BCRP, MDR1, and MRP1 mRNA levels in lymphocytes and monocytes. Acta Haematol, 2007,118(3):169-75.
    [30]Robey R, Bakkt S, Stein W, et al. Efflux of rhodamine from CD56+ cells as a surrogate marker for reversal of P-glycoprotein-mediated drug efflux by PSC 833. Blood,1999,93 (1):306-14.
    [31]Filipits M, Haddad V, Schmid K, et al. Multidrug resistance proteins do not predict benefit of adjuvant chemotherapy in patients with completely resected non-small cell lung cancer: InternationalAdjuvant Lung Cancer Trial Biologic Program. Clin Cancer Res,2007,13 (13):3892-8.
    [32]Liang G, Tang A, Lin X, et al. Green tea catechins augment the antitumor activity of doxorubicin in an in vivo mouse model for chemoresistant liver cancer. Int J Oncol, 2010,37(1):111-23.
    [33]Gyemant N, Engi H, Schelz Z, et al. In vitro and in vivo multidrug resistance reversal activity by a Betti-base derivative of tylosin. Br J Cancer,2010,103(2):178-85.
    [34]Daoud R, Kast C, Gros P, et al. Rhodamine 123 binds to multiple sites in the multidrug resistance protein (MRP1). Biochemistry,2000,39(50):15344-52.
    [35]Leite DF, Echevarria-Lima J, Salgado LT, et al. In vivo and in vitro modulation of MDR molecules in murine thymocytes. Int Immunopharmacol,2006,6(2):204-15.
    [36]Meaden ER, Hoggard PG, Khoo SH, et al. Determination of P-gp and MRP1 expression and function in peripheral blood mononuclear cells in vivo. J Immunol Methods, 2002,262(1-2):159-65.
    [37]Nemoto K, Yoshida K, Nisimura M, et al. [The effects of Cepharanthin on the recovery of hematopoietic stem cells after X-ray irradiation]. Gan To Kagaku Ryoho,1991,18(l):81-4.
    [38]Furusawa S, Wu J. The effects of biscoclaurine alkaloid cepharanthine on mammalian cells:implications for cancer, shock, and inflammatory diseases. Life Sci,2007,80(12): 1073-9.
    [39]Igari R, Iseki K, Abe S, et al. [Binocular diplopia and ptosis due to snakebite (Agkistrodon blomhoffi "mamushi")--a case report]. Brain Nerve,2010,62(3):273-7.
    [40]Enokida H, Gotanda T, Oku S, et al. Reversal of P-glycoprotein-mediated paclitaxel resistance by new synthetic isoprenoids in human bladder cancer cell line. Jpn J Cancer Res,2002,93(9):1037-46.
    [41]Song YC, Xia W, Jiang JH, et al. [Reversal of multidrug resistance in drug-resistant cell line EAC/ADR by cepharanthine hydrochloride and its mechanism]. Yao Xue Xue Bao, 2005,40(3):204-7.
    [42]Li Han, Yan Zhang, Qingduan Wang, et al. Using rhodamine 123 accumulation in CD8 cells as a surrogate indicator to study the P-glycoprotein modulating effect of cepharanthine hydrochloride in vivo. J Biomed Biotechnol,2011,2011:281651.
    [1]Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin.2011.61(2):69-90.
    [2]Higgins CF. Multiple molecular mechanisms for multidrug resistance transporters. Nature. 2007.446(7137):749-57.
    [3]Sau A, Pellizzari TF, Valentino F, Federici G, Caccuri AM. Glutathione transferases and development of new principles to overcome drug resistance. Arch Biochem Biophys.2010. 500(2):116-22.
    [4]Lee PC, Lee HJ, Kakadiya R, Sanjiv K, Su TL, Lee TC. Multidrug-resistant cells overexpressing P-glycoprotein are susceptible to DNA crosslinking agents due to attenuated Src/nuclear EGFR cascade-activated DNA repair activity.LID-10.1038/onc. 2012.133 [doi]. Oncogene.2012.
    [5]Kaye SB. Clinical drug resistance:the role of factors other than P-glycoprotein. Am J Med. 1995.99(6A):40S-44S.
