用户名: 密码: 验证码:
尾巨桉木材胀缩规律的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木材胀缩性研究是人工速生材高附加值加工利用的关键,是提高人工林木材产品质量的有力保证,是有效利用人工速生材、显著提高其商业价值的可靠方法。由于生产地和消费地大气含水率的差异,速生人工林木材制品常出现质量问题。尾巨桉是中国南方重要的速生林品种之一,研究尾巨桉木材在大气环境中的胀缩变化规律具有重要意义。
     通过模拟大气条件,探索尾巨桉木材含水率、弦向干缩率、弦向湿胀率随干燥和吸湿条件变化规律,建立尾巨桉实木胀缩规律的数学模型,并在应用中检验所建立的模型。
     傅立叶红外光谱显示,循环干燥后,干燥材的羟基吸光度降低;非共轭的醛、酮、羰基、酰或酯中的C=0强度减弱;共轭的醛、酮、羰基、酰或酯中的C=0波峰出现;积累双键或叁键由1个吸收峰变为2个或3个;酚醚键C—O—C、吡喃糖环上的C—O—C、酯基、饱和脂肪醚、醇的C—O吸收强度减弱,而苯环的吸收强度变化规律不一。循环干燥可以改变尾巨桉木材极性官能团的含量和亲水性。
     对试材进行循环干燥过程中,初含水率对含水率差和对尾巨桉木材弦向干缩率影响显著。干燥循环次数对尾巨桉木材含水率差影响显著,而对弦向干缩率影响不显著,且尾巨桉木材含水率差和弦向干缩率随着干燥循环次数呈下降趋势。
     在循环吸湿中,初含水率对含水率差的影响和对尾巨桉木材弦向湿胀率影响不显著;循环次数对尾巨桉木材含水率差、弦向湿胀率影响显著,且尾巨桉木材含水率差和弦向湿胀率随着循环次数呈先增大后减小趋势。
     尾巨桉木材在解吸和吸湿过程中,含水率对其弦向干缩率、弦向湿胀率影响显著,且弦向干缩率、弦向湿胀率随木材含水率的增大呈先增大后减小趋势。
     根据试验分析,结合一些经典模型,利用Origin技术通过非线性拟合,得到高度显著性的方程组,从而建立能准确反应含水率、干燥时间或吸湿时间、循环次数与弦向干缩率或湿胀率之间关系的尾巨桉实木胀缩规律的数学模型。经过模型检验,计算值与试验结果吻合较好,具有合理性和适用性。
     研究表明,采用循环干燥和吸湿工艺处理尾巨桉木材,可以有效降低尾巨桉木材弦向胀缩性,提高其木质耐侯性,延长尾巨桉实木制品的使用寿命。
The research of wood swilling and shrinkage is the key of high- valued utilization of plantation wood, which products is a powerful guarantee to improve the quality of planted forest lumber, and is a reliable method of the effective use of fast-growing material and remarkably enhances its commercial value. The product made by the fast-growing planted forest lumber often has the quality problem because of the difference atmosphere moisture between produces and the expense. Mountain Gum×Flooded Gum wood is one of important fast-growing forest varieties in south China, which have the vital significance to study its bulking and shrinkage in the atmospheric environment.
     By simulating atmospheric conditions, we try to explore the moisture content, the tangential shrinkage, the tangential swilling with the wet and dry moisture conditions change of Mountain Gum×Flooded Gum wood, so that we can establish a mathematical model of the swell-shrink of Mountain Gum×Flooded Gum wood.
     As the FTIR spectrogram shows, after drying cycle, the drying of the wood-absorbance decrease, strength of the non-conjugated aldehydes, ketones,carbonyl, and Ester-C=O decline, peaks of conjugated aldehydes, ketones, carbonyl, and the ester carbonyl occurring. Following the accumulation of double bond or bond from a peak into two or three, absorption strength of the phenol ether bond starch, sugar pyran ring of C-O-C, ester, saturated fat ether, C-O alcohol weakened, and the absorption of the benzene ring intensity variation mixed. Drying cycle can change polar functional group content and hydrophilic of t Mountain Gum×Flooded Gum wood.
