用户名: 密码: 验证码:
一个新的中心体蛋白TACP1被PLK1磷酸化修饰及其对中心体功能的调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中心体是参与细胞有丝分裂的重要细胞器,是动物细胞中主要的微管组织中心,它影响了细胞内所有与微管相关的过程,它与双极纺锤体的形成、纺锤体的定位和胞质分裂直接相关。纺锤体数目的异常直接干扰了双极纺锤体的形成以及染色体的分离过程。因此在分裂细胞中,中心体的复制和分离必须与染色体的复制和分离过程相协调。在特定的细胞周期中,中心体只能分裂一次,中心体数目过多会导致多极纺锤体形成,出现错误的有丝分裂过程,从而直接导致染色体非整倍性的发生,染色体的不稳定性通常认为是引起肿瘤发生的主要机制。
     中心体上结合的蛋白超过一百种,75%具有coiled-coil结构域,至今仍有许多中心体蛋白质尚未被发现,它们的功能也不完全清楚。中心体蛋白质中有不少是重要的有丝分裂激酶,与细胞周期和调定点调控高度相关。目前公认的有丝分裂调控蛋白主要有CdK家族,Polo家族,Aurora家族,NIMA家族,TTK,Cep55,Bub1,BubR1等。PLK1(Polo-like Kinase 1)就是在脊椎动物中的一种PLK,隶属于Polo家族,是一种与细胞有丝分裂高度相关的激酶。PLK1可以特异性地磷酸化蛋白质的丝氨酸/苏氨酸,它通过磷酸化它的下游底物来放大调节它们的功能活性。PLK1蛋白质与PLK的其它蛋白质在结构上可以分为两部分:N端的激酶结构域(kinase domain)和C端的Polo盒结构域(PBD,polo-box domain),PLK1通过PBD与其他蛋白质发生相互作用。它在进化中表现得相当保守,从酵母、果蝇、爪蟾到哺乳动物都有它的同源物。如果PLK1被敲除后会引起单级纺锤体,染色体排列异常,有丝分裂阻断等表型。另外PLK1在DNA损伤和调节细胞周期的各调定点也至关重要。
     本课题组在前一阶段的工作中利用端粒结合蛋白TRF1特异性抗体,通过免疫共沉淀结合蛋白质肽指纹谱技术从分裂期细胞裂解液中分离鉴定了一个TRF1新的相互作用中心体蛋白,将该蛋白命名为TACP1(Telomere Associated Centrosome Protein 1)。本研究是在此基础上对TACP1这个新的中心体蛋白功能展开,以期完善中心体蛋白网络中新蛋白TACP1的分子机制。
     本研究分为两个部分。
     第一部分:中心体蛋白TACP1与有丝分裂激酶PLK1相互作用和磷酸化调控的研究。本研究发现TACP1在细胞有丝分裂期能发生特异性磷酸化,通过免疫共沉淀后用质谱分析发现Thr221、Thr457是它的潜在磷酸化位点,而它们的磷酸化激酶可能分别是Nek2A和PLK1。随即通过免疫共沉淀和pull-down实验证实TACP1在体内、体外都能与PLK1形成复合物即两者之间存在相互作用,免疫荧光实验结果也显示它们在有丝分裂期共同定位于中心体。生化实验结果还提示PLK1与TACP1结合依赖于TACP1的羧基端。TACP1-C是PLK1的结合功能区,PLK1与TACP1结合并不依赖于TACP1的中心体定位功能域(TACP1-MC)。PLK1可以在体外条件下特异性磷酸化野生型TACP1,该实验还证实了PLK1激酶活性缺失型则无法磷酸化TACP1,模拟非磷酸化状态的TACP1457A突变型也无法被PLK1磷酸化,从而证实PLK1的确是TACP1蛋白457位苏氨酸的磷酸化激酶。当siRNA基因抑制内源性的PLK1后,TACP1稳定表达的Hela细胞G2/M期的细胞明显增多。我们推测TACP1得不到PLK1的磷酸化,过量非磷酸化的TACP1蛋白造成细胞无法通过G2/M调定点从而造成阻滞。为了深入探讨TACP1被PLK1磷酸化发生的时间空间信息,利用针对TACP1的457位苏氨酸磷酸化抗体进行免疫荧光实验,结果发现PLK1磷酸化TACP1发生于有丝分裂前期、前中期、中期,空间上位于中心体上。后期开始以后,TACP1在中心体上的信号就开始弥散削弱,末期时完全消失。siRNA基因干扰抑制PLK1表达导致TACP1无法定位于中心体,但如果仅抑制PLK1激酶活性,TACP1仍定位于中心体,因此TACP1的中心体定位依赖于PLK1而非PLK1的磷酸化作用。
     第二部分:TACP1对中心体功能的调控。为了探讨TACP1的功能,筛选建立了TACP1稳定表达的Hela细胞株。在此细胞株上进行免疫荧光实验,结果发现TACP1在细胞周期中的定位呈现出动态性,间期分布于胞质,部分共定位于F-actin,有丝分裂期则定位于中心体上。本研究主要立足于探讨TACP1在有丝分裂期的功能研究。利用互联网上的数据库,通过蛋白质序列比对发现TACP1与裂殖酵母中心体蛋白Pcp1同源。若用TACP1 siRNA干扰抑制内源性TACP1蛋白表达后,免疫荧光实验结果显示染色体异常排列的细胞明显增多:滞后染色体以及染色体排列紊乱等,并出现多中心体表型,计数这些异常表型的细胞,数量明显高于对照组。
     本研究运用分子生物学、细胞生物学和蛋白质组学的方法来研究有丝分裂激酶PLK1对中心体蛋白TACP1的磷酸化修饰,TACP1磷酸化的功能,TACP1在中心体上的细胞生物学作用,从而阐明TACP1参与的细胞周期调控信号通路和分子机制。获得以下结果①TACP1在细胞有丝分裂期能发生特异性磷酸化,Thr221、Thr457是它的潜在磷酸化位点,而它们的磷酸化激酶可能分别是Nek2A和PLK1。②体外的蛋白Pull-down实验和体内的免疫共沉淀实验证实TACP1在体内、体外都能与PLK1相互作用,免疫荧光实验结果显示它们在有丝分裂期共同定位于中心体。③证明了PLK1与TACP1结合依赖于TACP1的羧基端。④PLK1可以在体外的条件下特异性磷酸化野生型TACP1,而PLK1KD(激酶活性缺失型)则无法磷酸化TACP1,模拟非磷酸化状态的TACP1457A突变型也无法被PLK1磷酸化。表明PLK1的确是TACP1蛋白457位苏氨酸的磷酸化激酶。⑤过量表达的TACP1得不到PLK1的磷酸化,大量非磷酸化的TACP1蛋白会使细胞阻滞在G2/M期。⑥PLK1磷酸化TACP1时间上发生于有丝分裂前期、前中期、中期,空间上位于中心体上。⑦TACP1定位于中心体依赖于PLK1而非PLK1的磷酸化作用。⑧TACP1在细胞周期中的定位呈现出动态性,间期分布于胞质一部分与F-actin共定位,有丝分裂期则定位于中心体上。⑨TACP1与裂殖酵母中心体蛋白Pcp1同源。⑩TACP1参与了中心体稳定性的调控。综上所述,本研究拓展了对中心体蛋白质的认识,首次证实了中心体蛋白TACP1的中心体定位依赖于有丝分裂激酶PLK1,TACP1参与了中心体稳定性的调控,是一个新的有丝分裂相关蛋白。
The centrosome is a tiny organelle of surprising structural complexity and it plays a critical role during mitosis. In animal cells, the centrosome is the major microtubuleorganizing center (MTOC). Thus, it influences all microtubule (MT)-dependent processes and also contributes to control spindle bipolarity, spindle positioning and cytokinesis. Any aberration in centrosome numbers can interfere with bipolar spindle formation and chromosome segregation. Therefore, centrosome duplication and segregation need to be tightly coordinated with the duplication and segregation of the genome. Throughout development and adult life, this single centrosome then needs to be duplicated once, and only once, in every cell cycle. Thus, a condition that favors the overproduction of centrosomes could contribute directly to the initiation of chromosome imbalance, through the formation of multipolar spindles and aberrant mitosis. Chromosome imbalance is the most frequent manifestation of genomic instability in human cancer cells.
    Centrosomes bind more than 100 regulatory proteins, whose identities suggest roles in a multitude of cellular functions. A structural analysis revealed that a high proportion (75%) contained coiled-coil regions, a common feature of centrosomal proteins. Our understanding of centrosomal proteins is still limited. Many of these
    proteins are mitosis kinases. The most prominent mitotic kinase is the cyclin dependent kinase 1 (Cdk1), the founding member of the Cdk family of cell-cycle regulators. Recent studies have, however, brought to light additional mitotic kinases. These include members of the Polo family, the aurora family and the NIMA (never in mitosis A) family, as well as kinases implicated in mitotic CHECKPOINTS, mitotic exit and cytokinesis. PLK1 is one of mitotic kinases and tightly correlation with cell cycle. PLK1 regulates many proteins by phosphorylating serine/threonine of these substrates. All Plks have a similar architecture, with a canonical serine/threonine kinase domain at the amino terminus and a regulatory domain containing two signature motifs, known as polo boxes domain(PBD), at the carboxyl terminus. PLK1 is very conserved in many species, form yeast, Drosophila melanogaster, Xenopus laevis to mammals. PLK1 knock down by siRNA cause many phenotype such as monopolar spindle, chromosome misalignment, block in mitosis. PLK1 is also very critical in DNA damage and cell cycle checkpoint.
