用户名: 密码: 验证码:
新型磁通切换型磁阻电机系统的分析、设计与控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁通切换型磁阻电机(Flux Switching Motor, FSM)是一种新型的无刷结构双凸极电机,它具有与开关磁阻电机类似的双凸极结构,定转子上均无永磁体,避免了由于各种原因,如温升、振动、电枢反应等引起的永磁体去磁或磁性能不稳定而导致电机出力的下降,运行可靠性高。FSM电机本体结构和制造工艺简单,坚固耐用,成本低廉,适合高速运行,具有在高温等恶劣环境下工作的优势,整个运行过程中所有绕组全周期通电,绕组利用率高。与开关磁阻电机等单边激励双凸极电机相比,FSM从根本上实现了励磁电流分量和电枢电流分量的分离,降低了功率变换器的伏安容量。FSM独特的运行方式降低了电机运行时的振动和噪声,适合应用于对振动和噪声要求较高的场合。由于励磁磁通可调,FSM作为发电机运行时调压方便且具有故障灭磁能力,适合用于车载航空等高速发电系统和起动发电系统。
     与其他类型双凸极电机相比,FSM由于只需控制一套绕组的通断电,功率电路所需功率开关器件个数少,控制方式和控制策略简单,调速成本低,很大程度上降低了电机控制器的成本。FSM具有与直流电机相似的优异的调速性能,在整个调速范围内具有较高的效率,因此在家用电器、电动工具及轻工业制造等场合具有良好的应用前景。
     FSM是一种复杂的机电一体化装置,与其他双凸极电机一样,具有显著的边缘效应和局部饱和效应,不仅如此,FSM依靠电枢绕组和励磁绕组之间的互感产生转矩,励磁绕组产生的直流磁场源和电枢绕组产生的交流磁场源相互强耦合,运行时所有绕组同时通电,边缘效应和局部饱和效应更为明显,这些都使得FSM系统呈现出独特的非线性、变结构和强耦合的复杂特性。
     FSM由于提出时间不久,目前的研究从涉及问题的广度上和深度上都十分有限,各方面的研究不够深入全面,本文以这种新型的FSM电机系统为研究对象,对FSM的运行方式特点、数学模型、性能分析、磁场分析、电磁参数计算、动态性能仿真、电机设计及其控制系统的软件和硬件开发设计等一系列关键问题进行了较为全面和深入的研究分析,试制了FSM样机,开发了FSM的位置检测装置和专用控制电路,为该电机的进一步深入研究和开发应用奠定基础。
     论文的研究内容主要有以下几个方面:
     1、详细全面地对FSM工作原理、运行方式和电磁特性进行了研究,阐述了FSM非线性、变结构和强耦合的特点,采用有限元法全面详细地计算了FSM的磁场分布、电磁参数和静态特性,为深入了解FSM的电磁特性和工作方式打下基础;
     2、由于FSM具有独特的非线性、变结构和强耦合的复杂特性,通常用于分析其他类型双凸极电机的非线性方法很难完整地描述其电磁特性和进行建模分析。为了解决FSM非线性建模仿真的难题,本文研究了基于电感最大值的FSM三维非线性仿真模型,采用混合建模思路,建立了包括FSM电机本体和控制电路在内的整个系统的仿真模型,在此基础上对FSM进行了较为全面的仿真研究和性能分析,并与时步有限元仿真结果进行了对比验证;
     3、提出了FSM的非线性变结构等效磁路模型。紧贴FSM独特的非线性变结构特性,建立了一种具有多相耦合特性的适用于分析FSM的自适应非线性变结构集中参数等效磁路模型,详细推导了等效磁路中每部分磁导的计算方法,并在此过程中讨论了局部饱和的处理技术,基于该等效磁路模型,对FSM进行了电磁特性分析和参数计算,在此过程中对磁导计算中的收敛问题进行了详细研究,提出了收敛系数的自适应确定方法,提高了计算效率,为FSM提供了一种新的行之有效的电磁参数计算方法;
     4、提出了一种适用于FSM的动态性能计算方法——基于改进的前进欧拉公式的动态性能计算方法。针对FSM动态性能计算中的微分反演困难,紧贴FSM非线性变结构的特点,利用矩阵变换重新构建了FSM的状态方程,采用了改进的前进欧拉公式数值求解FSM的变系数偏微分方程,克服了FSM由于非线性强耦合特性导致的性能计算困难和动态性能求解过程中由于微分系数较多而导致的求解过程复杂和耗时长的困难,在此基础上进行了FSM的动态性能计算,并与经典四阶龙格库塔法和时步有限元法的计算结果和计算速度进行对比验证,为FSM动态性能计算和设计提供了一条新的途径;
     5、对FSM的起动性能进行了分析研究。FSM独特的定转子极数配合使得进行电机设计时必须对其起动问题特别考虑。本文研究了不同结构对FSM起动死区的影响,对各种改善FSM起动性能的结构和方法进行了综合比较,并综合各种因素给出了解决FSM起动问题的方案;
     6、建立了FSM电机的通用输出功率尺寸方程,给出了FSM电机的定转子铁心长度和绕组匝数的确定方法和性能计算方法,设计了FSM的专用光电位置检测装置,并进行了样机设计和试制;设计开发了FSM的功率逆变电路和专用配套控制电路,在不同控制方式下对FSM进行了样机运行试验,通过试验研究了FSM样机的性能;
     7、深入全面的研究了永磁型磁通切换型磁阻电机(Permanent Magnet Flux Switching Motor, PMFSM)的定位转矩问题。PMFSM电机的本体结构、工作原理到设计理念均与传统永磁电机有着根本不同,其定位转矩产生的机理、特点、变化规律以及相应的削弱措施都与传统永磁电机有很大差异,但目前尚没有对PMFSM定位转矩的任何相关研究。本文建立了一套适用于双凸极电机定位转矩的解析分析理论,推导了与电机结构参数直接相关的PMFSM定位转矩解析表达式,紧贴PMFSM的结构特点和运行特点,给出了具有实际工程指导意义的削弱PMFSM定位转矩的解决方案;
     8、提出并研究了一种新型的磁通切换型磁阻电机——混合励磁磁通切换型磁阻电机。电励磁FSM运行时励磁电流较大,励磁绕组损耗较大,限制了效率的进一步提高,而PMFSM由于永磁磁动势不可调,电动运行时调速困难,发电运行时调压困难而且无法进行故障灭磁。针对现有的磁通切换型磁阻电机性能上存在的不足,提出了一种混合励磁磁通切换型磁阻电机,采用特殊的方式在定子上放置励磁绕组和永磁体,二者共同建立气隙磁场,可通过调节励磁电流拓宽调速范围,性能上兼有电励磁和永磁型两种类型的优点,克服了电励磁FSM励磁容量大和PMFSM调速范围窄的不足。
     本课题采用理论分析、仿真计算和试验研究三条主线相结合的手段,研究内容涉及磁通切换型磁阻电机的理论分析、电磁参数计算、动态仿真、性能计算、电机设计和试验研究等各个方面,不仅涵盖了现有磁通切换型磁阻电机的所有类型,而且提出了一种新型的混合励磁磁通切换型磁阻电机,在一定程度上丰富了FSM的类型,为磁通切换型磁阻电机系统的研究开辟了一个新的方向。