    [6]Sharom FJ. ABC multidrug transporters:structure, function and role in chemoresistance. Pharmacogenomics.2008.9(1):105-27.
    [7]Gottesman MM, Ling V. The molecular basis of multidrug resistance in cancer:the early years of P-glycoprotein research. FEBS Lett.2006.580(4):998-1009.
    [8]Aller SG, Yu J, Ward A, et al. Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science.2009.323(5922):1718-22.
    [9]Bates S, Kang M, Meadows B, et al. A Phase I study of infusional vinblastine in combination with the P-glycoprotein antagonist PSC833 (valspodar). Cancer.2001. 92(6):1577-90.
    [10]Bates SE, Bakke S, Kang M, et al. A phase Ⅰ/Ⅱ study of infusional vinblastine with the P-glycoprotein antagonist valspodar (PSC 833) in renal cell carcinoma. Clin Cancer Res. 2004.10(14):4724-33.
    [11]Lee CH. Reversing agents for ATP-binding cassette drug transporters. Methods Mol Biol. 2010.596:325-40.
    [12]Cripe LD, Uno H, Paietta EM, et al. Zosuquidar, a novel modulator of P-glycoprotein, does not improve the outcome of older patients with newly diagnosed acute myeloid leukemia:a randomized, placebo-controlled trial of the Eastern Cooperative Oncology Group 3999. Blood.2010.116(20):4077-85.
    [13]Fletcher JI, Haber M, Henderson MJ, Norris MD. ABC transporters in cancer:more than just drug efflux pumps. Nat Rev Cancer.2010.10(2):147-56.
    [14]王丽敏,吕宏彦,李庆勇等.粉防己碱的抗肿瘤药理研究新进展.时珍国医国药.2008.(10):2558-2559.
    [15]Zhu X, Sui M, Fan W. In vitro and in vivo characterizations of tetrandrine on the reversal of P-glycoprotein-mediated drug resistance to paclitaxel. Anticancer Res.2005.25(3B): 1953-62.
    [16]Wang TH, Wan JY, Gong X, Li HZ, Cheng Y. Tetrandrine enhances cytotoxicity of cisplatin in human drug-resistant esophageal squamous carcinoma cells by inhibition of multidrug resistance-associated protein 1. Oncol Rep.2012.28(5):1681-6.
    [17]Chen LM, Liang YJ, Zhang X, et al. Reversal of P-gp-mediated multidrug resistance by Bromotetrandrine in vivo is associated with enhanced accumulation of chemotherapeutical drug in tumor tissue. Anticancer Res.2009.29(11):4597-604.
    [18]Wei N, Sun H, Wang F, Liu G. H1, a novel derivative of tetrandrine reverse P-glycoprotein-mediated multidrug resistance by inhibiting transport function and expression of P-glycoprotein. Cancer Chemother Pharmacol.2011.67(5):1017-25.
    [19]Nemoto K, Yoshida K, Nisimura M, Seki M. [The effects of Cepharanthin on the recovery of hematopoietic stem cells after X-ray irradiation]. Gan To Kagaku Ryoho.1991.18(1): 81-4.
    [20]Furusawa S, Wu J. The effects of biscoclaurine alkaloid cepharanthine on mammalian cells:implications for cancer, shock, and inflammatory diseases. Life Sci.2007.80(12): 1073-9.
    [21]Igari R, Iseki K, Abe S, et al. [Binocular diplopia and ptosis due to snakebite (Agkistrodon blomhoffi "mamushi")--a case report]. Brain Nerve.2010.62(3):273-7.
    [22]王晓,郑立运,赵志鸿等.盐酸千金藤碱抗乙型肝炎病毒的体外实验研究.时珍国医国药.2010.(12):3109-3111.
    [23]Zhou YB, Wang YF, Zhang Y, et al. In vitro activity of cepharanthine hydrochloride against clinical wild-type and lamivudine-resistant hepatitis B virus isolates. Eur J Pharmacol.2012.683(1-3):10-5.
    [24]Enokida H, Gotanda T, Oku S, et al. Reversal of P-glycoprotein-mediated paclitaxel resistance by new synthetic isoprenoids in human bladder cancer cell line. Jpn J Cancer Res.2002.93(9):1037-46.