    In past study, a novel TRF1 interacting protein was identified from mitotic HeLa cell lysates by employing immunoaffinity isolatin and mass spectrometry (MS). We therefore refer to the protein as Telomere Associated Centrosomal Protein 1 (TACP1) since it distinguishes from other TRF1 binding proteins and locates to the centrosome. This study is based on the function of the novel centrosomal protein for the sake of indicating molecular mechanism of TACP1 in centrosome network.
    This thesis was divided into two parts.
    Part I : Study of interaction and phosphorylation between TACP1 and PLK1. In present study we noticed that TACP1 was specifically phosphorylated during mitosis, which was possibly responsible for TACP1 translocation and function in centrosome. Thr221 and Thr457 were identified as two potential phosphorylation sites by mass spectrometry. According to conserved motif analysis, the putative kinases were Nek2A and Plk1, respectively. The biochemical interaction in vitro between PLK1 and TACP1 was validated by pull-down assay and immunoprecipitation. Immunofluorescence studies revealed both PLK1 and TACP1 localized to centrosomes during mitosis. Deletion analysis indicated that the C-terminal
    coiled-coil domain of TACP1 but not TACP1-MC was required for PLK1 binding. Moreover PLK1 can phosphorylate TACP1 in vitro but not TACP1457A mutant. On the other hand PLK1 kinase death mutant can not phosphorylate TACP1 in vitro either. PLK1 knocked down by siRNA caused TACP1 stable expressing cells blocked in G2/M. So it is maybe caused by excessive non- phosphorylated TACP1 in cells and cells can not override G2/M checkpoint. In order to investigate the temporal and special information of phosphorylation of TACP1 by PLK1 we carried out immunofluorescence studies by using TACP1 457 phosphorylated antibody. And immunofluorescence studies also revealed that PLK1 phosphorylate TACP1 from prometaphase to anaphase in centrosome. PLK1 knock down by siRNA but not inhibiting kinase activity of PLK1 cause TACP1 disappearing in centrosome. We got the conclusion that centrosomal localization of TACP1 is regulated by polo-like kinase1 but not by its phosphorylation through immunofluorescence studies by using TACP1 457 phosphorylated antibody.
    Part II: TACP1's regulation of centrosome. As TACP1 is a novel protein we have constructed a TACP1 stable expressing cell line to carry out many researches on it. Notably, immunofluorescence studies shows localization of TACP1 is highly dynamic. TACP1 bind to F-actin in interface and with a centrosomal localization during mitosis. We focused in mitosis in this study. Detailed sequence alignment reveals the fission yeast's centrosomal protein Pcp1 is the closest ortholog of the protein. Depletion of TACP1 in HeLa cells resulted in multiplicity of spindle pole and misalignment of chromosomes in mitotic cells. The evolutionary conservancy of TACP1 in amino acid sequence and function suggested it facilitates the mitotic regulation especially in centrosme instability.
    In this study, we investigated the phosphorylation of TACP1 by PLK1, the function of phosphorylated TACP1 and its role in regulating of centrosome by using molecular biology, cell biology and proteomic methods. This thesis clarified the signal pathway of TACP1 in cell cycle and its molecular mechanism. The results were summed up as latter: ① TACP1 was specifically phosphorylated during mitosis, Thr221 and Thr457 were identified as two potential phosphorylation sites. The putative kinases
    were Nek2A and Plk1, respectively. ② The biochemical interaction in vitro between PLK1 and TACP1 was validated by pull-down assay and immunoprecipitation. Immunofluorescence studies revealed both PLK1 and TACP1 localized to centrosomes during mitosis. ③ The C-terminal coiled-coil domain of TACP1 but not TACP1-MC was required for PLK1 binding. ④ PLK1 can phosphorylate TACP1 in vitro but not TACP1457A mutant. On the other hand PLK1 kinase death mutant can not phosphorylate TACP1 in vitro either. ⑤ Excessive non- phosphorylated TACP1 in cells caused TACP1 stable expressing cells blocked in G2/M. ⑥ PLK1 phosphorylate TACP1 from prometaphase to anaphase in centrosome. ⑦ Centrosomal localization of TACP1 is regulated by polo-like kinase 1 but not by its phosphorylation ⑧Localization of TACP1 is highly dynamic. TACP1 bind to F-actin in interface and with a centrosomal localization during mitosis. ⑨ The fission yeast's centrosomal protein Pcp1 is the closest ortholog of the protein.⑩ TACP1 facilitates the mitotic regulation especially in centrosme instability. So this study contributes a better understanding of centrosomal proteins and firstly validates centrosomal localization of TACP1 is depended on PLK1. TACP1 is a novel mitosis related protein and facilitates the mitotic regulation in centrosme instability.
引文
1 Lopes CS, Sunkel CE. The spindle checkpoint: from normal cell division to tumorigenesis. Arch Med Res, 2003,34(3): 155-165.
    2 Rajagopalan H, Lengauer C. Aneuploidy and cancer. Nature, 2004,432(7015):338-341.
    3 Kops GJPL, Weaver BAA, Cleveland DW. On the road to cancer: aneuploidy and the mitotic checkpoint. Nat Rev Cancer, 2005,5:773-785.
    4 Duesberg P, Li R, Rasnick D, et al. Aneuploidy proceeds and segregates with chemical carcinogenesis. Cancer Genet Cytogenet, 2000,119:83-93.
    5 Goepfert TM, Brinkley BR. The centrosome-associated aurora /Ipl kinase family. Curt Top Dev Bio, 2000,49:331-342.
    6 Wang XJ, Greenhalgh AD, Jiang A, et al. Expression of a p53 mutant in the epidermis of transgenic mice accelerates chemical carcinogenesis. Oncogene, 1998,17:35-45.