     In the drying cycle, the initial moisture content of the moisture content differential impact significantly, and the initial moisture content of the Timber Mountain Gum of the tangential direction significantly affect the moisture content. Drying cycle number has significantly impact on the difference of the moisture content of the Timber Mountain Gum, but the tangential shrinkage is not significantly affected, the difference of moisture content and tangential shrinkage of t Mountain Gum×Flooded Gum wood has decreased trend with the drying cycle number.
     when absorbing, the impact of the difference of the moisture content by first moisture content is not significant, and the first moisture content on the Mountain Gum x Flooded Gum wood tangential swilling impact was not significant. The impact of the difference of the moisture content and tangential swilling of Mountain Gum x Flooded Gum wood is significant with loop number, the moisture content and tangential swilling of Timber Mountain Gum×Flooded Gum wood has increased and then decreased trend with loop number.
     When the Timber Mountain Gum x Flooded Gum wood release and absorb water, the impact of the difference of the moisture content on tangential shrinkage and tangential swilling is significant, and the tangential shrinkage and tangential swilling has increased and then decreased trend with the increases of the moisture content.
     Based on the analysis, combining some classical model, the use of technology by Origin nonlinear fitting, be highly significant to the equation, so as to establish an accurated mathematical model of Mountain Gum×Flooded Gum wood response moisture content, drying or absorbing time, the relationship between the tangential shrinkage or tangential swilling with loop number. After testing model, the calculated and experimental results agree well with rationality and applicability.
     The research indicated that using the circulation to be dry and the moisture absorption craft processing Timber Mountain Gum×Flooded Gum wood, may effectively reduce its tangential shrinkage and swilling, improve its wood weathering, extended life of the products made of timber Mountain Gum wood.
引文
[1]黄宗骥,罗风炜.仿花梨木单板染色工艺的初步研究[J].贵州林业科技,1997,25(3):45—48
    [2]彭万喜.人工速生工业林木材增值利用[M].中南林学院硕士学位论文,2003.3—18
    [3]顾丽莉,蒋丽红.酸性染料用于木材染色的研究[J].化学通报,2002,(1):53—56
    [4]中共中央国务院.关于加快林业发展的决定.2003,6,25
    [5]张宏健,国内外木材工业态势和我国的可持续发展战略对策[J].木材工业,2000,12(5):21—24
    [6]祁述雄.桉树[M].北京:中国林业出版社,2002.1—48
    [7]宋永芳.我国桉树资源的利用与展望[J].林产化工通讯,1998,(4):3—7
    [8]陈少雄,杨建林,周国福.不同栽培措施对尾巨桉生长的影响及经济效益分析[J].林业科学研究,1999,12(4):357—362
    [9]陈少雄,周国福,林义辉.尾巨桉纸浆材人工林轮伐期研究[J].林业科学研究,2002,15(4):394—398
    [10]张梓萍.不同基质和施肥对尾巨桉组培苗的影响[J].福建林业科技,2003,(3):65—67
