用户名: 密码: 验证码:
微细电火花加工伺服运动预测与控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
精微制造技术已成为当今制造业中十分重要的生产加工技术,其中微细电火花加工凭借加工过程无宏观的作用力、对加工系统的刚性无过高要求等优势,在微尺度加工领域得到了广泛的应用,并表现出了强大的技术潜能,受到了国内外工业界以及学术界的重视与关注。然而,微细电火花加工本身的脉冲电源频率高、放电能量十分微弱、加工环境复杂以及稳定的火花放电状态难以获得等特点,导致其加工过程中存在大量的不确定性与显著的随机性。确保微细电火花加工过程控制的稳定性以及有效性已成为提高加工系统性能、加工效率以及加工精度的关键。
     目前,微细电火花加工过程的控制已广泛地采用了模糊逻辑理论,并取得了良好的效果。与传统模糊逻辑相比较而言,二型模糊逻辑对非线性时变系统当中不确定性的处理有着明显的优势。为了进一步增强模糊控制器对加工过程中不确定性的处理能力,改善微细电火花加工系统的性能,本论文引入区间二型模糊逻辑理论,在传统一型模糊控制器的基础上设计并实现了基于区间二型模糊逻辑的两阶伺服运动控制器,增强了加工控制系统对各个输入量与控制量中不确定信息的描述能力;同时,分析了检测控制方法的滞后性对微细电火花加工过程稳定性的影响,并结合区间二型模糊控制方法,以伺服进给速度为预测研究对象,提出了基于灾变灰色预测的伺服运动预测控制方法,旨在克服单纯依靠检测控制方法所导致的控制滞后性问题,提高加工过程控制的稳定性,从而获得更优的加工效率。
     本文依托自主研发的微细电火花加工机床,以微小孔加工作为实验研究对象,针对所提出的区间二型模糊控制方法与基于灾变灰色预测的加工过程预测控制方法,分别开展加工实验。实验结果表明:区间二型模糊逻辑能够更好地处理微细电火花加工系统中的不确定性,相对于传统一型模糊控制方法而言,区间二型模糊控制方法能够显著提高加工过程的效率,适用于微细电火花加工控制;相对于常规检测控制方法而言,所提出的伺服运动预测控制方法能够有效地提高加工效率,同时显著地减少了加工过程中伺服回退(抬刀)出现的次数。因此,本文提出的基于灾变灰色预测的伺服运动预测控制方法能够有效地克服传统控制方法的滞后性,从而获得稳定的加工过程。
     本文开展的微细电火花加工伺服运动预测与控制方法研究,对保证加工过程稳定性、提高加工效率以及促进微细电火花加工控制技术的发展提供了一定的借鉴及参考。
Micro precision machining technology becomes one of the most important production technologies in manufacturing industry field, and particularly with several advantages, such as no macro-forces in machining process and no excessive requirement for machining system etc., micro-EDM has been widely applied in micro-scale machining field, showing tremendous technology potential, and receives attention and concern from both industry and academia all over the world. However, due to the natural characteristics of micro-EDM, such as high pulse power supply frequency, extremely weak discharge energy, complex machining environment and unstable spark discharge states etc., the machining process tend to have lots of uncertainties and randomness. To ensure the stability and effectiveness of machining process control becomes the key to promote the performance of the machining system and the efficiency and precision of the machining process.
     At present, fuzzy logic theory has been widely adopted in the machining process control of micro-EDM, which achieves good results. In comparison with traditional fuzzy logic, type-2fuzzy logic has better capability of handling the uncertainties in the nonlinear time-varying systems. In order to further enhance the fuzzy controller's capability of handling the uncertainties of the machining process and improve the performance of micro-EDM system, on the foundation of the type-1fuzzy controller, a two-stage servo motion controller is designed based on the interval type-2fuzzy logic theory which is introduced in this paper, which enhance the machining system's capability of describing the uncertainties of each variable; meanwhile, through the analysis of the affect caused to the stability of the machining process by the lagging of the regular detection-based control, coupled with the interval type-2fuzzy control method, a servo motion predictive control method is presented, which is based on calamities grey prediction and takes the servo feed speed as the prediction object, aiming at overcoming the affect caused by the lagging of the regular detection-based control method and improving the stability of the machining process, so that better machining efficiency can be obtained.