Flux Switching Motor (FSM) is a novel brushless double salient motor emerging in recent years. It has the same structure as SRM which has neither winding nor PM in the rotor. FSM has the advantages of rugged structure, easy manufacture and low cost, it is also suitable to operate at extreme high speed and adverse condition. The windings in FSM are electrified all the time as it works. Compared to SRM, FSM has higher copper-utilize ratio and require less kVA of the power converter because the excitation current component and armature current component has been separated absolutely. The vibration and noise of the motor are reduced by the unique operational electrified pattern, thus FSM has been seen as a good potential candidate drive system in the future. Flux weaken control can be easily achieved because the field current can be controlled when FSM is operated as a generator.
     FSM has the advantages of low cost and simple control strategies because only the armature winding require controlled. It has high efficiency and very good speed-adjust performance which is very like traditional DC motors. FSM has found more and more applications in household appliance, power tools and automotive appliance.
     FSM is an electromagnetic appliance with complicated nonlinear characteristics. It has obvious edge and local saturation effect which is the same as other double salient motors. In addition, FSM generates electromagnetic torque depending on the closed-coupled field and armature winding. As FSM works, all the windings in stator are electrified all the time, the DC magnetic field generated by field winding and the AC magnetic field generated by armature winding are closed coupled. Hence, the edge and saturation effect are more strategic with respect to the other double salient motors. FSM is a complicated electromagnetic appliance with unique nonlinear, variable structure and close coupled characteristics.
     The present research scope and depth which the experts and scholars deal with is very limited due to the short period during which FSM has been studied. In view of this, this paper studied FSM system with the emphasis of operation principle, mathematic model, performance analysis, electromagnetic parameters calculation, magnetic field analysis, dynamic simulation, machine design and control. A prototype motor was trial-manufactured to validate the theoretical analysis. The power converter and position detecting appliance of FSM was developed. The main contents of this paper are as follows:
     (1) Chapter 2 studied the operation principle, electrified pattern and electromagnetic characteristics of FSM, then illustrated the nonlinear, variable structure and close coupled characteristics. Based on Maxwell 2D, the magnetic field and electromagnetic parameters of FSM are calculated and analyzed. The work of this part provided a good reference to the knowledge of FSM.