    [25]彭有梅,王宁,王亚峰等.盐酸千金藤碱逆转K562/ADR细胞多药耐药性及其机制.药学学报.2012.47(05):594-599.
    [26]Li H, Yan Z, Ning W, et al. Using rhodamine 123 accumulation in CD8 cells as a surrogate indicator to study the P-glycoprotein modulating effect of cepharanthine hydrochloride in vivo. J Biomed Biotechnol.2011.2011:281651.
    [27]Robey RW, Shukla S, Finley EM, et al. Inhibition of P-glycoprotein (ABCB1)-and multidrug resistance-associated protein 1 (ABCCl)-mediated transport by the orally administered inhibitor, CBT-1((R)). Biochem Pharmacol.2008.75(6):1302-12.
    [28]Kelly RJ, Robey RW, Chen CC, et al. A pharmacodynamic study of the P-glycoprotein antagonist CBT-1(R) in combination with paclitaxel in solid tumors. Oncologist.2012. 17(4):512.
    [29]Oldham RK, Reid WK, Preisler HD, Barnett D. A phase I and pharmacokinetic study of CBT-1 as a multidrug resistance modulator in the treatment of patients with advanced cancer. Cancer Biother Radiopharm.1998.13(2):71-80.
    [30]Oldham RK, Reid WK, Barnett D. Phase I study of CBT-1 and Taxol in patients with Taxol resistant cancers. Cancer Biother Radiopharm.2000.15(2):153-9.
    [31]韩艳秋,石永进,武淑兰.小檗胺逆转K562/A02细胞耐药性及其机制.中国实验血液学杂志.2003.(06):604-608.
    [32]Liu R, Zhang Y, Chen Y, et al. A novel calmodulin antagonist O-(4-ethoxyl-butyl)-berbamine overcomes multidrug resistance in drug-resistant MCF-7/ADR breast carcinoma cells. J Pharm Sci.2010.99(7):3266-75.
    [33]秦群.甲基莲心碱逆转白血病细胞对STI571耐药及机制的研究.见:李元建,主编.药理学.,2011.
    [34]黄程辉,曹培国.甲基莲心碱对乳腺癌MCF-7/Adr细胞MDR逆转的研究.肿瘤防治研究.2007.(05):351-354.
    [35]陈鸿雁,王驰,舒艳等.苦参碱与6种抗肿瘤药联用对KBV200耐药细胞株P.糖蛋白表达的研究.重庆医学.2006.(14):1279-1280+1282.
    [36]王驰,舒艳.氧化苦参碱对放疗鼻咽癌HNE-1细胞P.糖蛋白表达影响.重庆医科大学学报.2005.(01):16-19.
    [37]Mi Q, Cui B, Lantvit D, et al. Pervilleine F, a new tropane alkaloid aromatic ester that reverses multidrug resistance. Anticancer Res.2003.23(5A):3607-15.
    [38]胡凯文,郑洪霞,齐静.浙贝母碱逆转白血病细胞多药耐药的研究.中华血液学杂志.1999.20(12):650.
    [39]李伟,苏伟,陈信义.浙贝母散剂逆转急性白血病多药耐药的临床研究.北京中医药大学学报.2004.(01):63-65.
    [40]解霞,杨毅,高清波等.川芎嗪对人乳腺癌MCF-7/ADM细胞多药耐药性的逆转及P.糖蛋白表达的影响.大连大学学报.2006.(04):76-78.
    [41]Huang Y, Blower PE, Yang C, et al. Correlating gene expression with chemical scaffolds of cytotoxic agents:ellipticines as substrates and inhibitors of MDR1. Pharmacogenomics J.2005.5(2):112-25.
    [42]Hadjeri M, Barbier M, Ronot X, Mariotte AM, Boumendjel A, Boutonnat J. Modulation of P-glycoprotein-mediated multidrug resistance by flavonoid derivatives and analogues. J Med Chem.2003.46(11):2125-31.
    [43]Morris ME, Zhang S. Flavonoid-drug interactions:effects of flavonoids on ABC transporters. Life Sci.2006.78(18):2116-30.
    [44]Pourcel L, Routaboul JM, Cheynier V, Lepiniec L, Debeaujon I. Flavonoid oxidation in plants:from biochemical properties to physiological functions. Trends Plant Sci.2007. 12(1):29-36.