    [11]郭祥泉.尾巨桉与马尾松不同混交处理3年生造林研究[J].福建林学院学报,2003,23(4):338—342
    [12]彭万喜,朱同林,郑真真等.木材抽提物的研究现状与趋势[J].林业科技开发,2004,18(5):6—9
    [13]彭万喜.木材抽提物渗透屏障原理与应用[D].华南农业大学博士学位论文,2006.1—180
    [14]广东省林业局,广东省林学会编.广东省经济林[M].广州:广东科技出版社,2003.47—49
    [15]殷亚方,杨民胜,王莉娟等.巴西桉树人工林资源及其实木加工利用[J].世界林业研究,2005,18(1):60—64
    [16]王喜明,江泽慧,费本华.桉树人工林木材加工过程中几个问题的探讨[J].世界林业研究,2003,16(3):62—64
    [17]刘文金.木材干缩湿胀对实木家具设计的影响[J].林产工业,2002,29(3):29—31
    [18]吴智慧.木质材料干缩湿胀对表面装饰质量的影响[J].林产工业,1994,21(5):13—16
    [19]王淑娟,鹿振友,王洁瑛等.5种种源白桦木材干缩性的研究[J].北京林业大学学报,2001,23(4):87—89
    [20]张应团.杉木人工林幼龄材与成熟材木材干缩性能指标的比较[J].森林工程,2004,20(1):5—6
    [21]龚仁梅,何灵芝,沈隽等.温度对人工林落叶松木材干缩及密度的影响[J].林产工业,2000,27(1):14—16
    [22]徐有明,江建军.火炬松种源木材气干干缩性的变异[J].华中农业大学学报,1997,16(3):299—300
    [23]徐有明,唐万鹏,江建军.引种种源火炬松木材全干干缩性的研究[J].华中农业大学学报,1998,16(1):129—133
    [24]徐曼琼,鹿振友,王洁瑛等.10年生火炬松木材28个家系干缩率的变异分析[J].木材工业,2001,(3):14—16
    [25]王喜明,刘晓丽.预冻处理对杨木皱缩特性的影响[J].内蒙古农业大学学报,1999,20(4):14—17
    [26]高瑞清、滕通濂.百度试验中木材的干缩特性与木材开裂的关系分析[J].林业科技通讯,1998,(4):4—6
    [27]蒋明亮,刘秀英,吕慧梅.FR-1、FR-2及PF树脂对木材阻燃、防腐、尺寸稳定等效果的研究[J].林业科学,2001,37(1):121—125
    [28]费本华.木材干缩的分形分析[J].林业科学,2002,38(1):136—140
    [29]戴芳天,郭明辉,陈广胜.红松人工林幼龄材与成熟材干缩性的比较[J].东北林业大学学报,2003,31(3):29—30
    [30]夏玉芳.马尾松中龄施肥木材密度和干缩率的研究[J].浙江林业科技,2001,21(6):1—5
    [31]吕建雄,林志远,骆秀琴等.红锥和西南桦人工林木材干缩特性的研究[J].北京林业大学学报,2005,(1):6—9
    [32]WU Yiqiang, Hayashi Kazou, Liu Yuan, etc. Intermittent Drying Technologies Suitable for Plantation-grown Eucalyptus Timbers[C]. International conference on plantation eucalyptus. Zhanjiang, China.2005
    [33]Brad Jianhe Wang, Xiaoyan Zhou, Chunping Dai, et al. The Perrmeability of Veneer-Based Wood Composites Pertaining to Hot-Pressing Process[C].The 7th Pacific Rim Bio—Based Composites Symposium Proceedings II,2004.91-100
    [34]林和男等.木材干操过程中皱缩的发生机理[J].木材工业(日),1975,30(9):2—5
    [35]林和男等.木材干操过程中皱缩的发生机理[J].木材工业(日),1975,30(10):11—15
    [36]林和男等.木材干操过程中皱缩的发生机理[J].木材工业(日),1975,30(12):2—6
    [37]金川靖等.木材的干缩过程[J].木材学会志(日),1978,21(7):441—446
    [38]金川靖等.木材的干缩过程[J].木材学会志(日),1978,25(3):184—196
    [39]张应团,谷成平,张应坤.柳杉木材干缩性能指标研究[J].森林工程,2004,20(5):8—10
    [40]Chare D C. The Distribution and Interrelationship of Collapse, Volumetric Shrinkage, Moisture Content and Density in TreeS of Eucalyptusregnan S F Muell[J].Wood Sci Tech,1958,19:329-345
    [41]Innes T C, Collapse free predrying,of eucalyptus regnan S,F Muell[J]. Holzals Roh und、Nerk Stoff,1995,53:406-430
    [42]Innes T C. predrying of collapse prone wood free of Surface and internal checking[J]. Holzals Roh-und Werkstoff,1996,54(3):195-199
    [43]PANG S. Predicting an isotropic shrinkage of softwood. Part 1:Theories[J]. Wood Sci Techn,2000,36:75-91
    [44]Kariki T. Variation of wood density and shrinkage in European Aspen(Populus twmula) [J]. European Journal of Wood and Wood Products,2001,59 (1-2): 79-84