     (2) Normal nonlinear method which was used to analyze the double salient motors can not describe the unique nonlinear, variable structure and close coupled characteristics of FSM. In order to overcome the problems of simulation and modeling of FSM, this paper established the high rank continuous nonlinear inductance function of FSM. Based on this model and hybrid means of modeling, the Simulink model of FSM involving the machine and whole control system were established. Then the numerical simulation were performed and the results were compared to that obtained by Time stepped Element Method (TSFE).
     (3) In chapter 5, the nonlinear variable structure equivalent magnetic circuit model was proposed which can describe the detailed poly phase coupling and nonlinear characteristics of FSM. The analytical expressions of permeability in the air gap and iron core are deduced. During the calculation, the iteration and convergence process was studied and a method to determine the iteration coefficients is proposed to save the calculation time. The work of this part provides a powerful tool for the electromagnetic calculation of FSM.
     (4) In chapter 6, a novel numerical solving method aiming to simulate the dynamic performance of FSM rapidly and accurately was proposed based on modified Forward Euler method. This method set up the status equations of FSM by matrix re-transforming and advanced the modified forward Euler equation to the FSM dynamic performance calculation which faced the difficulties of differential inversion. The method has the merits of simple process and rapidity calculation. At last, the method above was employed to calculate the dynamic performance of FSM. The calculation results were compared to that obtained by four order Runge-Kutta method and TSFE, respectively. The work of this part provided a new effective approach to the dynamic performance calculation of FSM.
     (5) In chapter 7, the starting performance of FSM was studied and a variety of strategies focused on reducing the dead zone of starting were discussed. Some conclusions were drawn. At last, the approach for solving the starting problem of FSM was given.
     (6) In chapter 7, the equation of universal output power which was directly related to motor dimensions was deduced and the method to determine the stack length and number of coils was given. The iteration calculation process of machine design was proposed. The optical rotor position detecting appliance and power converter of FSM were designed and developed. The experiment was implemented to study the performance of the prototype motor.
     (7) In chapter 8, the cogging torque in PMFSM was studied particularly. The detailed structure and principle of PMFSM are different from traditional PM motors and the principle, characteristics of cogging torque in PMFSM are also very different from traditional PM motors. This paper proposed an analytical theory for analyzing and calculating the cogging torque in PMFSM. Based on this theory, the analytical model of cogging torque which was directly related to the design parameters of PMFSM was deduced and employed to study the approaches to reducing cogging toque in PMFSM. At last, the detailed approach for reducing cogging torque was given which has important instructive significance to engineering practice in designing high performance PMFSM.
     (8) In chapter 9, a novel Hybrid Excitation Flux Switching Motor (HEFSM) was proposed and studied. FSM with electrified excitation has drawbacks of high level field current and high copper loss which limit the efficiency increasing. PMFSM has very narrow speed-adjustment range as a result of the uncontrolled magnetic motive force in PM as a motor. Besides, it is hard to adjust the output voltage when PMFSM work as a generator. Aiming at the drawbacks of present patterns of FSM, this paper proposed a novel Hybrid Excitation Flux Switching Motor. In HEFSM, the PMs were housed in the stator at special way. The magnetic field were generated both by PMs and armature winding, the speed-adjustment range could be widened by this proposed structure. HEFSM combined the merits of FSM with electrified excitation and PMFSM. The work in this part explored a new research frontier for FSM.
引文
[1]2006国际能源展望.美国能源部信息管理局,2006年.
    [2]汤蕴璆.电机学[M].北京:机械工业出版社,2006.
    [3]周鹗.电机学[M].北京:中国水利水电出版社,1995.
    [4]辜承林.电机学[M].武汉:华中理工大学出版社,2001.
    [5]詹琼华.开关磁阻电动机.武汉:华中理工大学出版社,1992.
    [6]王宏华,许华.开关型磁阻电动机调速系统的发展及现状[J].电气传动,2001,31(5):3-8.
    [7]唐任远,现代永磁电机[M].北京:机械工业出版社,1997.
    [8]王秀和,永磁电机[M].中国电力出版社,2007.
    [9]王宏华,开关型磁阻电动机调速控制技术[M].北京:机械工业出版社,1999.