     Relying on the independently developed micro-EDM machine tool and taking micro-holes as the machining targets, the experiment researches are carried out to verify the feasibility of the interval type-2fuzzy control method and the calamities grey prediction based predictive control method, which are introduced in this paper. The experiment results show that, interval type-2fuzzy logic can handle the uncertainties of the micro-EDM system, in comparison with the type-1fuzzy control method, interval type-2fuzzy control method can obviously promote the machining efficiency, which confirms that interval type-2fuzzy logic is applicable in the machining control of micro-EDM; comparing with the machining process relying on the regular detection-based control, the predictive control method introduced in this paper can promote the machining efficiency to some extent and effectively minimize the frequency of the servo rollback (tool lifting). So, the calamities grey prediction based servo motion predictive control method can effectively overcome the affect caused by the lagging of the regular detection-based control method, which results in the stable machining process.
     The research on the prediction and control method of servo motion of micro-EDM in this paper provides conducive reference to ensuring the stability of machining process and promoting machining efficiency as well as facilitating the development of micro-EDM control method.
引文
[1]刘维东,赵万生,狄士春等.小型电火花加工装置中电极的驱动与控制[J].电加工与模具,1998,(2):12-15.
    [2]Zhao Wansheng, Liu Weidong et al.. Research on linear stepper ultrasonic motor and its application[C]. Proceedings of the IEEE Ultrasonics Symposium. Lake Tahoe, 1999:679-682.
    [3]李勇,王显军,郭旻等.微细电火花加工关键技术研究[J].清华大学学报.1999,39(8):45-48.
    [4]赵万生,刘维东,王振龙等.差动往复式微型电火花加工装置的研究[J].机械工程学报.2000,36(9):65-68.
    [5]H. S. Lim, Y.S.Wong, M.Rahman et al. A Study on the Machining of High-aspect Ratio Micro-structures Using MicroHEDM[J]. Journal of Materials Processing Technology, 2003, (140):318-325.
    [6]T. Masuzwa, M. Fujino, K. Kobayashi. Wire Electro-Discharge Grinding for Micro-Machining[J]. Annals of the CIRP,1985,34(1):431-434.
    [7]Song Xiaozhong, Reynaerts Dominiek, Meeusen Wim et al. Investigation of Micro-EDM for Silicon Microstructure Fabrication[J]. Society of Photo-Optical Instruction Engineers.1999,2(3680):792-799.
    [8]Heeren Paul Henri's, Revnaerts Dominiek, Van Brussel. Micro-structuring of Silicon by Electro-discharge Machining (EDM)-Part I:theory[J]. Sensors and Actuators, A:Physical,1997,60(5):212-218.
    [9]Christopher James Morgan. Micro Electro-Discharge Machining:Techniques and Procedures for Micro Fabrication[D]. Lexington:Univ. of Kentucky,2004.
    [10]Fuzhu Han, Yuji Yamada, Taichi Kawakami, Masanori Kunieda. Experimental attempts of sub-micrometer order size machining using micro-EDM[J].
    [11]李文卓,赵万生,王振龙,等.我国微小型电火花加工装置最新研究与进展[J].电加工与模具,2001,(2):5-9.
    [12]赵万生,李文卓,王振龙.高精度微细电火花加工系统的研制[J].电加工与模具,2004,(1):6-8.
    [13]易茂斌,房丰洲,王庆祎.微细电火花加工装置及加工工艺的研究[J].现代制造工程,2009,(3):70-74.
    [14]李勇.蠕动式压电/电致伸缩微进给定位机构的研究进展[J].中国机械工程,1999,(12):1410-1412.
    [15]赵万生,韦红雨,狄士春等.微细电火花加工的新进展[J].仪器仪表学报.1996,17(1):65-69.
    [16]李文卓.微细电火花加工系统及其相关技术的研究[D].哈尔滨:哈尔滨工业大学,2002.
    [17]赵万生,李文卓,王振龙.高精度微细电火花加工系统的研制.全国特种加工学术会议,北京,2003:1-2.
    [18]周明.微细电火花加工放电状态辨识与预测的理论和方法[D].大连:大连理工大学,2005.