    [45]Go WJ, Ryu JH, Qiang F, Han HK. Evaluation of the flavonoid oroxylin A as an inhibitor of P-glycoprotein-mediated cellular efflux. J Nat Prod.2009.72(9):1616-9.
    [46]Ishii K, Tanaka S, Kagami K, et al. Effects of naturally occurring polymethyoxyflavonoids on cell growth, p-glycoprotein function, cell cycle, and apoptosis of daunorubicin-resistant T lymphoblastoid leukemia cells. Cancer Invest.2010.28(3):220-9.
    [47]Choi CH, Sun KH, An CS, et al. Reversal of P-glycoprotein-mediated multidrug resistance by 5,6,7,3',4'-pentamethoxyflavone (Sinensetin). Biochem Biophys Res Commun.2002. 295(4):832-40.
    [48]Jeong JM, Choi CH. Enhancement of paclitaxel transport and cytotoxicity by 7,3',4'-trimethoxyflavone, a P-glycoprotein inhibitor. J Pharm Pharm Sci.2007.10(4): 547-53.
    [49]Patanasethanont D, Nagai J, Yumoto R, et al. Effects of Kaempferia parviflora extracts and their flavone constituents on P-glycoprotein function. J Pharm Sci.2007.96(1):223-33.
    [50]Patanasethanont D, Nagai J, Matsuura C, et al. Modulation of function of multidrug resistance associated-proteins by Kaempferia parviflora extracts and their components. Eur J Pharmacol.2007.566(1-3):67-74.
    [51]Qian F, Ye CL, Wei DZ, Lu YH, Yang SL. In vitro and in vivo reversal of cancer cell multidrug resistance by 2',4'-dihydroxy-6'-methoxy-3',5'-dimethylchalcone. J Chemother. 2005.17(3):309-14.
    [52]Zhang S, Morris ME. Effects of the flavonoids biochanin A, morin, phloretin, and silymarin on P-glycoprotein-mediated transport. J Pharmacol Exp Ther.2003.304(3): 1258-67.
    [53]Han HK, Lee HK. Improved effectiveness of biochanin A as a P-gp inhibitor in solid dispersion. Pharmazie.2011.66(9):710-5.
    [54]Shin SC, Li C, Choi JS. Effects of baicalein, an antioxidant, on the bioavailability of doxorubicin in rats:possible role of P-glycoprotein inhibition by baicalein. Pharmazie. 2009.64(9):579-83.
    [55]Lee Y, Yeo H, Liu SH, et al. Increased anti-P-glycoprotein activity of baicalein by alkylation on the A ring. J Med Chem.2004.47(22):5555-66.
    [56]Choi JS, Piao YJ, Kang KW. Effects of quercetin on the bioavailability of doxorubicin in rats:role of CYP3A4 and P-gp inhibition by quercetin. Arch Pharm Res.2011.34(4): 607-13.
    [57]Fang SH, Hou YC, Chang WC, Hsiu SL, Chao PD, Chiang BL. Morin sulfates/ glucuronides exert anti-inflammatory activity on activated macrophages and decreased the incidence of septic shock. Life Sci.2003.74(6):743-56.
    [58]Pathak SM, Udupa N. Pre-clinical evidence of enhanced oral bioavailability of the P-glycoprotein substrate talinolol in combination with morin. Biopharm Drug Dispos. 2010.31(2-3):202-14.
    [59]Kitagawa S, Nabekura T, Kamiyama S. Inhibition of P-glycoprotein function by tea catechins in KB-C2 cells. J Pharm Pharmacol.2004.56(8):1001-5.
    [60]Barthomeuf C, Grassi J, Demeule M, Fournier C, Boivin D, Beliveau R. Inhibition of P-glycoprotein transport function and reversion of MDR1 multidrug resistance by cnidiadin. Cancer Chemother Pharmacol.2005.56(2):173-81.
    [61]Barthomeuf C, Demeule M, Grassi J, Saidkhodjaev A, Beliveau R. Conferone from Ferula schtschurowskiana enhances vinblastine cytotoxicity in MDCK-MDR1 cells by competitively inhibiting P-glycoprotein transport. Planta Med.2006.72(7):634-9.