    [10]吴建华,开关磁阻电机设计与应用[M].北京:机械工业出版社,2000.
    [11]Jin-Woo Ahn, Jae-Won Moon, Young-Moon Hwang. A three-phase switched reluctance motor with two-phase excitation[J]. IEEE Transactions on Industry Applications,1999,35(5):1067-1074.
    [12]郭伟,两相激磁开关磁阻电机的研究[D]:[博士学位论文],武汉:华中科技大学电气工程学院,2003.
    [13]J M Reeve, C Pollock, Dynamic simulation model for two-phase mutually coupled reluctance machines. Industry Applications Conference,2001, Thirty-Sixth IAS Annual Meeting. Conference Record.
    [14]B C Mecrow. New winding configuration for doubly salient reluctance machines [J]. IEEE Transactions on industrial application,1996,32(6), pp: 1348-1356.
    [15]B C Mecrow, C Weiner, A C Clothier. The Modeling of Switched Reluctance Machines with magnetically coupled windings, IEEE Transactions on industrial application,2001,37(6), pp:1675-1683.
    [16]费伟中,三相永磁开关磁链电机的研究[D]:[硕士学位论文],杭州:浙江大学电气工程学院,2006.
    [17]Y Li, J D Lioyd and G E Horst. Switched reluctance motor with dc assisted excitation, IEEE Transactions on industrial application,1996,32(2), pp:801-807.
    [18]周波,相蓉,王川云.电磁式双凸极电机电磁特性的理论分析[J].航空学报,2003,24(4):355-359.
    [19]张乐,周波,方斯琛.基于三维非线性电感模型电励磁双凸极发电机系统建模的研究[J].中国电机工程学报,2006,26(23):126-132.
    [20]杨振浩,周波.电励磁双凸极电机调速系统的原理与实现[J].南京航空航天大学学报,2003,35(2):132-136.
    [21]王莉,孟小利,曹小庆,严仰光.电励磁双凸极发电机的非线性模型[J].中国电机工程学报,2005,25(10):138-142.
    [22]周波,任立立,韦海荣.基于等效电感方法的电励磁双凸极电机系统简化控制模型[J].中国电机工程学报,2005,25(14):109-114.
    [23]任海英,周波.双凸极起动/发电机系统一体化设计与实现[J].2006,26(24):154-161.
    [24]吕飞,周波,魏佳丹.基于双绕组电励磁双凸极电机的双余度发电系统[J].2007,27(6):22-27.
    [25]魏佳丹,周波.双凸极电机励磁回路控制模式的研究[J].中国电机工程学报,2008,28(27):105-112.
    [26]魏佳丹,周波,姜雷.基于全桥变换器的电励磁双凸极电机中点的研究[J].中国电机工程学报,2007,27(30):83-88.
    [27]Liao Y, Liang F, Lipo T A. A novel permanent magnet motor with doubly salient structure[J]. IEEE Transactions on Industry Applications,1995,31(5):1069-1078.
    [28]M Cheng, K T Chau, C C Chan, et al. Control and operation of a new 8/6 pole doubly salient permanent magnet motor drive[J]. IEEE Transactions on Industry Applications,2003,39(5):1363-1371.
    [29]M Cheng, K T Chau, C C Chan. New split-winding doubly salient permanent magnet motor drive[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003,39(1):202-210.
    [30]林明耀,程明,周鹗.新型12/8极双凸极变速永磁电机的设计与分析[J].东 南大学学报,2002,32(6):944-948.
    [31]程明,周鹗,黄秀留.双凸极变速永磁电机的变结构等效磁路模型[J].中国电机工程学报,2001,21(5):25-27.
    [32]李永斌,江建中,邹国棠.新型定子双馈双凸极永磁电机研究[J].中国电机工程学报,2005,25(1):119-123.
    [33]李永斌,龚宇,江建中.双凸极永磁电机斜极转子设计和绕组换流模式研究[J].电工技术学报,2005,20(7):70-75.
    [34]秦海鸿,黄伟君,王慧贞,严仰光.绕组反电势大小对双凸极永磁电动机运行的影响[J].中国电机工程学报,2006,26(6):129-135.
    [35]秦海鸿,黄伟君,王慧贞,严仰光.单斩电流滞环控制的DSPM电机三相桥式功率变换器中的电流尾巴[J].中国电机工程学报,2005,25(20):124-131.
    [36]张建忠,程明,朱孝勇,赵文祥,花为.新型整距绕组双凸极永磁电机工作原理及特性[J].电工技术学报,2009(24):2-7.