    7 Zhou H, Kuang J, Zhong L, et al.Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nature Genet, 1998, 20:189-193.
    8 Brinkley B. Managing the centrosome numbers game: from chaos to stability in cancer cell division. Trends in Cell Biology, 2001,11:18-21.
    9 Bomens M. Centrosome composition and microtubule anchoring mechanisms. Curr Opin Cell Biol, 2002,14:25-34.
    10 Delattre M, Gonczy P. The arithmetic of centrosome biogenesis. J Cell Sci, 2004,117:1619-1630.
    11 Doxsey S. Re-evaluating centrosome function. Nat Rev Mol Cell Biol, 2001,2:688-698.
    12 Ou Y, Rattner JB. The centrosome in higher organisms: structure, composition, and duplication. Int Rev Cytol, 2004,238:119-182.
    13 Job D, Valiron O, Oaklcy B. Microtubulc nucleation. Curt Opin Cell Biol, 2003,15:111-117.
    14 Doxsey S, Zimmerman W, Mikule K. Centrosome control of the cell cycle. Trends Cell Biol, 2005,15:303-311.
    15 Stephen D, Dannel M, William T. Centrosomes in cellular regulation Annu. Rev. Cell Dev. Biol, 2005, 21:411-434.
    16 Jens SA, Christopher JW, Thibault M,et al. Proteomic characterization of the human centrosome by protein correlation profiling. Nature, 2003,426:570-574.
    17 Nigg EA. Mitotic kinases as regulators of cell division and its checkpoints. Mol Cell Bioi, 2001,2:21-32.
    18 Francis A, Herman H, Erich A. Polo-like kinases and the orchestration of cell division. Mol Cell Biol, 2004,5:429-439.
    19 Glover DM, Hagan, IM, and Tavares, AA. Polo-like kinases: a team that plays throughout mitosis. Genes Dev, 1998,12:3777- 3787.
    20 Francis A, Herman H, Erich A Nigg. Polo-like kinases and the orchestration of cell division. Mol Cell Biol, 2004,5:429- 439.
    21 Peters JM. The anaphase-promoting complex: proteolysis in mitosis and beyond. Mol. Cell 2002, 9:931 943.
    22 Elia AE, Rellos P, Haire LF, et al. The molecular basis for phosphodependent substrate targeting and regulation of PLKs by the Polo-box domain. Cell,, 2003,115, 83-95,
    23 Moritz M, Zheng Y, Alberts BM, et al. Recruitment of the gamma-tubulin ring complex to Drosophila salt-stripped centrosome scaffolds. J Cell Biol, 1998,142:775-786.
    24 Schnackenberg BJ, Khodjakov A, Rieder CL, et al. The disassembly and reassembly of functional centrosomes in vitro. Proc Natl Acad Sci USA, 1998, 95:9295-9300.
    25 Elia AE, Cantley LC, Yaffe MB. Proteomic screen finds pSer/pThr-binding domain localizing PLK1 to mitotic substrates. Science, 2003, 299:1228-1231.
    26 Qian YW, Erikson E, Li C, et al. Activated pololike kinase P1xl is required at multiple points during mitosis in Xenopus laevis. Mol. Cell Biol, 1998,18:4262-4271.
    27 Kumagai A, Dunphy WG. Purification and molecular cloning of P1xl, a Cdc25-regulatory kinase from Xenopus egg extracts. Science, 1996, 273: 1377-1380.
    28 Toyoshima-Morimoto F, Taniguchi E. Nishida E. PLK1 promotes nuclear translocation of human Cdc25C during prophase. EMBO Rep, 2002, 3:341 348.
    29 Roshak AK, Capper EA, Imburgia C, et al. The human polo-like kinase, PLK, regulates cdc2/cyclin B through phosphorylation and activation of the cdc25C phosphatase. Cellular Signalling, 2000, 12(6): 405-411.
    30 Qian YW, Erikson E, Taieb FE, et al. The polo-like kinase P1xl is required for activation of the phosphatase Cdc25C and cyclin B-Cdc2 in Xenopus oocytes. Mol Biol Cell, 2001,12(6): 1791-9.
    31 Hutchins JR, Dikovskava D, Clarke PR. Regulation of Cdc2/cyclin B activation in Xenopus egg extracts via inhibitory phosphorylation of Cdc25C phosphatase by Ca(2+)/calmodulin-dependent protein [corrected] kinase Ⅱ. Mol Blol Cell, 2003,14(10):4003-14.
    32 Abrieu A, Brassac T, Galas S, et al.The Polo-like kinase P1xl is a component of the MPF amplification loop at the G2/M-phase transition of the cell cycle in Xenopus eggs. J Cell Scl, 1998,111(12):1751-7.
    33 Izumi T, Mailer JL. Phosphorylation and activation of the Xenopus Cdc25 phosphatase in the absence of Cdc2 and Cdk2 kinase activity. Mol Bio Cell, 1995,6(2):216-26.
    34 Stevenson CS, Capper EA, Roshark AK, et al. Scytonemin-a marine natural product inhibitor of kinases key in hyperproliferative inflammatory diseases. Inflamm Res, 2002, 51 : 112 - 114.
    35 Stevenson CS, Capper EA, Roshark AK, et al. The identification and characterization of the marine natural product seytonemin as a novel antiproliferative pharmacophore. J Pharmacol. Exp Ther, 2002, 303:858 - 866.
    36 Liu Y, Shreder KR, Gai W, et al. Wortmannin, a widely used phosphoinositide 3-kinase inhibitor, also potently inhibits mammalian polo-like kinase. Chem Biol, 2005,12:99 - 107.
    37 Wipf P, Halter RJ. Chemistry and biology of wortmannin. Org Biomol Chem, 2005, 3:2053 - 2061.
    38 Steegmaier M, et al. BI 2536, a potent and highly selective inhibitor of Polo-like kinase 1 (PLK1), induces mitotic arrest and apoptosis in a broad spectrum of tumor cell lines. Clin Cancer Res, 2005,11:9147.
    39 Baum A, et al. In vivo activity of BI 2536, a potent and selective inhibitor of the mitotic kinase PLK1, in a range of human cancer xenograft models. Clin. Cancer Res, 2005,11: 9146.
    40 Mross K, et al. A phase I single dose escalation study of the Polo-like kinase 1 (PLK1) inhibitor BI 2536 in patients with advanced solid tumors. Clin Cancer Res, 2005,11: 9032.
    41 Gumireddy K, Reddy MV, Cosenza SC, et al. ON01910, a non-ATPcompetitive small molecule inhibitor of PLK1, is a potent anticancer agent. Cancer Cell, 2005,7:275 - 286.
    42 Itsuro Jinnai. Imatinib Therapy in Chronic Myelogenous Leukemia. Intern Med, 2007,46(2):95-7.
    