    [62]Shen X, Chen G, Zhu G, Fong WE (+/-)-3'-O,4'-O-dicynnamoyl-cis-khellactone, a derivative of (+/-)-praeruptorin A, reverses P-glycoprotein mediated multidrug resistance in cancer cells. Bioorg Med Chem.2006.14(21):7138-45.
    [63]Shen X, Chen G, Zhu G, Fong WF. (+/-)-3'-O,4'-O-dicynnamoyl-cis-khellactone, a derivative of (+/-)-praeruptorin A, reverses P-glycoprotein mediated multidrug resistance in cancer cells. Bioorg Med Chem.2006.14(21):7138-45.
    [64]Fong WF, Shen XL, Globisch C, et al. Methoxylation of 3',4'-aromatic side chains improves P-glycoprotein inhibitory and multidrug resistance reversal activities of 7,8-pyranocoumarin against cancer cells. Bioorg Med Chem.2008.16(7):3694-703.
    [65]Iwanaga K, Hayashi M, Hamahata Y, et al. Furanocoumarin derivatives in Kampo extract medicines inhibit cytochrome P4503A4 and P-glycoprotein. Drug Metab Dispos.2010. 38(8):1286-94.
    [66]张晔,宋娜,刘云鹏等.β-榄香烯逆转胃癌细胞株阿霉素耐药性的作用及机制研究.中国医科大学学报.2011.(11):968-970+993.
    [67]Wang J, Guo Y, Zhang BC, Chen ZT, Gao JF. Induction of apoptosis and inhibition of cell migration and tube-like formation by dihydroartemisinin in murine lymphatic endothelial cells. Pharmacology.2007.80(4):207-18.
    [68]余和平,崔乐,潘跃进.青蒿素对乳腺癌多药耐药MCF-7/ADR细胞的逆转作用.华中科技大学学报(医学版).2011.(01):91-94.
    [69]Munoz-Martinez F, Lu P, Cortes-Selva F, et al. Celastraceae sesquiterpenes as a new class of modulators that bind specifically to human P-glycoprotein and reverse cellular multidrug resistance. Cancer Res.2004.64(19):7130-8.
    [70]Reyes CP, Munoz-Martinez F, Torrecillas IR, et al. Biological evaluation, structure-activity relationships, and three-dimensional quantitative structure-activity relationship studies of dihydro-beta-agarofuran sesquiterpenes as modulators of P-glycoprotein-dependent multidrug resistance. J Med Chem.2007.50(20):4808-17.
    [71]Madureira AM, Molnar A, Abreu PM, Molnar J, Ferreira MJ. A new sesquiterpene-coumarin ether and a new abietane diterpene and their effects as inhibitors of P-glycoprotein. Planta Med.2004.70(9):828-33.
    [72]Munoz-Martinez F, Reyes CP, Perez-Lomas AL, Jimenez IA, Gamarro F, Castanys S. Insights into the molecular mechanism of action of Celastraceae sesquiterpenes as specific, non-transported inhibitors of human P-glycoprotein. Biochim Biophys Acta.2006. 1758(1):98-110.
    [73]Buda G, Orciuolo E, Maggini V, et al. MDR1 modulates apoptosis in CD34+ leukemic cells. Ann Hematol.2008.87(12):1017-8.
    [74]Paleeva AG, Onishchenko GE, Shtil AA. Mechanisms of apoptosis are retained in cells witb P glycoprotein-mediated drug resistance. Dokl Biol Sci.2006.407:187-91.
    [75]Kobayashi J. [Search for new MDR modifier possessing taxane skeleton]. Nihon Rinsho. 1997.55(5):1135-42.
    [76]Brooks TA, Minderman H, O'Loughlin KL, et al. Taxane-based reversal agents modulate drug resistance mediated by P-glycoprotein, multidrug resistance protein, and breast cancer resistance protein. Mol Cancer Ther.2003.2(11):1195-205.
    [77]彭延延,施秋萍,杨大朋等.冬凌草甲素对人乳腺癌细胞侵袭的抑制作用及机制.苏州大学学报(医学版).2012.(03):318-321+375.
    [78]胡瑞华,王燕,李红英等.冬凌草甲素抑制体内外卵巢癌生长的作用.天津医药.2012.(03):269-272.