    [37]Deodhar R P, Andersson S, Boldea I, et al. The flux-reversal machine:a new brushless doubly-salient permanent-magnet machine [J]. IEEE Transactions on Industry Applications,1997,33(4):925-934.
    [38]王蕾,李光友,张强.磁通反向电机的变网络等效磁路模型[J].电工技术学报,2008,23(8):19-25.
    [39]王蕾,磁通反向电机的数学模型及性能分析[D]:[硕士学位论文],济南:山东大学电气工程学院,2004.
    [40]Hoang E, Benahmed A H, Lucidarme J. Switching flux permanent magnet polyphased synchronous machines [C].7th European Conference on Power Electronic and Applications, Trondheim, Norway,1997.
    [41]花为,程明,Z Q Zhu, D Howe.新型两相磁通切换型双凸极永磁电机的静态特性研究(英文)[J].电工技术学报,2006,21(6):70-77.
    [42]花为,程明,ZQZhu, D Howe.新型磁通切换型双凸极永磁电机的静态特性研究[J].中国电机工程学报,2006,26(13):129-134.
    [43]朱瑛,程明,花为,贾红云,磁通切换永磁电机的空间矢量脉宽调制控制[J]电机与控制学报2010,14(3):46-51.
    [44]花为.新型磁通切换型永磁电机的分析、设计与控制[D]:[博士学位论文],南京,东南大学电气工程学院,2009.
    [45]花为,程明.新型三相磁通切换型双凸极永磁电机电感特性分析(英文)[J].电工技术学报,2007,22(11):22-28.
    [46]W Hua, M Cheng, Z Q Zhu, D Howe. Analysis and optimization of back EMF waveform of a Flux switching permanent magnet motor[J]. IEEE transactions on Energy Conversion,2008,23(3):727-733.
    [47]Z Q Zhu, Y Pang, D Howe, S Iwasaki, R Deodhar, A Pride. Analysis of electromagnetic performance of flux switching permanent magnet machines by Nonlinear adaptive lumped parameter magnetic circuit model [J]. IEEE transactions on Magnetics,2005,41(11):4277-4287.
    [48]方宗喜.新型永磁开关磁链起发电机研究[D]:[硕士学位论文],杭州:浙江大学电气工程学院,2008.
    [49]C Pollock, M Wallace. The flux switching motor, a DC motor without magnets or brushes[C]. Conference record of IEEE-IAS Annual Meeting,1999, vol.3, pp:1980-1987.
    [50]Pollock C, Pollock H, Barron R, et al. Flux switching motors for automotive applications[C].38th IEEE-IAS Annual Meeting, Salt Lake City, USA,2003.
    [51]Pollock H, Pollock C, Walter R T, et al. Low cost, high power density, flux switching machines and drives for power tools[C].38th IEEE-IAS Annual Meeting, Salt Lake City, USA,2003.
    [52]Bangura John F. Design of high-power density and relatively high efficiency flux-switching motor [J]. IEEE Transactions on Energy Conversion,2006,21 (2): 416-425.
    [53]C Pollock, H Pollock and M Brackley. A comparison with an induction motor driving an axial fan[C]. Industrial Electronics Society,2003, IECON'03. The 29th Annual Conference of the IEEE.
    [54]C Pollock, M Brackley. Comparison of the acoustic noise of a flux switching and a switched reluctance drive[C]. Conference record of 36th IEEE-IAS Annual Meeting, Chicago, USA,,2001.
    [55]Yi Cheng, Pollock C, Pollock H. A permanent magnet flux switching motor for low energy axial fans[C]. Conference Record of the Fourtieth IAS Annual Meeting 2005, Volume 3, Oct.2005, pp:2168-2175.
    [56]K N Ochije, C Pollock. A Controlled PWM AC/DC Converter for a High-Speed Brushless Generator for Minimum kVA Rating[C]. IEEE Transactions on Industrial Applications,2004,40(3):861-868.
    [57]KN Ochije, C Pollock. Design/Performance of a flux switching generator system for variable speed applications [C]. Conference record of IEEE-IAS Annual Meeting,2005,1567-1574.
    [58]K N Ochije, C Pollock. Simulink Model of Controlled Power Factor Flux Switching Generator System for Embedded Power Generation[C]. Conference record of IEEE-IAS Annual Meeting,2005,2657-2664.
    [59]KN Ochije, C Pollock. Controlled Series Compensation of High Speed Brushless Flux switching Generator For Direct Drive Variable Speed Application[J]. Conference record of IEEE-ESTS'07,2007,408-413.
    [60]Yue Li, Thomas A Lipo. A Doubly Salient Permanent Magnet Motor Capable of Field Weakening[C]. PESC, Atlanta, GA, USA,1995:565-571.