    43 Martinelli G, Iacobucci I, Soverini S, et al. Monitoring minimal residual disease and controlling drug resistance in chronic myeloid leukaemia patients in treatment with imatinib as a guide to clinical management. Hematol Oncol, 2006, 24(4): 196-204.
    
    44 Paschka P, Muller MC, Merx K, et al. Molecular monitoring of response to imatinib (Glivec) in CML patients pretreated with interferon alpha. Low levels of residual disease are associated with continuous remission. Leukemia, 2003,17(9): 1687-94
    
    45 Wei Y, Hardling M, Olsson B, et al. Not all imatinib resistance in CML are BCR-ABL kinase domain mutations. Ann Hematol, 2006,85(12):841-7.
    
    46 Goldman J. Monitoring minimal residual disease in BCR-ABL-positive chronic myeloid leukemia in the imatinib era. Curr Opin Hematol, 2005, 12(1): 33-9
    
    47 Giles FJ, Cortes JE, Kantarjian HM. Targeting the kinase activity of the BCR-ABL fusion protein in patients with chronic myeloid leukemia. Curr Mol Med, 2005,5(7):615-23.
    
    48 Wang L, Pearson K, Pillitteri L, et al. Serial monitoring of BCR-ABL by peripheral blood real-time polymerase chain reaction predicts the marrow cytogenetic response to imatinib mesylate in chronic myeloid leukaemia. Br J Haematol, 2002 ,118(3):771-7.
    
    49 Bhatia R, Holtz M, Niu N, et al. Persistence of malignant hematopoietic progenitors in chronic myelogenous leukemia patients in complete cytogenetic remission following imatinib mesylate treatment. Blood, 2003,101(12):4701-7.
    
    50 Hochhaus A, Kreil S, Corbin AS, et al. Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy. Leukemia, 2002 ,16(11):2190-6.
    
    51 Lahaye T, Riehm B, Berger U, et al. Response and resistance in 300 patients with BCR-ABL-positive leukemias treated with imatinib in a single center: a 4.5-year follow-up. Cancer, 2005,103(8): 1659-69.
    
    52 Hardling M, Wei Y, Palmqvist L, et al. Serial monitoring of BCR-ABL transcripts in chronic myelogenous leukemia (CML) treated with imatinib mesylate. Med Oncol, 2004, 21(4):349-58.
    
