用户名: 密码: 验证码:
生物质能—太阳能联合制冷的适配性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究项目是河南省教育厅自然科学研究指导计划项目(编号:2009B480001)
     全球能源供应紧张,2006年底世界石油、煤炭的储采比分别为41.0、147.0。中国基本能源消费居世界第二位,煤多油(气)少,石油供应对外依存度较高,能源安全问题日益严重。温室效应将会最为严重的环球生态灾难,节能减排成为应对气候变化的重要技术措施。对可再生能源、清洁能源和新型能源的开发是世界今后能源利用的总趋势,再生能源、清洁能源、新能源综合利用技术研究是今后能源科学基础研究和工程应用主要任务。
     主要研究工作:
     (1)分析研究了小型溴化锂吸收制冷机的效率问题,并从热工计算和实际设计两个方面提出了改进意见,并把优化设计思路在加工制冷机的过程实现。对小型制冷机组进行初步实测,效率为0.6,性能满足实验需要
     (2)对太阳能集热器进行选择计算,并对集热器工作效率进行动态和静态了测试,效率接近60%,满足试验要求。
     (3)在总结数理建模和仿真技术的基础上,对原有复杂系统构成的溴化锂联合吸收制冷系统简化为三个子系统,在不影响目标函数分析的条件下,舍去建筑空调系统,重点研究制冷系统和热源系统匹配关系,大大简化系统分析复杂程度。
     (4)针对系统动态过程特性,建立了锅炉系统、制冷系统、集热器简化的基于MATLAB-Simulink动态系统仿真平台的模型,对锅炉模型进行优化修正,提高了仿真计算效率。建立联合工况系统的耦合关联动态仿真系统模型,减少试验工作量。
     (5)建立适用对制冷系统经济技术分析的数学模型,进行初步分析。
     主要结论
     (1)通过对双热源不同连接方式的分析和仿真测试,发现入口温度的变化对太阳能集热器和吸收制冷机效率影响明显。入口温度高升高,太阳能集热器和制冷机组效率降低。串联方式运行的双热源系统,制冷机组出水首先连接太阳能集热器,再连接生物质锅炉是最优方案。
     (2)并联工况的分流比例K值增加,有利于提高锅炉效率。分流比例K值减小,有利于提高集热器效率。分析认为K值保持在0.5-0.6比较合适。
     (3)串联模式运行下的锅炉的换热效率较高,并联模式下太阳能集热器具有较高的效率。
     (4)系统循环水流量增加,各部分传热强化,有利于提高制冷系统效率。
     (5)对制冷机、热源、空调用户组成的整体系统存在最大热经济性数值及相应的制冷系数。制冷机必须牺牲一部分制冷系数,才能取得一定的热经济性。
Abstract: this paper supported by natural science research program guide of education department of Henan province 2009 (NO.2009B480001).
     Energy supply can not meet the requirements of Human. Oil and coal ratio of exploitation and reserve is 41/147 in 2006. China's energy consumption ranks second in the world. Large amount of oil imports and less oil and more coal is the objective reality. Energy conservation is that people need ways to deal with the greenhouse effect. Renewable energy, clean energy and new energy is the main source of energy used by people in the future. We need a lot of scientific research in new energy technologies.
     Main researches of the paper are as following:
     (1)Research Projects optimal Design of Absorption refrigerator LiBr from the thermodynamic calculation and the actual design. Performance to meet the experimental needs (η=0.6).
     (2)We calculate solar collectors and test the efficiency of solar collectors. Performance to meet the experimental needs (η=0.6).
     (3)We simplify the complex absorption refrigeration system of LiBr. Pilot project focus on the refrigeration system and the matching relation between the heat sources systems based on the simulation technology.
     (4)Research Projects Establishment of the boiler system, cooling system, solar collector model on the simulation technology and optimize the boiler model to improve the simulation efficiency.
     (5)Paper established a mathematical model of economic and technical analysis for the refrigeration system.
     Main researches Conclusions of the paper are as following:
     (1) Efficiency is very obvious change with changing the inlet temperature of the solar collector and refrigerator. Solar collectors and refrigeration units and reducing efficiency when Inlet temperature high-rise. Refrigeration unit exports first connect the solar collectors and biomass boilers connected is the optimal solution under the condition in series dual heat source system.