    [61]Jianzhong Zhang, Ming Cheng, Xiaoyong Zhu. A Novel Three-Phase Doubly Salient Permanent Magnet Generator[C]. ICEMS, Nanjing, China,2005:407-411.
    [62]秦海鸿.混合励磁双凸极电机基本性能研究[D]:[博士学位论文],南京:南京航空航天大学自动化学院,2006.
    [63]刘士勇,磁通开关电机的设计与控制[D]:[硕士学位论文],济南:山东大学电气工程学院,2008.
    [64]巩源泉,磁通开关发电机系统研究[D]:[硕士学位论文],济南:山东大学电气工程学院,2009.
    [65]刘国强,赵凌志,蒋继娅.Ansoft工程电磁场有限元分析[M].北京:电子工业出版社,2005.
    [66]鲁军勇,梁得亮,丰向阳.基于ANSOFT的永磁直线无刷直流电动机的仿真 研究[J].中小型电机,2004,31(1):18-20.
    [67]严登俊,刘瑞芳,胡敏强,李勋铭.鼠笼异步电机起动性能的时步有限元计算[J].电机与控制学报,2003,7(3):178-185.
    [68]童怀.磁阻电机动态特性的非线性分析与计算机仿真[M].北京:科学出版社,2000.
    [69]Stephenson J M, Corda J. Computation of torque and current in double salient reluctance motors with nonlinear magnetization data [J], IEE Proceedings-Electric Power Application,1979,126(5):393-396.
    [70]Miller T J E. Nonlinear theory of the switch reluctance motor for rapid computer-aided design[J]. IEE Proceedings-Electric Power Application,1990, 137(6):337-347.
    [71]Xu Longya, Ruckstadter E. Direct modeling of switched reluctance machine by coupled field-circuit method[J]. IEEE Trans. on Energy Conversion,1995,10(3): 446-454.
    [72]Tong Huai, Fu Guangjie, Huang Shenghua. Steady state simulation of a four phase hybrid step motor using the magnetic equivalent circuit model[C]. ICEM'96, Vigo, Spain,1996.
    [73]Elmas C, Sagiroglu S, Colak I, et al. Modeling of a nonlinear switched reluctance driver based on artificial neural networks [C]. Fifth International Conference on Power Electronics and Variable Speed Drives, London, England,1994.
    [74]Jang J. ANFIS:Adaptive-network-based fuzzy inference systems [J]. IEEE Trans. on System, Man and Cybernetics,1993,23(3):665-685.
    [75]王莉,孟小利,曹小庆,等.电励磁双凸极发电机的非线性模型[J].中国电机工程学报,2005,25(10):138-142.
    [76]梁得亮,丁文,鱼振民.基于自适应网络模糊推理系统的开关磁阻电机建模方法[J].中国电机工程学报,2008,28(9):86-92.
    [77]陆宁.MATLAB语言即学即会[M].北京:机械工业出版社,2000.
    [78]周金萍,王冉,吴斌.MATLAB 6实践与提高[M].北京:中国电力出版社,2002.
    [79]张威.MATLAB基础与编程入门[M].西安:西安电子科技大学出版社,2004.
    [80]邱杰,原渭兰.数字计算机仿真中消除代数环问题的研究[J].计算机仿真,2003,20(7):34-38.
    [81]耿华,杨耕.控制系统仿真的代数环问题及其消除方法[J].2006,10(6):633-638.
    [82]沙德尚,邓智泉,孟小利.基于变网络等效磁路法的双凸极电机电感参数变化规律的分析[J].中小型电机,2001,28(6):5-9.
    [83]张伟雄,张敬华,郑婵君.基于磁网络模型爪极电机气隙磁场的研究[J].微特电机,2000,20(6):10-13.
    [84]詹琼华.开关磁阻电动机[M].武汉:华中理工大学出版社,1992.
    [85]童怀.开关磁阻电机等效磁网络模型的降阶处理方案[J].电工技术学报,2000,15(1): 31-37.
    [86]徐士良.数值分析与算法[M].北京:机械工业出版社,2007.
    [87]樊小明,经压枝,张焕春等.开关磁阻电机的一种无位置检测器方案的研究[J].电工技术学报,1997,12(6):27-31.
    [88]MacMinn S R, Rzesos W J, Szczesny P M, et al. Application of sensor integration techniques to switched reluctance motor drives. IEEE Transactions on Industry Applications,1992,28(6):1339-1344.
    [89]Ehsani M, Husain I, Kulkarni A B. Elimination of discrete position sensor and current sensor in switched reluctance motor drives. IEEE Transactions on Industry Applications,1992,28(1):128-135.