    [79]郭娟娟,潘祥林.冬凌草甲素逆转多药耐药细胞系K562/A02耐药性的研究.上海医学.2002.(01):43-45.
    [80]Duarte N, Varga A, Cherepnev G, Radics R, Molnar J, Ferreira MJ. Apoptosis induction and modulation of P-glycoprotein mediated multidrug resistance by new macrocyclic lathyrane-type diterpenoids. Bioorg Med Chem.2007.15(1):546-54.
    [81]Hohmann J, Molnar J, Redei D, et al. Discovery and biological evaluation of a new family of potent modulators of multidrug resistance:reversal of multidrug resistance of mouse lymphoma cells by new natural jatrophane diterpenoids isolated from Euphorbia species. J Med Chem.2002.45(12):2425-31.
    [82]Madureira AM, Gyemant N, Ascenso JR, Abreu PM, Molnar J, Ferreira MJ. Euphoportlandols A and B, tetracylic diterpene polyesters from Euphorbia portlandica and their anti-MDR effects in cancer cells. J Nat Prod.2006.69(6):950-3.
    [83]Corea G, Fattorusso E, Lanzotti V, et al. Jatrophane diterpenes as P-glycoprotein inhibitors. First insights of structure-activity relationships and discovery of a new, powerful lead. J Med Chem.2003.46(15):3395-402.
    [84]Corea G, Fattorusso E, Lanzotti V, et al. Jatrophane diterpenes as modulators of multidrug resistance. Advances of structure-activity relationships and discovery of the potent lead pepluanin A. J Med Chem.2004.47(4):988-92.
    [85]Miao ZH, Ding J. Transcription factor c-Jun activation represses mdr-1 gene expression. Cancer Res.2003.63(15):4527-32.
    [86]Cai Y, Lu J, Miao Z, Lin L, Ding J. Reactive oxygen species contribute to cell killing and P-glycoprotein downregulation by salvicine in multidrug resistant K562/A02 cells. Cancer Biol Ther.2007.6(11):1794-9.
    [87]刘劝.雷公藤甲素的药理作用研究.药学进展.2005.(04):156-161.
    [88]惠璐璐,许文林,陈巧云等.雷公藤甲素对K562/A02细胞阿霉素敏感性的影响.中国实验血液学杂志.2012.(01):66-69.
    [89]何珊.茯苓抗肿瘤细胞多药耐药性有效成分及作用研究.见:张庆林,主编.药物化学.,2011.
    [90]何珊,张庆林,卢育新等.茯苓乙醇提取物的分离纯化及抗KBV200细胞多药耐药活性.国际药学研究杂志.2012.(01):49-55.
    [91]Madureira AM, Spengler G, Molnar A, et al. Effect of cycloartanes on reversal of multidrug resistance and apoptosis induction on mouse lymphoma cells. Anticancer Res. 2004.24(2B):859-64.
    [92]Wang C, Zhang JX, Shen XL, Wan CK, Tse AK, Fong WF. Reversal of P-glycoprotein-mediated multidrug resistance by Alisol B 23-acetate. Biochem Pharmacol.2004.68(5): 843-55.
    [93]Jain S, Laphookhieo S, Shi Z, et al. Reversal of P-glycoprotein-mediated multidrug resistance by sipholane triterpenoids. J Nat Prod.2007.70(6):928-31.
    [94]Shi Z, Jain S, Kim IW, et al. Sipholenol A, a marine-derived sipholane triterpene, potently reverses P-glycoprotein (ABCBl)-mediated multidrug resistance in cancer cells. Cancer Sci.2007.98(9):1373-80.
    [95]Jain S, Abraham I, Carvalho P, et al. Sipholane triterpenoids:chemistry, reversal of ABCBl/P-glycoprotein-mediated multidrug resistance, and pharmacophore modeling. J Nat Prod.2009.72(7):1291-8.
    [96]Xiong J, Taniguchi M, Kashiwada Y, Sekiya M, Yamagishi T, Takaishi Y. Papyriferic acid derivatives as reversal agents of multidrug resistance in cancer cells. Bioorg Med Chem. 2010.18(8):2964-75.