    [45]Yany J L. An attempt to reduce collapse through introducing cell wall deformations[J].Wood and Fiber Sci,1998,30(1):81-89
    [46]Choong E T. Effect of extractives on shrinkage and other hyg roscopic properties of ten Southern pine woods Wood and Fiber Sci,1969,19(1):124-133
    [47]Hiroaki Yokoi, Takahito Nakase, Kuniyoshi Goto,et al.2003.Rapid characterization of wood extractives in wood by thermal desorption-gas chromatography in the presence of tetramethylammonium acetate[J]. Journal of Analytical and Applied Pyrolysis,2006,67:191-200
    [48]Shuetsu Saito, Andres Ono, Alvaro Perez. Drying characteristic of Eucalyptus grandis in Uruguay[C].9th international iufro wood drying conference. Nanjing, China.2005.489-492
    [49]祁述雄.桉树[M].北京:中国林业出版社,2002.1—48
    [50]Nicholson J E. Growth Stress Differences in Eucalyptus. For Sci.,1973,19:169-174.
    [51]胡继青,姜笑梅,侯祝强等.三种人工林桉树轴向生长应变变异初探[J].木材工业,2000,14(6):9—11
    [52]费本华,江泽慧,赵荣军等.桉树人工林木材生长应变研究[J].木材工业,2004,18(2):18—20
    [53]刘晓丽,姜笑梅,殷亚方.应变片和轴向生长应变仪法测试树木轴向表面生长应变[J].林业科技,2005,41(2):210—214
    [54]Chafe S C. The Distribution and Interrelationship of Collapse, Volumetric Shrinkage, Moisture Content and Density in Trees Of Eucalyptus regnans F.Muell[J].Wood Sci.Tech.,1985,19:329-345
    [55]Chafe S C. Variation in longitudinal growth stress with height in the trees of Eucalyptus nitens[J]. Australia Forestry Research,1985,15:51-55
    [56]Malan F S, Gerischer G F R. Wood property differences in South African grown Eucalyptus grandi strees of different growth stress intensity [J]. Holzforschung, 1987,41:331-335
    [57]Paulo F T, Jose T L. Assessment of Growth Stresses in Eucalyptus Trees and Their Relationship with the Characteristics of Growth and Some wood Properties[C]. International conference on plantation eucalyptus. Zhanjiang, China.2005
    [58]Yang J L. Loss of Sawn Recovery Associated with Growth Stress and Potential Indicators of Sawlog Quality-a case with Eucalyptus globules[C]. International conference on plantation eucalyptus. Zhanjiang, China.2005
    [59]Zhou YongDong,Jiang Xiaomei, Piao Chenhan,etc. Experimental Study on Sawing Of Plantation Eucalypts in China[C]. International conference on plantation eucalyptus. Zhanjiang, China.2005
    [60]刘元.热处理对桉树皱缩的作用[J].林业科学,1994,30(2):140-144
    [61]刘元.桉树木材超微结构及其对干燥皱缩的影响[J].中南林学院学报,1995,15(1):33—37
    [62]陈太安,顾炼百.汽蒸处理回复赤桉干燥皱缩的研究[J].南京林业大学学报(自然科学版),2004,28(3):34—36
    [63]Yi-qiang W u, Kazuo Hayashi, Yuan Liu, et al..2005. collapse-type shrinkage characteristics in wood form plantation-grown and intermittent drying regimes[C].9th international iufro wood drying conference. Nanjing, China.326-333
    [64]江泽慧,王喜明.桉树人工林木材干燥与皱缩[M].北京:中国林业出版社,2003.