    [90]Ehsani M, Husain I, Mahajan S, Ramani K R. New modulation encoding techniques for indirect rotor position sensing in switched reluctance motors. IEEE Transactions on Industry Applications,1994,30(1):85-91.
    [91]Husain I, Ehsani M. Rotor position sensing in switched reluctance motor drives by measuring mutually induced voltages. IEEE Transactions on Industry Applications.1994,30(3):665-672.
    [92]Bass J T, Ehsani M, Miller T J E. Simplified electronics for torque control of sensorless switched-reluctance motor. IEEE Transactions on Industrial Electronics,1987,34(2):234-239.
    [93]G Suresh, B Fahimi, M Ehsani. Improvement of the accuracy and speed range in sensorless control of switched reluctance motors, Applied Power Electronics Conference and Exposition, IEEE,1998:771-777.
    [94]江小军,齐蓉,林辉.8/6极开关磁阻电动机功率电路的设计和保护[J].微电机,2006年,第39卷,第3期.57-62.
    [95]江小军,齐蓉,林辉,陈峥.开关磁阻电机调速系统控制器的设计和保护[J].微电机,2006年,第39卷,第4期.51-57.
    [96]崔建锋,李玉忍.开关磁阻电动机系统功率变换器的设计[J].微电机,2006,39(1):75-80.
    [97]陈峥,齐蓉.基于数字信号处理器的开关磁阻电机调速系统设计[J].电机与控制应用,2005,32(7).
    [98]富士IGBT驱动混合集成电路使用说明书.富士电机电子技术株式会社,2003.
    [99]郝媚美,郑应文.一种实用的利用锁相环实现的倍频电路[J].福建电脑,2003,第九期,22-26.
    [100]孙广俊,张景伟.国外电子元器件[J],1998,第二期,36-40.
    [101]孟志强,陈燕东,周华安.基于EXB841的IGBT驱动电路优化设计[J].湖南大学学报(自然科学版),2006,33(6):64-69.
    [102]贾贵玺,徐欣东.IGBT缓冲电路的设计[J].电气传动,1998,第三期,54-57.
    [103]张明峰.PIC单片机入门与实战[M].北京:北京航空航天大学出版社,2004.
    [104]陈国先.PIC单片机原理与接口技术[M].北京:电子工业出版社,2004.
    [105]dsPIC18F2331数据手册.Microchip Technology Inc,2006.
    [106]谭建成.电机控制专用集成电路[M].北京:机械工业出版社,1997.
    [107]MPLAB IDE用户手册.Microchip Technology Inc,2005.
    [108]MPLAB ICD 2在线调试器用户指南.Microchip Technology Inc,2004.
    [109]dsPICTM Language Tools Getting Started. Microchip Technology Inc,2003.
    [110]武峰,陈新建.PIC单片机C语言开发入门[M].北京:北京航空航天大 学出版社,2005.
    [111]恒盛杰资讯.Protel电路板设计从入门到精通[M].北京:中国青年出版社,2006.
    [112]C. C. Hwang, S. B. John, and S. S. Wu, "Reduction of cogging torque in spindle motors," IEEE Trans. Magn., vol.34, no.2, pp.468-470, Mar.1998.
    [113]程树康,葛新,高宏伟,王宗培.分数槽无刷直流电动机齿槽定位力矩的研究[J].中国电机工程学报,2008,28(21):107-112.
    [114]Wang Xiuhe, Yang Yubo and Fu Dajin. Study of cogging torque in surfacermounted permanent magnet motors with energy method[J]. Journal of Magnetism and Magnetic Material, Vol.267, No.1, pp.80-85, November.2003.
    [115]L. Zhu, S. Z. Jiang, Z. Q. Zhu, and C. C. Chan. Analytical methods for minimizing cogging torque in permanent-magnet machines[J]. IEEE Trans. Magn., vol.45, no.4, pp.2023-2030, Apr.2009.
    [116]冀溥,王秀和,王道涵,杨玉波.转子静态偏心的表面式永磁电机齿槽转矩研究[J].中国电机工程学报,2004,24(9):188-191.
    [117]王兴华,励庆孚.永磁无刷直流电机空载气隙磁场和绕组反电势的解析计算[J].中国电机工程学报,2003,23(3):126-130.
    [118]杨玉波,王秀和,陈谢杰,冀溥.基于不等槽口宽配合的永磁电动机齿槽转矩削弱方法[J].电工技术学报,2005,20(3):40-44.
    [119]宋伟,王秀和,杨玉波.削弱永磁电机齿槽转矩的一种新方法[J].电机与控制学报,2004,8(3):214-217.