     (2) Index K increases will help improve boiler improve efficiency; index K decreases will help improve the efficiency of the collector. Index K is more appropriate to maintain 0.5-0.6 under parallel state.
     (3) Boiler with high efficiency under Series state. Solar collectors with high efficiency under parallel state.
     (4)Circulating water flow rate increases will help improve the efficiency of refrigeration system.
     (5)System has the maximum value of thermal economy and refrigeration coefficient. Experiment proved only the loss of Reduce the number of refrigeration coefficient in exchange for High economic.
引文
[1]马克思,恩格斯.马克思恩格斯选集(第4卷)[M].北京:人民出版社,1995:204.
    [2]李约瑟.中国科学技术史集[M].北京:科学出版社,1975:47-57.
    [3]戴维·波普诺.社会学[M].北京:中国人民大学出版社,1999:121- 122.
    [4]倪健民.国家能源安全报告[M].北京:人民出版社,2005:14.
    [5]孙永明.中国生物质能源与生物质利用现状与展望[J].可再生能源,2006,2(126):78- 82.
    [6]左然,等.可再生能源概论[M].北京:机械工业出版社,2007:19.
    [7]王汉臣.我国煤炭利用特点及污染防治对策[J].环境管理与技术,1994,1(6).
    [8]谷树忠,等.资源安全及其基本属性与研究框架[J].自然资源学报,2002,17(3):280- 285.
    [9]刘树臣,等.全球矿产资源供需形势及勘查动向[J].地质通报,2009, 28(2/3):160-165。
    [10]郝石生.我国有机地球化学的发展与瞻望[J].沉积学报, 1997, 15(2): 1-5.
    [11]中国现代国际关系研究院世界经济研究所.国际战略资源调查[M].北京:时事出版社,2005:66,78,81.
    [12]杨思文.高等工程热力学[M].北京:高等教育出版社,1998:55.
    [13]联邦德国H.D.贝尔著,杨东华等译.工程热力学(理论基础及工程应用)[M].北京:科学出版社,1985:57,89.
    [14]毛宗强.氢能—21世纪的绿色能源[M].北京:化学工业出版社.2005.1:1, 19,20, 70,187.
    [15] IEA.[QL]http://www.ieahia.org/.
    [16]倪健民.国家能源安全报告[M].北京:人民出版社,2005:17.
    [17] UNFCCC. United Nations Framework Convention on Climate Change[QL].1992.6.http://unfccc.int/2860.php.
    [17]联合国.京都议定书[QL].1998.http://www.un.org/chinese/climatechange/docs/ kpchinese. pdf.
    [18]朱永青译.Science [J].November 13:945-946, 2009.
    [19]编写组.制冷工程设计手册[M].北京:中国建筑工业出版社,1976:560-561.
    [20]吴正业.制冷及低温技术原理[M].北京:高等教育出版社, 2004: 8.
    [21]杨磊.制冷原理与技术[M].北京:科学出版社,1988:5.
    [22] G Walker Sterling. Cycle Cooling Engine with two-Phases, two-Components Working Fluid [J].Cryogenics, 1978, 14(8):459.
    [23]侯予.逆布雷顿循环空气制冷机系统试验台的建立[J].低温工程,2000,(2).
    [24] Dragoljub, Damljanovic. Remodeling the PN junction[J].IEEE Circuit &Devices, 1993, 11,35.
    [24]唐跃进,李敬东,程时杰等.超导变压器的基本特点和开发现状[J].电力系统自动化,2001,(3):69-74.
    [25] John T McMullan. Refrigeration and the environment-issues andstrategies for the future. Twentieth Int Congress of Refrigeration,Sydney, Australia, 19-24, Sept, 1999.
    [26]杨秀.美国国家建筑能耗统计概况[J].建筑科学,2010,4:8-11.
    [27]国家发改委能源研究所课题组.2005中国能源和碳排放报告[R].北京:科学出版社,2009.
    [28]江亿,薛志峰.北京市建筑用能现状与节能途径分析[J].暖通空调,2004,34:13-16.
    [29]杨婉,空调用制冷机组的综合分析[J].成都航空职业技术学院学报,2001,3:51-54.
    [30]陈光明,何一坚.中国吸收制冷研究最新进展[J].2007浙江暖通年会论文集,2007:5.