    53 Hughes TP, Kaeda J, Branford S, et al. International Randomised Study of Interferon versus STI571 (IRIS) Study Group. Frequency of major molecular responses to imatinib or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia. N Engl J Med, 2003, 349(15): 1423-32.
    54 Iacobucci I, Rosti G, Amabile M, et al. Comparison between patients with Philadelphia-positive chronic phase chronic myeloid leukemia who obtained a complete cytogenetic response within 1 year of imatinib therapy and those who achieved such a response after 12 months of treatment. J Clin Oncol, 2006, 24(3):454-9.
    55 Donato NJ, Wu JY, Stapley J, Lin H, et al. Imatinib mesylate resistance through BCR-ABL independence in chronic myelogenous leukemia.Cancer Res, 2004, 64(2):672-7.
    56 Wang L, Knight K, Lucas C, et al. The role of serial BCR-ABL transcript monitoring in predicting the emergence of BCR-ABL kinase mutations in imatinib-treated patients with chronic myeloid leukemia. Haematologica, 2006, 91 (2):235-9.
    57 Kantarjian HM, Cortes JE, O'Brien S, et al. Long-term survival benefit and improved complete cytogenetic and molecular response rates with imatinib mesylate in Philadelphia chromosome-positive chronic-phase chronic myeloid leukemia after failure of interferon-alpha.Blood, 2004, 104(7): 1979-88.
    58 Hochhaus A, La Rosee P. Imatinib therapy in chronic myelogenous leukemia: strategies to avoid and overcome resistance. Leukemia, 2004,18(8): 1321-31.
    59 Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature, 2003, 422:198-207.
    60 Andersen JS, Wilkinson CJ, Mayor T, et al. Proteomic characterization of the human centrosome by protein correlation profiling. Nature, 2003, 426:570-574.
    61 Jianping Lan, Yuanyuan Zhu, Zhen Dou, et al. TACPI interacts with TRF1 and regulates its localization to the centrosomes. Nature Structural & Molecular Biology, (Revised).
    62 Zhou XZ, Perrem K, Lu KP. Role of Pin2/TRF1 in telomere maintenance and cell control.J Cell Biochem, 2003,16:1785-1794
    63 Flory MR, Morphew M, Joseph JD, et al. Pcplp, an Spc110p-related calmodulin target at the centrosome of the fission yeast Schizosaccharomyces pombe. Cell Growth Differ, 2002, 13:47-58.
    1. Jens SA, Christopher JW, Thibault M, et al. Proteomic characterization of the human centrosome by protein correlation profiling. Nature,2003,426:570-574.
    2. Bornens M. Centrosome composition and microtubule anchoring mechanisms. Curt Opin Cell Biol, 2002,14:25-34.
    3. Delattre M, Gonczy P. The arithmetic of centrosome biogenesis. J Cell Sci, 2004,117:1619-1630.
    4. Doxsey S. Re-evaluating centrosome function. Nat Rev Mol Cell Biol, 2001,2:688-695.
    5. Ou Y, Rattner JB. The centrosome in higher organisms: structure, composition, and duplication. Int Rev Cytol, 2004,238:119-182.
    6. Fry AM, Mayor T, Meraldi P, et al. C-Napl, a novel centrosomal coiled-coil protein and candidate substrate of the cell cycle-regulated protein kinase Nek2. J Cell Biol, 1998,141:1563-1574.
    7. Mayor T, Stierhof YD, Tanaka K, Fry AM, Nigg EA.The centrosomal protein C-Napl is required for cell cycle-regulated centrosome cohesion. J Cell Biol. 2000, 151 (4):837-46.
    8. Goepfert TM, Brinkley BR. The centrosome-associated aurora / Ip1 kinase family.Curr Top Dev Biol, 2000, 49:331-342.
    9. Wang XJ, Greenhalgh AD, Jiang A, et al. Expression of a p53 mutant in the epidermis of transgenic mice accelerates chemical carcinogenesis. Oncogen, 1998,17:35-45.
    10. Zhou H, Kuang J, Zhong L, et al. Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nature Genet, 1998, 20:189-193.
    11. Brinkley B. Managing the centrosome numbers geam: from chaos to stability in cancer cell division. Trends in Cell Biology, 2001,11:18-21.
    12. Winey M. Cell cycle: driving the centrosome cycle.Curr Biol, 1999, 9(12):R449-52
    13. Okuda M, Horn HF, Tarapore P, et al. Nucleophosmin/B23 is a target of CDK2/cyclin E in centrosome duplication. Cell, 2000,103(1): 127-40
    14. Llamazares S, Moreira A, Tavares A, et al. Polo encodes a protein kinase homolog required for mitosis in Drosophila. Genes Dev, 1991,5:2153-2165.
    15. Glover DM, Ohkura H, Tavares A. Polo kinase: the choreographer of the mitotic stage? J Cell Biol, 1996, 135:1681-1684.
    16. Wiarmy F, Tavares A, Evans MJ, et al. Chromosoma, 1998,107:430 - 439.
    17. Giover DM, Hagan IM, Tavares AA. Polo-like kinases: a team that plays throughout mitosis. Genes Dev, 1998, 12:3777-3787.
    18. Descamps S, Prigent C. Two mammalian mitotic aurora kinases: who's who. Sci STKE, 2001, 73: PE1.
    19. Hannak E, Kirkham M, Hyman AA. et al. Aurora-A kinase is required for centrosome maturation in Caenorhabditis elegans.J Cell Biol, 2001, 155:1109 - 1116.
    20. Mayor T, Meraldi P, Stierhof YD, Nigg EA, et al. Protein kinases in control of the centrosome cycle. FEBS Lett, 1999, 452:92 - 95.
    21. Fry AM, Descombes P, Twomey C, et al. The NIMA-related kinase X-Nek2B is required for efficient assembly of the zygotic centrosome in Xenopus laevis. J Cell Sci, 2000, 113:1973 - 1984.
    22. Glover DM, Ohkura H, Tavares A. Polo kinase: the choreographer of the mitotic stage? J CellBiol, 1996, 135:1681-1684.
    23. Sunkel CE, Glover DM. Polo, a mitotic mutant of Drosophila displaying abnormal spindle poles..J Cell Sci, 1988, 89:25-38.
    24. Ohkura H, Hagan IM, Glover DM. The conserved Schizosaccharomyces pombe kinase plol, required to form a bipolar spindle, the actin ring, and septum, can drive septum formation in G 1 and G 2 cells. Genes Dev, 1995, 9:1059-1073.
    25. Kitada K, Johnson AL, Johnston LH, et al. A munt copy suppressor gene of the Saccharomyces cerevisiae G 1 cell cycle mutant gene dbf4 encodes a protein kinase and is identified as CDC5. Mol Cell Bio, 1993, 13:4445-4457.
    26. Kumagai A, Dunphy WG. Purification and molecular cloning of P1xl, a Cdc25-regulatory kinase from Xenopus egg extracts. Science,1996, 273:1377-1380.
    27. Golsteyn RM, Schultz SJ, Bartek J, et al. Cell cycle analysis and chromosomal localization of human PLK1, a putative homologue of the mitotic kinases Drosophila polo and Saccharomyces cerevisiae Cdc5. JCell Sci. 1994, 107:1509 1517.
    28. Li B, Ouyang B, Pan H, et al. Prk, a cytokine-inducible human protein serine/threonine kinase whose expression appears to be down-regulated in lung carcinomas. J Biol Chem, 1996, 271:19402-19408.
    29. Nigg EA. Polo-like kinases: positive regulators of cell division from start to finish. Curr Opin Cell Biol,1998, 10:776-783.
    30. Ouyang,B., Wang,Y. and Wei,D. Caenorhabditis elegans contains structural homologs of human prk and PLK. DNA Seq, 1999,10:109-113.
    31. Chase D, Golden A, Heidecker G. et al. Caenorhabditis elegans contains a third polo-like kinase gene. DNA Seq, 2000, 11: 327 - 334.
    32. Hamanaka R, Smith MR, O'Connor PM, et al. Polo-like kinase is a cell cycle-regulated kinase activated during mitosis. J Biol Chem, 1995, 270:21086-21091.
    33. Donaldson MM, Tavares AA, Hagan IM, et al. The mitotic roles of Polo-like kinase. J Cell Sci, 2001,114:2357-2358.
    34. Toyoshima-Morimoto,F., Tanguchi,E., Shinya,N.,et al. Polo-like kinase 1 phosphorylates cyclin B 1 and targets it to the nucleus during prophase. Nature, 2001, 410:215-220.
    35. Roshak AK, Capper EA, Imburgia C, et al. The human polo-like kinase, PLK, regulates cdc2/cyclin B through phosphorylation and activation of the cdc25C phosphatase. Cell Signal, 2000, 12(6):405-11.
    36. Smits VA, Klompmaker R, Arnaud L, et al. Polo-like kinase-1 is a target of the DNA damage checkpoint. Nat. Cell Biol, 2000, 2:672 676.
    37. Golan A, Yudkovsky Y, Hershko A. The cyclin-ubiquitin ligase activity of cyclosome/APC is jointly activated by protein kinases Cdkl-cyclin B and PLK. J Biol Chem, 2002, 277: 15552 15557.
    38. Kotani S, Tugendreich S, Fuji M, et al. PKA and MPF-activated polo-like kinase regulate anaphase-promoting complex activity and mitosis progression. Mol Cell, 1998, 1:371-380.
    39. Feng Y, Longo DL and Ferris DK. Polo-like kinase interacts with proteasomes and regulates their activity. Cell Growth Differ, 2001,12:29 - 37.
    40. Golsteyn RM, Mundt KE, Fry AM, et al. Cell cycle regulation of the activity and subcellular localization of PLK1, a human protein kinase implicated in mitotic spindle function. J Cell Biol, 1995, 129:1617-1628
    41. Li B, Ouyang B, Pan H, et al. Prk, a cytokine-inducible human protein serine/threonine kinase whose expression appears to be down-regulated in lung carcinomas. J Biol Chem, 1996, 271:19402-19408.
    42. Donohue PJ, Alberts GF, Guo Y,et al. Identification by targeted differential display of an immediate early gene encoding a putative serine/threonine kinase. J Biol Chem, 1995, 270:10351-10357.
    