    [19]裴景玉,高长水,刘正埙.多传感数据融合技术在微细电火花加工放电状态检测中的应用[J].电加工与模具,2000,3:6-9.
    [20]Yi Jiang, Wansheng Zhao, Xuecheng Xi, et al. Detecting discharge status of small-hole EDM based on wavelet transform[J]. Int J Adv Manuf Technol,2011,10 published online.
    [21]张玲瑄,贾振元,任小涛.微细电火花加工状态逐级映射检测[J].光学精密工程,2010,18(3):662-669.
    [22]KAO J K, YANG Y S. A neutral network approach for the on-line monitoring of the electrical discharging machining process[J]. Journal of Materials Processing Technology,1997,69:112-119.
    [23]Dibitonto D D, Eubank P T, Patel M R, et al. Theoretical models of the electrical discharge machining process(Ⅰ):A simple cathode erosion mode[J]. Journal of Applied Physics,1989,66(9):4095-4103.
    [24]Puertas I, Luis Perez C J. Modeling the manufacturing parameters in electrical discharge machining of siliconized silicon carbide[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Engineering Manufacture,2003,217(6):791-803.
    [25]Boccadoro M, Dauw D F. About the application of fuzzy controllers in high-performance die-sinking EDM machines[J]. Annals of CIRP,1995,44 (1):147-150.
    [26]Oguzhan Yilmaz, Omer Eyercioglu, Nabil N. Z. Gindy. A user-friendly fuzzy-based system for the selection of electro discharge machining process parameters[J]. Journal of Materials Processing Technology,2006,172:363-371.
    [27]罗元丰.电火花加工过程智能控制系统的研究[D].哈尔滨:哈尔滨工业大学,2001.
    [28]罗元丰,赵万生,曹光宇.人工神经网络技术在电火花加工中的应用[J].电加工,1995,5:20-23.
    [29]Chen-Chun Kao, Albert J. Shih. Fuzzy Logic Control of Microhole Electrical Discharge Machining[J]. Journal of Manufacturing Science and Engineering,2008, 130:064502-1-6.
    [30]裴景玉.微细电火花加工智能模糊控制系统的研制[D].南京:南京航空航天大学,2000.
    [31]陈玉宁,杨大勇,曹凤国等.电火花放电加工控制技术研究[J].电加工与模具,2009,4:1-5.
    [32]孙利生,黄因慧,余承业.电火花加工中电极顺好的智能控制.模具工业,1998,11:47-49.
    [33]Trang Y S, Ma S C, Chung L K. Determination of optimal cutting arameters in wire electrical discharge machining[J]. The International Journal of Machine Tools& Manufacture,1995,35(12):1693-1701.
    [34]Lee W M, Liao Y S. Self-tuning fuzzy control with a grey prediction for wire rupture prevention in WEDM[J]. The International Journal of Advanced Manufacturing Technology,2003,22:481-490.
    [35]Ulas Caydas, Ahmet Hascalik, Sami Ekici. An adaptive neuron-fuzzy inference system (ANFIS) model for wire-EDM[J]. Expert Systems with Applications,2009, 36:6135-6139.
    [36]Behrens A, Ginzel J. Neuro-fuzzy process control system for sinking EDM. Transactions of NAMRI/SME,2003, XXXI:605-611.
    [37]胡建华,王炜,徐启华.一种基于模糊神经网络确定电火花加工条件的新方法[J].机械科学与技术,2008,27(8):1097-1106.
    [38]高升晖.微细及小孔电火花加工的关键技术研究[D].大连:大连理工大学,2008.
    [39]楼乐明,李明辉,彭颖红.利用神经网络建立电火花加工工艺模型[J].中国机械工程,2001,12(4):408-411.
    [40]杨晓冬,赵万生.基于Web的人工神经网络电火花加工工艺预测[J].哈尔滨工业大学学报,2005,37(8):1029-1031.
    [41]李翔龙,殷国富等.基于进化神经网络的电火花铣削加工电极损耗预测[J].机械工程学报,2004,40(3):61-65.
    [42]金顺南,白基成等.线切割加工间隙状态预测系统的计算机仿真研究[J].电加工1992,5:11-15.