    [65]刘元,吴义强,乔建政等.桉树人工林木材的干燥特性及干燥基准研究[J].中南林学院学报,2002,22(4):44—48
    [66]腾通濂.10种桉树速生材的干燥特性[C].第九次全国木材干燥学术讨论会论文集,2003.30-36
    [67]腾通濂.窿缘桉速生材的干燥技术[C].第十次全国木材干燥学术讨论会论文集, 2005.227—231
    [68]杜国兴,顾炼百,钟争登.25mm厚窿缘桉地板坯料干燥工艺研究[C].第九次全国木材干燥学术讨论会论文集,2003.276—278
    [69]李贤军,李延军,张星光.柠檬桉和邓恩桉木材千燥特性初探[J].林产工业,2004,31(2):14—17
    [70]李晓玲,高瑞清,周永东.四种桉树人工林木材气干特性研究[J].木材工业,2004,18(5):16—20
    [71]王喜明,于建芳,苏金梅等.木材干燥应力应变超微观模型的构筑[J].林业科学,2005,41(4):204—209
    [72]Richard Northway. Determining Drying Characteristics of Plantation-grown Eucalypt Timber for Resource Assessment and Improvement[C]. International conference on plantation eucalyptus. Zhanjiang, China.2005
    [73]Wu Yiqiang, Hayashi kazou, Liu Yuan, etc. Collapse-type shrinkage characteristics in plantation-grown eucalypts:Ⅰ. Correlations of basic density and some structural indices with shrinkage and collapse properties[J]. Journal of Forestry Research,2005,16(2):83-88
    [74]Gao Ruiqing, Li Xiaoling, Tian Baoyu. Pilot Drying Test on Eucalyptus citriodora Plantation wood[C]. International conference on plantation eucalyptus. Zhanjiang, China.2005
    [75]侯新毅.三种桉树木材的机械加工和透明涂饰性能研究[D].北京林业大学硕士论文,2004.1—100
    [76]余雁,高建民,周景斌.木材干燥应力应变研究现状及展望[J].人造板通讯,2002,5:7—10
    [77]常建民.木材干燥应力测试技术现状及展望[J].世界林业研究,1997,(6):33—35
    [78]李大纲.国内外木材干燥应力研究现状及发展趋势[J].建筑人造板,2001,(2):15—18
    [79]蒋佳荔,吕建雄.木材干燥应力的研究方法与进展[J].木材工业,2005,19(2):4—7
    [80]McMillen J. M. Drying stresses in Red Oak[J], Forest Prod.J.,1955.
    [83]Stohr H P. Shrinkage Differential as a Measure for Drying Stress Determination[J]. Wood Science and Technology,1988, (22):121-128
    [84]周宝华.木材干燥过程中内应力的初步研究[J].南京林产工业学院学报,1982,(2):76—90
    [85]李维桔.木材弹性及木材干燥应力[J].南京林产工业学院学报,1983,(1):115—122
    [86]刁秀明等.杯弯法测试木材干燥应力的研究[J].林产工业,1995,22(4):16—10
    [87]高建民,余雁,刘志军.木材干燥应力连续监测方法的研究[J].木材工业,2004,18(3):1—4
    [88]常建民,胡松涛,闫运忠.非接触式测试木材干燥应力的方法研究[J].林产工业,1998,25(5):21—24
    [89]刘应安.木材干燥应力数学模型[J].东北林业大学学报,1998,26(5):56—59
    [90]程万里,师冈敏朗,则元京等.木材高温高压蒸汽干燥过程中的收缩应力特征初探[C].第九次全国木材干燥学术讨论会论文集,2003.212—219
    [91]王喜明,贺勤.桉树木材干燥过程曲线的研究[J].北京林业大学学报,2005,27:13—17
    [92]Chen G. The drying stress and check development on high temperature kiln seasoning of sap wood radiata boards:Moisture movement and strain model [J]. Holz Roh Werkstoff,1997,55:59-64
    [93]Chen G. The drying stress and check development on high temperature kiln seasoning of sapwood radiata boards:Stress development[J].Holz Roh Werkstoff,1997,55:169-173
    [94]李大纲,顾炼百.杨木高温干燥过程中表层流变特性的研究[J].林业科学,1999,35(1):83—89
    [95]李大纲,顾炼百.木材高温干燥过程中的弹性应变[J].木材工业,2000,14(2):15—17
    [96]Haque M N,T A G Langrish, L-B Keep, etal. Model Fitting for Viscor elastic Creep of Pinus radiata during Kiln Drying[J]. Wood Science and Technology, 2000,34:447-457
    [97]Sokolovskyy Y. Stresses and Strains of Wood in the Drying Process[C].8th International IUFRO Wood Drying Conference,2003.