    43. Ouyang,B., Pan,H., Lu,L., et al. Human Prk is a conserved protein serine/threonine kinase involved in regulating M phase functions. J Biol Chem, 1997,272:28646-28651.
    
    44. Lee KS, Erikson RL. PLK is a functional homolog of Saccharomyces cerevisiae Cdc5, and elevated PLK activity induces multiple septation structures. Mol Cell Biol, 1997,17: 3408-3417.
    
    45. Xie S, Wang Q, Wu H, et al. Reactive oxygen species-induced phosphorylation of p53 on serine 20 is mediated in part by polo-like kinase-3. J Biol Chem,2001, 276:36194 - 36199.
    
    46. Xie S, Wu H, Wang Q, et al. PLK3 functionally links DNA damage to cell cycle arrest and apoptosis at least in part via the p53 pathway. J Biol Chem, 2001,276:43305 43312.
    
    47. Simmons DL, Neel BG, Stevens R, et al. Identification of an early-growth-response gene encoding a novel putative protein kinase. Mol Cell Biol, 1992, 12:4164-4169.
    
    48. Ma S, Liu MA, Yuan YL, et al. The seruminducible protein kinase Snk is a G(1) phase polo-like kinase that is inhibited by the calcium- and integrin-binding protein CIB. Mol Cancer Res, 2003,1:376 384.
    
    49. Kauselmann G, Weiler M, Wulff P, et al. The polo-like protein kinases Fnk and Snk associate with a Ca(2+)- and integrin-binding protein and are regulated dynamically with synaptic plasticity. EMBO J,1999,18:5528 - 5539.
    
    50. Ohkura H, Hagan IM, Glover DM. The conserved Schizosaccharomyces pombe kinase plol, required to form a bipolar spindle, the actin ring, and septum, can drive septum formation in G1 and G2 cells. Genes Dev, 1995,9:1059-1073.
    
    51. Mulvihill DP, Petersen J, Ohkura H, et al. Plol kinase recruitment to the spindle pole body and its role in cell division in Schizosaccharomyces pombe. Mol Biol Cell, 1999,10:2771 - 2785.
    
    52. Donaldson MM, Tavares AA, Ohkura H, et al. Metaphase arrest with centromere separation in polo mutants of Drosophila.J Cell Biol, 2001,153:663 - 676.
    
    53. Gonzalez C, Sunkel CE and Glover DM. Interactions between mgr, asp, and polo: asp function modulated by polo and needed to maintain the poles of monopolar and bipolar spindles. Chromosoma, 1998,107:452-460.
    
    54. do Carmo AM, Tavares A , Glover DM. Polo kinase and Asp are needed to promote the mitotic organizing activity of centrosomes. Nat Cell Biol, 2001,3:421 - 424.
    
    55. Riparbelli MG, Callaini G and Glover DM. Failure of pronuclear migration and repeated divisions of polar body nuclei associated with MTOC defects in polo eggs of Drosophila. J Cell Sci, 2000, 113:3341 - 3350.
    
    56. de Carcer G, do Carmo AM, Lallena MJ, et al. Requirement of Hsp90 for centrosomal function reflects its regulation of Polo kinase stability. EMBOJ, 2001,20:2878 - 2884.
    
    57. Lange BM, Bachi A, Wilm M et al. Hsp90 is a core centrosomal component and is required at different stages of the centrosome cycle in Drosophila and vertebrates. EMBO J,2000, 19:1252-1262.
    
    58. Arnaud L, Pines J, Nigg EA. GFP tagging reveals human Polo-like kinase 1 at the kinetochore/centromere region of mitotic chromosomes. Chromosoma, 1998, 107:424-429.
    
    59. Lane, Nigg. Antibody microinjection reveals an essential role for human polo-like kinase I (PLK1) in the functional maturation of mitotic centrosomes. J Cell Bio, 1996,135:1701-1713
    
    60. Winey M. Cell cycle: driving the centrosome cycle.Curr Biol. 1999,9(12):R449-52
    
    61. Blangy A, Lane HA, d'Herin P, et al. Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo. Cell, 1995,83:1159 -1169.
    
    62. Blangy A, Arnaud L, Nigg EA. Phosphorylation by p34cdc2 protein kinase regulates binding of the kinesin-related motor HsEg5 to the dynactin subunit p150. J Biol Chem, 1997,272:19418-19424.
    