    [97]Ramachandran C, Rabi T, Fonseca HB, Melnick SJ, Escalon EA. Novel plant triterpenoid drug amooranin overcomes multidrug resistance in human leukemia and colon carcinoma cell lines. Int J Cancer.2003.105(6):784-9.
    [98]Ramachandran C, Nair PK, Alamo A, Cochrane CB, Escalon E, Melnick SJ. Anticancer effects of amooranin in human colon carcinoma cell line in vitro and in nude mice xenografts. Int J Cancer.2006.119(10):2443-54.
    [99]Sekiya M, Kashiwada Y, Nabekura T, et al. Effect of triterpenoids isolated from the floral spikes of Betula platyphylla var. japonica on P-glycoprotein function. Planta Med.2007. 73(15):1558-62.
    [100]Huang M, Jin J, Sun H, Liu GT. Reversal of P-glycoprotein-mediated multidrug resistance of cancer cells by five schizandrins isolated from the Chinese herb Fructus Schizandrae. Cancer Chemother Pharmacol.2008.62(6):1015-26.
    [101]Li L, Pan Q, Sun M, Lu Q, Hu X. Dibenzocyclooctadiene lignans:a class of novel inhibitors of multidrug resistance-associated protein 1. Life Sci.2007.80(8):741-8.
    [102]Lee CK, Choi JS. Effects of silibinin, inhibitor of CYP3A4 and P-glycoprotein in vitro, on the pharmacokinetics of paclitaxel after oral and intravenous administration in rats. Pharmacology.2010.85(6):350-6.
    [103]Zhou L, Liu P, Chen B, et al. Silibinin restores paclitaxel sensitivity to paclitaxel-resistant human ovarian carcinoma cells. Anticancer Res.2008.28(2A):1119-27.
    [104]Bousserouel S, Bour G, Kauntz H, Gosse F, Marescaux J, Raul F. Silibinin inhibits tumor growth in a murine orthotopic hepatocarcinoma model and activates the TRAIL apoptotic signaling pathway. Anticancer Res.2012.32(7):2455-62.
    [105]Lim S, Grassi J, Akhmedjanova V, et al. Reversal of P-glycoprotein-mediated drug efflux by eudesmin from Haplophyllum perforatum and cytotoxicity pattern versus diphyllin, podophyllotoxin and etoposide. Planta Med.2007.73(15):1563-7.
    [106]梅听,蒋云根,吕晶晶等.鬼臼毒素衍生物CIP-36抗肿瘤多药耐药的机制.药学学报.2011.(10):1193-1198.
    [107]Zhang J, Zhou F, Wu X, et al.20(S)-ginsenoside Rh2 noncompetitively inhibits P-glycoprotein in vitro and in vivo:a case for herb-drug interactions. Drug Metab Dispos. 2010.38(12):2179-87.
    [108]Jin J, Shahi S, Kang HK, van VHW, Fan TP. Metabolites of ginsenosides as novel BCRP inhibitors. Biochem Biophys Res Commun.2006.345(4):1308-14.
    [109]Jin YH, Yoo KJ, Lee YH, Lee SK. Caspase 3-mediated cleavage of p21WAFl/CIPl associated with the cyclin A-cyclin-dependent kinase 2 complex is a prerequisite for apoptosis in SK-HEP-1 cells. J Biol Chem.2000.275(39):30256-63.
    [110]刘丽丽,刘艳娥,房国涛.三七总皂苷逆转乳腺癌细胞MCF-7/ADM多药耐药的实验研究.时珍国医国药.2008.(04):954-956.
    [111]温志震,郝春燕,魏虎来等.白藜芦醇通过下调mdrl/P-gp表达逆转K562/ADM细胞凋亡抑制.中药药理与临床.2008.(03):10-13.
    [112]Chearwae W, Anuchapreeda S, Nandigama K, Ambudkar SV, Limtrakul P. Biochemical mechanism of modulation of human P-glycoprotein (ABCB1) by curcumin Ⅰ, Ⅱ, and Ⅲ purified from Turmeric powder. Biochem Pharmacol.2004.68(10):2043-52.