    [43]杨俊,郑良桂,周继烈.EDM灰色控制系统的研究[J].电加工,1996,5:22-23.
    [44]Ming Zhou, Fuzhu Han, Isago Soichiro. A time-varied predictive model for EDM process[J]. International Journal of Machine Tools & Manufacture,2008, 48:1668-1677.
    [45]贾振元,高升晖等.基于局域波分解的电火花加工放电状态预测方法[J].机械工程学报,2009,45(6):113-121.
    [46]Zhenyuan Jia, Lingxuan Zhang, et al. A new method for discharge state prediction of micro-EDM using empirical mode decomposition[J].2010,132:014501-1-6.
    [47]Oscar Castillo, Patricia Mel in. Type-2 Fuzzy Logic:Theory and Applications[M]. Berlin:Springer-Verlag,2008.
    [48]郑高.二型模糊系统模糊性测度及其在电力负荷预测中的应用研究[D].四川:西南交通大学,2006.
    [49]耿雪松.微小孔电火花加工模糊控制技术的研究[D].哈尔滨:哈尔滨工业大学,2010.
    [50]井水淼.电火花微小孔加工控制方法及参数优化的研究[D].大连:大连理工大学,2008.
    [51]Jerry M. Mendel, Robert I. Bob John. Type-2 Fuzzy Sets Made Simple[J]. IEEE Transactions on Fuzzy Systems,2002,10(2):117-127.
    [52]Liang Q, Mendel J M. Equalization of nonlinear time-varying channels using type-2 fuzzy adaptive f ilters[J]. IEEE Transactions on Fuzzy Systerms,2000,5(8):551-563.
    [53]Liang Q, Mendel J M. Overcoming time-varying co-channel interference using type-2 fuzzy adaptive filter [J]. IEEE Transactions on Circuits and Systems II:Analog and Digital Signal Processing,2000,47(12):1419-1428.
    [54]Zarandi M H F, Neshat E, et al. A type-2 fuzzy model for stock market analysis[C]. Proceedings of 2007 IEEE International Fuzzy Systems Conference,2007:1-6.
    [55]Maria De, Meddez G M. Modeling and prediction of the MXNUSD exchange rate using interval singleton type-2 fuzzy logic systems [J]. IEEE Computational Intelligence Magazine,2007,2(1):5-8.
    [56]Lynch C, Hagras H, et al. Parallel type-2 fuzzy logic co-processors for engine management[C]. Proceedings of 2007 IEEE International Conference on Fuzzy Systems, 2007:1-6.
    [57]Sepuilveda R, Castillo 0, et al. Development platform for intelligent integrated control based on type-2 fuzzy logic[C]. Proceedings of 2005 Annual Meeting of the North American Fuzzy Information Processing Society,2005:607-610.
    [58]Jerry M. Mendel, Robert I. John, et al. Interval type-2 fuzzy logic systems made simple[J]. IEEE Transactions on Fuzzy Systems,2006,14(6):808-821.
    [59]陈薇,孙增圻.二型模糊系统研究与应用[J].模糊系统与数学,2005,19(1):126-135.
    [60]任小涛.微细电火花加工智能控制算法的研究与应用[D].大连:大连理工大学,2009.
    [61]Qilian Liang, Jerry M. Mendel. Interval type-2 fuzzy logic systems:theory and design[J]. IEEE Transactions on Fuzzy Systems,2000,8(5):535-550.
    [62]Lingxuan Zhang, Zhenyuan Jia, et al. A two-stage servo feed controller of micro-EDM based on interval type-2 fuzzy logic [J]. Int J Adv Manuf Technol,2012,59:633-645.
    [63]邓聚龙.灰理论基础[M].武汉:华中科技大学出版社,2002.
    [64]党耀国,刘思峰等.灰色预测与决策模型研究[M].北京:科学出版社,2009.
    [65]邓聚龙.灰预测与灰决策[M].武汉:华中科技大学出版社,2002.
    [66]陈业华,邱菀华.灰色灾变预测模型及其应用[J].北京:北京航空航天大学学报,1998,24(1):79-82.
    [67]孙鑫,余安萍.VC++深入详解[M].北京:电子工业出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700