    63. Toyoshima-Morimoto F, Tanguchi E, Shinya N, et al. Polo-like kinase 1 phosphorylates cyclin B1 and targets it to the nucleus during prophase. Nature, 2001,410:215-220.
    
    64. Casenghi M, Meraldi P, Weinhart U, et al. Polo-like kinase 1 regulates Nlp, a centrosome protein involved in microtubule nucleation. Dev Cell, 2003, 5:113-125.
    
    65. Wang Q, Xie S, Dai W. Cell cycle arrest and apoptosis induced by human Polo-like kinase 3 is mediated through perturbation of microtubule integrity. Mol Cell Biol, 2002, 22:3450 - 3459.
    
    66. Ruan Q, Wang Q, Xie S, et al. Polo-like kinase 3 is Golgi localized and involved in regulating Golgi fragmentation during the cell cycle. Exp Cell Res, 2004, 294(1):51-9.
    67. Seemann J, Pypaert M, Taguchi T, et al. Partitioning of the matrix fraction of the Golgi apparatus during mitosis in animal cells. Science, 2002, 295:848 - 851.
    68. Lin CY, Madsen ML, Yarm FR, et al. Peripheral Golgi protein GRAAP65 is a target of mitotic polo-like kinase (PIK) and Cdc2. Proc Natl Acad Sci USA, 2000, 97:12589 - 12594.
    69. Sutterlin C, Lin CY, Feng Y, et al. Polo-like kinase is required for the fragmentation of pericentriolar Golgi stacks during mitosis. Proc Natl Acad Sci USA, 2001, 98:9128 -9132.
    70. Nakajima H, Toyoshima-Morimoto F, Taniguchi E. et al. Identification of a consensus motif for PLK (Polo-like kinase) phosphorylation reveals Mytl as a PLK1 substrate. J Biol Chem, 2003, 278:25277-25280.
    71. Leung GC, Hudson JW, Kozarova A, et al. The Sak polo-box comprises a structural domain sufficient for mitotic subcellular localization. Nat Struct Biol, 2002, 9:719 724.
    72. Elia AE, Cantley LC, Yaffe MB. Proteomic screen finds pSer/pThr-binding domain localizing PLK1 to mitotic substrates. Science,2003, 299:1228-1231.
    73. Pawson T, Nash P. Assembly of cell regulatory systems through protein interaction domains. Science, 2003, 300(5618):445-52.
    74. Elia AE, Relies P, Haire LF, et al. The molecular basis for phosphodependent substrate targeting and regulation of PLKs by the Polo-box domain.Cell, 2003,115(1):83-95.
    75. Lee KS, Grenfell TZ, Yarm FR, et al. Mutation of the polo-box disrupts localization and mitotic functions of the mammalian polo kinase PLK. Proc Natl Acad Sci USA, 1998, 95: 9301-9306.
    76. Song S, Grenfell TZ, Garfield S, et al. Essential function of the polo box of Cdc5 in subcellular localization and induction of cytokinetic structures. Mol Cell Biol, 2000,20(1):286-98.
    77. Jang YJ, Lin CY, Ma S, et al. Functional studies on the role of the C-terminal domain of mammalian polo-like kinase. Proc Natl Acad Sci USA, 2002, 99:1984 1989.
    78. Mundt KE, Golsteyn RM, Lane HA, et al. On the regulation and function of human polo-like kinase 1 (PLK1): effects of overexpression on cell cycle progression. Biochem Biophys Res Commun. 1997,239:377 385.
    79. Li B, Ouyang B, Pan H, et al. Prk, a cytokine-inducible human protein serine/threonine kinase whose expression appears to be down-regulated in lung carcinomas. J Bioi Chem, 1996, 271:19402-19408.
    80. Cheng L, Hunke L, Hardy CF. Cell cycle regulation of the Saccharomyces cerevisiae polo-like kinase cdc5p. Mol Cell Biol. 1998, 18(12):7360-70.
    81. Sanchez Y, Bachant J, Wang H, et al. Control of the DNA damage checkpoint by chkl and rad53 protein kinases through distinct mechanisms. Science. 1999, 286(5442):1166-71.
    82. Toczyski DP, Galgoczy D J, Hartwell LH. CDC5 and CKII control adaptation to the yeast DNA damage checkpoint. Cell, 1997, 90:1097-1106.
    83. Zhou BB, Elledge SJ. The DNA damage response: putting checkpoints in perspective. Nature, 2000, 408(6811):433-9
    84. Stairs VA, Klompmaker R, Amaud L, et al. Polo-like kinase-1 is a target of the DNA damage checkpoint. Nat Cell Biol, 2000, 2:672 676.
    85. van Vugt MA, Smits VA, Klompmaker R, et al. Inhibition of Polo-like kinase-1 by DNA damage occurs in an ATM- or ATR-dependent fashion.J Biol Chem, 2001,276(45):41656-60.
    86. Tsvetkov L, Xu X, Li J, et al. Polo-like kinase 1 and Chk2 interact and co-localize to centrosomes and the midbody.J Biol Chem, 2003, 278(10):8468-75.
    87. Ahn JY, Schwarz JK, Piwnica-Worms H, et al. Threonine 68 phosphorylation by ataxia telangieetasia mutated is required for efficient activation of Chk2 in response to ionizing radiation. Cancer Res. 2000,60(21):5934-6.
    88. Shimizu-Yoshida Y, Sugiyama K, Rogounovitch T, et al. Radiation-inducible hSNK gene is transcriptionally regulated by p53 binding homology element in human thyroid cells. Biochem Biophys Res Commun. 2001, 289(2):491-8
    89. Xie S, Wang Q, Wu H, et al. Reactive oxygen species-induced phosphorylation of p53 on serine 20 is mediated in part by polo-like kinase-3.J Biol Chem, 2001, 276:36194 - 36199.
    90. Xie S, Wu H, Wang Q, et al. PLK3 functionally links DNA damage to cell cycle arrest and apoptosis at least in part via the p53 pathway. J Biol Chem, 2001, 276:43305 43312.
    91. Bahassi el M, Conn CW, Myer DL, et al. Mammalian Polo like kinase 3 (PLK3) is a multifunctional protein involved in stress response pathways. Oncogen, 2002, 21:6633 6640.
    92. Xie S, Wu H, Wang Q, et al. Genotoxic stress-induced activation of PLK3 is partly mediated by Chk2. Cell Cycle, 2002, 1:424 429.
    93. Abrieu A, Brassac T, Galas S, et al. The Polo-like kinase Plxl is a component of the M PF amplification loop at the G2/M-phase transition of the cell cycle in Xenopus eggs. J Cell Sci, 1998, 111:1751-1757.
    94. Roshak AK, Capper EA, Imburgia C, et al. The human polo-like kinase, PLK, regulates cdc2/cyclin B through phosphorylation and activation of the cdc25C phosphatase. Cell Signal, 2000, 12(6):405-11.
    95. Toyoshima-Morimoto F, Taniguchi E, Nishida E. PLK1 promotes nuclear translocation of human Cdc25C during prophase. EMBO Rep, 2002, 3:341 348.
    96. Wei D, Wang Q, Traganos F. Polo-like kinases and centrosome regulation.Oncogene, 2002, 21:6195 - 6200.
    97. Yuan J, Eckerdt F, Bereiter-Hahn J, et al. Cooperative phosphorylation including the activity of polo-like kinase 1 regulates the subcellular localization of cyclin B1. Oncogene, 2002,21 (54): 8282-92.
    98. Budde PP, Kumagai A, Dunphy WG, et al. Regulation of Op18 during spindle assembly in Xenopus egg extracts. J Cell Biol. 2001, 153 (1): 149-58.
    99. Kotani S, Tugendreich S, Fuji M, et al. PKA and MPF-activated polo-like kinase regulate anaphase-promoting complex activity and mitosis progression. Mol Cell, 1998, 1:371-380.
    100. Losada A, Hirano M, Hirano T. Cohesin release is required for sister chromatid resolution, but not for condensin-mediated compaction, at the onset of mitosis. Genes Dev, 2002, 16(23):3004-16.
    101. Alexandru G, Uhlmann F, Mechtler K, et al. Phosphorylation of the cohesin subunit Sccl by Polo/Cdc5 kinase regulates sister chromatid separation in yeast. Cell, 2001, 105: 459-472.
    102. May KM, Reynolds N, Cullen CF, et al. Polo boxes and Cut23 (ApcS) mediate an interaction between polo kinase and the anaphase-promoting complex for fission yeast mitosis. J Cell Biol, 2002, 156:23 28.
    103. Descombes P, Nigg EA. The polo-like kinase P1xl is required for M phase exit and destruction of mitotic regulators in Xenopus egg extracts. EMBO J, 1998, 17:1328-1335.
    104. Feng Y, Longo DL, Ferris DK. Polo-like kinase interacts with proteasomes and regulates their activity. Cell Growth Differ, 2001, 12:29 - 37.
    105. Stegmeier F, Visintin R, Amon A. Separase, polo kinase, the kinetochore protein Slk19, and Spo12 function in a network that controls Cdcl4 localization during early anaphase.Cell, 2002,108(2):207-20
    