    [31] Platen Baltzar Carl , Munters Carl Georg. Refrigeration. United States Pat , 1609334. 1926 12 07.
    [32] Platen Baltzar Carl , Munters Carl Georg. Refrigeration. United States Pat, 1685764. 1928-09-25.
    [33] Einstein Albert , Szilard Leo. Refrigeration. United States Pat,1781541. 1930-11-11.
    [34] Bremser A T, Westmont N J . Solar operated refrigerating system. United States Pat,2030350.1936-02-11.
    [35] Shelton S V, Stewart S W. Bubble pump design for single pressure absorption refrigeration cycle[J].ASHRAE Trans, 2002,108 (1).
    [36] Stierlin S H, Ferguson J R. Absorption refrigeration unit. United States Pat, 4176529. 1979-12-04.
    [37] Alexander Rekey, Jacques Chiron. Process for cold or heat production with use of carbon dioxide and a condensable fluid. United States Pat, 4448031.1984-05-15
    [38] N.Ben Ezzine et a1,First and Second Law analysis of an ammonia-water double generator absorption chiller Desalination[J]. Solar cooling with the absorption principle,168(2004):137-144.
    [39] I.Horuz, T.M.S.Callander. Experimental investigation of a vapor absorption refrigeration system [J]. International Journal of Refrigeration,27(2004):10-16.
    [40]徐士鸣,吸收式制冷循环及制冷工质研究进展[J].流体机械,1992.27(4):52-57.
    [41] H.Y.Kim et a1. Development of a slug flow absorber working with ammonia-water mixture [J].International Journal of Refrigeration, 26(2003):508-515.
    [42] Kyongmin Kwon, Siyotmg Jeong. Effect of vapor flow on the falling—film heat and mass transfer of the ammonia/water absorber[J]. International Journal of Refrigeration, 27(2004):955-964.
    [43] Yong Tae Kang et a1.Experimental correlation of combined heat and mass transfer for NH3-H20 falling film absorption [J]. International Journal of Refrigeration, 22(1999):250-262.
    [44] Zhen Lu. Absorption refrigeration research in Shanghai Jiao tong University [J]. International Sorption Heat Pump Conference New York,2002:45-49.
    [45]李戬洪,马伟斌,江晴等. 100kW太阳能制冷空调系统[J].太阳能学报,1999,20(3):239-243
    [46] Crompton P, Wu Y. Energy consumption in China:past trends and future directions [J].Energy Economics, 2005, 27(1):195-208.
    [47] Aristotle Marat an。Optimization of integrated micro turbine and absorption chiller systems in CHP for buildings application [D]. The University of Maryland, 2002
    [48]薛卫华.变频控制VRV空调系统运行特性与能耗分析研究[D].上海同济大学,2000.
    [49]吴乃成.溴化锂制冷机的现状与发展[J].石油化工设计,1999,16(4):1-8.
    [50]吴步军.未来中国能源多元化趋势[J].应用能源技术,2010(2):1-5.
    [51]孙永明,袁振宏,孙振钧.中国生物质能源与生物质利用现状与展望[J].可再生能源,2006,2(126):78-82.
    [52]袁振宏,吕鹏梅,孔晓英.生物质能源开发与应用现状和前景[J].生物质化学工程,2006,40(12):13-21.
    [53]张宗兰.我国生物质能利用现状与展望[J].中外能源,2009, 14(4): 27-32.
    [54] http://www.eere.energy.gov/biomass/ 2007-3-11
    [55] http://www.hiroshima-u.ac.jp/upload/69/IDEC Jour 2009-7-24
    [56] http://www.solarindiaonline.com
    [57] http //www.energiahoje.com/brasilenergy/
    [58]苏亚欣,等.新能源与可再生能源概论[M].北京:化学工业出版社,2006:77.
    [59]钱能志,等.欧洲生物质能源开发利用现状和经验[J].中外能源,2007,12(3):10-14.
    [60]官巧燕,等.国内外生物质能发展综述[J].农机化研究,2007,11(11):20-24.
    [61]朱行.巴西生物燃料发展现状[J].粮食科技与经济,2007,6(6):47.
    [62]倪健民.国家能源安全报告[M].北京:人民出版社,2005:87-90.
    [63]孔令刚,蒋晓岚.生物质及其开发利用的价值与意义[J].中国科技论坛,2007,9(9):100-104.