    [120]杨玉波,王秀和,张鑫,贺广富.磁极偏移削弱永磁电机齿槽转矩方法[J].电工技术学报,2006,21(10):22-25.
    [121]王秀和,杨玉波,丁婷婷,朱常青,王道涵.基于极弧系数选择的实心转子永磁同步电动机齿槽转矩削弱方法[J].中国电机工程学报,2005,15(15):147-149.
    [122]Yubo Yang, Xiuhe Wang, Rong Zhang, Tingting Ding, Renyuan Tang. The optimization of pole arc coefficient to reduce cogging torque in surface-mounted permanent magnet motors[J]. IEEE Trans. Magnetics, vol.42, No.4, pp.1135-1138, 2006.
    [123]杨玉波,王秀和,丁婷婷,张鑫,张冉,朱常青.极弧系数组合优化的永磁电机齿槽转矩削弱方法[J].中国电机工程学报,2007,27(6):7-11.
    [124]K. C. Kim, D. H. Koo, J. P. Hong, and J. Lee. A study on the characteristics due to pole-arc to pole-pitch ratio and saliency to improve torque performance of IPMSM[J]. IEEE Trans. Magn., vol.43, no.6, pp.2516-2518, Jun.2007.
    [125]N. Bianchi and S. Bolognani. Reducing torque ripple in PM synchronous motors[J]. ICEM 2000, Helsinki, Finland,1222-1226,28-30, Aug.2000.
    [126]N. Bianchi and S. Bolognani. Design techniques for reducing the cogging torque in surface-mounted PM motors[J]. IEEE Trans. on Magn, Vol.38, No.5, pp. 1259-1265, September/October.2002.
    [127]R. Lateb, N. Takorabet, and F. Meibody-Tabar. Effect of magnet segmentation on the cogging torque in surface-mounted permanent-magnet motors[J]. IEEE Trans. Magn., vol.42, no.3, pp. 442-445, Mar.2006.
    [128]S. M. Hwang, J. B. Eom, Y. H. Jung, D. W. Lee, and B. S. Kang. Various design techniques to reduce cogging torque by controlling energy variation in permanent magnet motors [J]. IEEE Trans. Magn., vol.37, no.4, pp.2806-2809, Jul. 2001.
    [129]David G Dorrell, Min-Fu Hsieh, and You Guang Guo. Unbalanced magnet pull in large brushless rare-earth permanent magnet motors with rotor eccentricity [J]. IEEE Trans. Magn, vol.45, no.10, pp.4586-4589, October 2009.
    [130]J. T. Li, Z. J. Liu, and L. H. A. Nay. Effect of radial magnetic forces in permanent magnet motors with rotor eccentricity[J]. IEEE Trans. on Magn, vol.43, no.6, pp.2525-2527, June 2007.
    [131]M. Lukaniszyn, M. Jagiela, and R. Wrobel. Optimization of permanent magnet shape for minimum cogging torque using a genetic algorithm[J]. IEEE Trans. Magn., vol.40, no.2, pp.1228-1231, Mar.2004.
    [132]C. Schlensok, M. H. Gracia, and K. Hameyer. Combined numerical and analytical method for geometry optimization of a PM Motor[J]. IEEE Trans. Magn., vol.42, no.4, pp.1211-1215, Apr.2006.
    [133]S. M. Hwang, J. B. Eom, G. B. Hwang, W. B. Jeong, and Y. H. Jung. Cogging torque and acoustic noise reduction in permanent magnet motors by teeth paring[J]. IEEE Trans. Magn., vol.36, no.5, pp.3144-3146, Sep.2000.
    [134]X. T. Jiang, X. W. Xing, Y. Ling, and Y. P. Lu. Theoretical and simulation analysis of influences of stator tooth width on cogging torque of BLDC motors[J]. IEEE Trans. on Magn, Vol.45, No.10, pp.4601-4604, Oct.2009.
    [135]Y. Yang, X. Wang, R. Zhang, C. Zhu, and T. Ding. Research of cogging torque reduction by different slot width pairing in permanent magnet motors[J]. Elect. Mach. Syst. (ICEMS), vol.1, pp.367-370, Sep.2005.
    [136]Z. Q. Zhu and D. Howe. Influence of design parameters on cogging torque in permanent magnet motors[J]. IEEE Trans. Energy Convers., vol.15, no.4, pp. 407-412,2000.
    [137]寇宝泉,谢大纲,程树康,李明哲.磁力线开关型混合励磁磁阻电机的转矩特征[J].中国电机工程学报,2007,27(15):2-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700