    106. Yoshida S, Toh-e A. Budding yeast Cdc5 phosphorylates Net1 and assists Cdcl4 release from the nucleolus. Biochem Biophys Res Commu, 2002,294(3):687-91.
    
    107. Bahler J, Steever AB, Wheatley S, et al. Role of fission yeast polo kinase in selecting the site of cell division. J Cell Biol, 1998, 143:1603-1616.
    
    108. Mulvihill DP, Hyams JS. Cytokinetic actomyosin ring formation and septation in fission yeast are dependent on the full recruitment of the polo-like kinase Plo1 to the spindle pole body and a functional spindle assembly checkpoint. J Cell Sci, 2002,115(Pt 18):3575-86.
    
    109. Carmena M, Riparbelli MG, Minestrini G, et al. Drosophila Polo kinase is required for cytokinesis. J Cell Biol, 1998,143(6):1603-16.
    
    
    110. Lee KS, Erikson RL. PLK is a functional homolog of Saccharomyces cerevisiae Cdc5, and elevated PLK activity induces multiple septation structures. Mol Cell Biol, 1997, 17: 3408-3417.
    
    111. Conn CW, Hennigan RF, Dai W, et al. Incomplete cytokinesis and induction of apoptosis by overexpression of the mammalian polo-like kinase, PLK3. Cancer Res, 2000. 60(24):6826-31.
    
    112. Neef R, Preisinger C, Sutcliffe J, et al. Phosphorylation of MKlp2 by PLK1 is required for cytokinesis. J Cell Biol, 2003,162;863-876.
    
    113. Adams RR, Tavares AAM, Salzberg A, et al. Pavarotti encodes a kinesin-like protein required to organize the central spindle and contractile ring for cytokinesis. Genes Dev, 1998, 12:1483-1494.
    
    114. Zhou T, Aumais JP, Liu X, et al. A role for PLK1 phosphorylation of NudC in cytokinesis. Dev Cell, 2003,5:127-138.
    
    115. Aumais JP, Williams SN, Luo W, et al. Role for NudC, dynein-associated nuclear movement protein, in mitosis and cytokinesis. J Cell Sci, 2003,116:1991-2003.
    
    116.Stevenson CS, Capper EA, Roshark AK, et al. Scytonemin-a marine natural product inhibitor of kinases key in hyperproliferative inflammatory diseases. Inflamm Res, 2002, 51:112- 114.
    
    117. Stevenson CS, Capper EA, Roshark AK, et al. The identification and characterization of the marine natural product scytonemin as a novel antiproliferative pharmacophore. J Pharmacol. Exp Ther, 2002, 303:858 - 866.
    118. Liu Y, Shreder KR, Gai W, et al. Wortmannin, a widely used phosphoinositide 3-kinase inhibitor, also potently inhibits mammalian polo-like kinase. Chem Biol, 2005,12: 99 - 107.
    119. Wipf, P. & Halter, R. J. Chemistry and biology of wortmannin. Org Biomol Chem, 2005, 3: 2053 - 2061.
    120. Steegmaier, M. et al. BI 2536, a potent and highly selective inhibitor of Polo-like kinase 1 (PLK1), induces mitotic arrest and apoptosis in a broad spectrum of tumor cell lines. Clin Cancer Res, 2005,11: 9147.
    121. Baum Aet al. In vivo activity of BI 2536, a potent and selective inhibitor of the mitotic kinase PLK1, in a range of human cancer xenografi models. Clin. Cancer Res, 2005,11: 9146.
    122. Mross K et al. A phase I single dose escalation study of the Polo-like kinase 1 (PLK1) inhibitor BI 2536 in patients with advanced solid tumors. Clin CancerRes, 2005,11: 9032.
    123. Gumireddy K, Reddy MV, Cosenza SC, et al. ON01910, a non-ATPcompetitive small molecule inhibitor of PLK1, is a potent anticancer agent. Cancer Cell, 2005,7:275 - 286.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700