    [98]战剑锋,顾继友,艾沐野.白桦木材干燥过程横纹流变特性的初步研究[J].林业科学,2004,40(5):174-177
    [99]涂登云.马尾松板材干燥应力模型及应变连续测量的研究[D].南京林业大学博士论文,2005..1—50
    [100]Skaar.C., W.T.Simpson and R.M.Honeycuut. Use acoustic emission to identify high levels of stress during oak drying[J]. Forest Products Journal,1980,30(2): 21-22
    [101]Honeycuut,R.M., Skaar,C., simpson W.T. Use of acoustic emission to control drying rate of red oak[J]. Forest prod. J.,1985,35(1):48-50
    [102]Noguchi,M., Kitayama,Y., Katagiri,j. Umetsu,j. Feedback control for drying zelkova serrata using in-process acoustic emission monitoring [J]. Forest prod. J.,1987,37(1):28-34
    [103]Ogino,S.,Kaino,K.,Suzuki,M. Prediction of lumber checking during drying by means of acoustic emission technique[J]. Acoustic emission.,1986,5(2):61-65
    [104]Sadanari M, S Kitayama. Wave form Analysis of Acoustic Emissions Generated in the Wood Drying Process [J]木材学会誌,1989,35(7):602—608
    [105]Quales S L. Acoustic Emissions Associated with Oak During Drying[J]. Wood and Fiber Science,1992,24(1):2-12
    [106]Stefan Jan Kowalski, Waldemar Molinski, Grzegorz Musielak. The identification of fracture in dried wood based on theoretical modelling and acoustic emission[J]. Wood Sci Technol..,2004,38 (1):35-52
    [107]Noguchi,M. Kagawa, Y. katagari, J. Detection of acoustic emission during hardwood drying[J]. Mokuazai Gkkaaishi,1980,26(9):1-3
    [108]Noguchi M, S O kumura, S Kawamoto. Characteristics of Acoustic Emissions during Wood Drying[J]木材学会誌,1985,31(3):171—175
    [109]Becker, H.F. Acoustic emission during wood drying[J]. Holz Roh Werkstoff., 1982,40(9):345-359
    [110]Booker, J.D. Acoustic emission relation to instantaneous strain in Tasmanian eucalypt timber during seasoning[J]. Wood science and technology,1994,28(4): 249-259
    [111]Schniewind, A.J. Quarles, S.L lee, S.L. Wood frature, acoustic emission, and the drying process Part I. Acoustic emission associated with fracture[J]. Wood science and technology,1996,30(4):273-281
    [112]秦特夫.酸雨及大气污染对马尾松木材材性影响的研究[J].林业科学,1995(6):528—535
    [113]江泽慧,费本华,王喜明等.桉树木材干燥特性与工艺及其皱缩研究现状[J].木材工业,2002,(4):3—6.
    [114]王喜明.木材的皱缩[J].木材工业,2000,14(1):29—31
    [115]寺尺真.The Effect of the Tensile Stress on the Collapse Intensity [J].木材学会志,1975,(5):278—282
    [116]石教英,蔡文立.科学计算可视化算法与系统[M].北京:科学出版社,1996.1—322
    [117]同济大学数学教研室主编.高等数学[M].第四版.北京:高等教育出版社,1996.1—500

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700