    [113]Chearwae W, Wu CP, Chu HY, Lee TR, Ambudkar SV, Limtrakul P. Curcuminoids purified from turmeric powder modulate the function of human multidrug resistance protein 1 (ABCC1). Cancer Chemother Pharmacol.2006.57(3):376-88.
    [114]Romiti N, Pellati F, Nieri P, Benvenuti S, Adinolfi B, Chieli E. P-Glycoprotein inhibitory activity of lipophilic constituents of Echinacea pallida roots in a human proximal tubular cell line. Planta Med.2008.74(3):264-6.
    [115]Zhu HJ, Wang JS, Markowitz JS, et al. Characterization of P-glycoprotein inhibition by major cannabinoids from marijuana. J Pharmacol Exp Ther.2006.317(2):850-7.
    [116]Risinger AL, Jackson EM, Polin LA, et al. The taccalonolides:microtubule stabilizers that circumvent clinically relevant taxane resistance mechanisms. Cancer Res.2008.68(21): 8881-8.
    [117]Risinger AL, Mooberry SL. Taccalonolides:Novel microtubule stabilizers with clinical potential. Cancer Lett.2010.291(1):14-9.
    [118]Wang EJ, Barecki-Roach M, Johnson WW. Quantitative characterization of direct P-glycoprotein inhibition by St John's wort constituents hypericin and hyperforin. J Pharm Pharmacol.2004.56(1):123-8.
    [119]方志强,张萍,米志坚等.大黄素对人胆管癌多药耐药细胞QBC_(939)/ADM的耐药 逆转作用.中国现代药物应用.2009.(08):31-33.
    [120]欧冰凝,唐海桦,张海英等.大黄素体外逆转口腔鳞癌耐药细胞株KBV200的机制初步探讨.山东医药.2011.(24):30-32.
    [121]彭向前,杨培民,吴慧等.半夏水提取液逆转多药耐药细胞系K562/A02耐药性的研究.齐鲁药事.2012.(07):385-387.
    [122]Engi H, Hohmann J, Gang G, et al. Chemoprevention and inhibition of P-glycoprotein in cancer cells by Chinese medicinal herbs. Phytother Res.2008.22(12):1671-6.
    [123]Limtrakul P, Khantamat O, Pintha K. Inhibition of P-glycoprotein activity and reversal of cancer multidrug resistance by Momordica charantia extract. Cancer Chemother Pharmacol.2004.54(6):525-30.
    [124]Limtrakul P, Siwanon S, Yodkeeree S, Duangrat C. Effect of Stemona curtisii root extract on P-glycoprotein and MRP-1 function in multidrug-resistant cancer cells. Phytomedicine. 2007.14(6):381-9.
    [125]Sadava D, Still DW, Mudry RR, Kane SE. Effect of Ganoderma on drug-sensitive and multidrug-resistant small-cell lung carcinoma cells. Cancer Lett.2009.277(2):182-9.
    [126]Schmidt M, Polednik C, Roller J, Hagen R. Cytotoxicity of herbal extracts used for treatment of prostatic disease on head and neck carcinoma cell lines and non-malignant primary mucosal cells. Oncol Rep.2013.29(2):628-36.
    [127]Nabekura T, Yamaki T, Ueno K, Kitagawa S. Inhibition of P-glycoprotein and multidrug resistance protein 1 by dietary phytochemicals. Cancer Chemother Pharmacol.2008.62(5): 867-73.
    [128]Fan L, Tao GY, Wang G, et al. Effects of Ginkgo biloba extract ingestion on the pharmacokinetics of talinolol in healthy Chinese volunteers. Ann Pharmacother.2009. 43(5):944-9.
    [129]Dennis T, Fanous M, Mousa S. Natural products for chemopreventive and adjunctive therapy in oncologic disease. Nutr Cancer.2009.61(5):587-97.
    [130]Marchetti S, Mazzanti R, Beijnen JH, Schellens JH. Concise review:Clinical relevance of drug drug and herb drug interactions mediated by the ABC transporter ABCB1 (MDR1, P-glycoprotein). Oncologist.2007.12(8):927-41.
    [131]Estrada E, Molina E, Nodarse D, Uriarte E. Structural contributions of substrates to their binding to P-Glycoprotein. A TOPS-MODE approach. Curr Pharm Des.2010.16(24): 2676-709.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700