    [64]胡国全.农村沼气发展现状、问题及对策[J].农业工程技术,2008(5):15-17.
    [65]刘清志,王爱春.生物质能开发利用对策[J].节能,2010,2(331):19
    [66]李志军.生物燃料乙醇发展现状、问题与政策建议[J].中国生物工程杂志,2008,28(7):139-141.
    [67]李艳芳,岳小花.我国生物质发电行业存在的问题及对策[J].中国地质大学学报:社会科学版,2009,9(2):37-41.
    [68]田宜水,赵立欣.中国农业生物质能发展现状与展望[J].生物产业技术,2007,9(l):37-44.
    [69]顾树华.开发利用生物质能是我国农林业发展的重要领域[J].研究与探讨.2006,28(9):11-15.
    [70]刘圣勇,生物质(秸秆)成型燃料燃烧设备研制及试验研究[D],郑州:河南农业大学,2003.
    [71]罗运俊,何梓年,王长贵.太阳能利用技术[M].北京化学工业出版社, 2005:7-17.
    [72] Cheng Zhuoming, Cui Xiaoyu, Li Meiling. Application of PRNN in dynamic modeling of absorption chiller[C]//Proceedings of the international conference on energy and the environment, Shanghai:Shanghai Scientific and Technical Publishers,2003:1435-1438.
    [73] http://www.zhongguosou.com/zonghe/dili_jingweidu.html
    [74]翟晓强.太阳能制冷系统应用现状及匹配设计方法研究[J].建设科技,2008,(18):65-69.
    [75]王如竹,翟晓强.基于太阳能热利用的生态建筑能源技术[J].建筑热能通风空调,2004,(1):1-10.
    [76]Guillemin J. Heat transfer intensification in fixed bed absorber [J].Heat Recovery System & CHP, 1993, 13(4):297-300.
    [77]张建一.国内外大中型冷库制冷剂的现状和发展动向[J].制冷学报,2009,(4):51.
    [78] Casey E ,Kevin J ,Development and Validation of a Room Air - Conditioning Simulation Model[J] ASHRAE Transaction,1998 ,Vol104:389-397.
    [79]张百良,樊峰鸣,等.生物质成型燃料技术及产业化前景分析[J].河南农业大学学报, 2005,39(1):111-115.
    [80]刘圣勇,张百良.生物质成型燃料及燃烧设备的研究与开发现状[J].可再生能源,2000, (4)。
    [81]李荫.生物质成型燃料热水锅炉的改进设计与试验[D].郑州:河南农业大学,2006.
    [82] Xinguang Dong,et al. Investigation on the ash characteristic during co-firing of coal and biomass[J].Proceedings of the CSEE,2009,29(26):118-124(in Chinese).
    [83]王学斌,等.300MW燃煤机组混燃秸秆成型燃料的试验研究[J].中国电机工程学报,2010,30(14):1-6.
    [84]袁振宏,等.生物质利用原理与技术[M].北京:化学工业出版社,2004:149-168.
    [85] P.Y.H.Fung,et al. The potential for bioenergy production from Australian forests,its contribution to national greenhouse targets and recent developments in conversion processes[J].Biomass and Bioenergy,2002,22:223-236.
    [86]张百良.农村能源工程学[M].北京:中国农业出版社,1999:201-211.
    [87]Keith E Harold .Absorption cycle modeling, Absorption chillers and heat pumps [J].CRC Press, 1996:253-265.
    [88] Jeong S et al. Dynamic simulation of an absorption heat pump for recovering [89 ]Astrom K J,Eklund K.A simplified non-linear model of a drum boiler turbine unit[J].International Journal of Control,1972,16(1):146-169.
    [90] Bell R D , Astrom K J . A low order nonlinear dynamic model for drum boiler-turbine-alternator units[R].Lund:Lund Institute of Technology,1979
    [91] Maffezzoni C . Boiler-turbine dynamics in power-plant control[J].Control Engineering Practice,1997,5(3):301-312.
    [92]曾德良,赵征,陈彦桥,等.500MW机组锅炉模型及实验分析[J].中国电机工程学报,2003,23(5):149-152.
    [93] Zeng Deliang,Zhao Zheng,Chen Yanqiao,et al.A practical 500MW boiler dynamic model analysis[J].Proceedings of the CSEE,2003,23(5):149-152(in Chinese).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700