用户名: 密码: 验证码:
外伸端板型半刚性组合节点力学性能影响因素的有限元分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
组合结构具有承载力高、延性好、抗震性能良好、施工方便等优点,己应用到建筑的各个领域,随着应用的不断扩展,对其研究也不断深入。目前对组合结构构件的力学性能研究已经比较成熟,但是,节点的研究相对滞后。传统的组合框架节点设计时,一般假定构件之间的连接为理想的铰接或刚接。而大量的实际工程表明,组合结构的梁柱连接是介于这二者之间的,即应该视为半刚性组合节点。半刚性组合节点具有变形大,韧性好,具有较强的耗能能力,能够改善超静定结构受力,施工方便快捷,充分利用了材料强度,经济性好等特点,但是半刚性组合节点的力学性能复杂,任何构造上的变化都会对节点的性能产生影响。
     因此,本人在查阅了国内外有关半刚性组合节点资料的基础上,总结了目前半刚性组合节点的研究现状、连接形式及分析模型,利用有限元分析软件ANSYS8.0建立端板型半刚性组合节点的有限元模型,在验证模型的正确性的基础上,利用该模型分析了混凝土板厚度、混凝土强度、螺栓预应力及摩擦对组合节点初始转动刚度、塑性极限弯矩和塑性极限转角的影响。
     通过研究得到如下结论:
     (1)随组合节点中混凝土板厚度的增加,端板型半刚性组合节点的初始转动刚度、塑性极限弯矩和塑性极限转角都有相应增加。
     (2)随组合节点中混凝土抗拉和抗压强度的增加,端板型半刚性组合节点的初始转动刚度、塑性极限弯矩和塑性极限转角都有相应增加。
     (3)螺栓上的预应力引起组合节点的初始转角,为了比较不同预应力对节点性能的影响,在消除计算结果中的初始转角的基础上,随着螺栓预应力的增大,组合节点的塑性极限弯矩和塑性极限转角都略有降低,而初始转动刚度却随着预应力的增大而略有增加。
     (4)单独考虑柱翼缘与端板之间的摩擦时,组合节点的弹性极限转角、弹性极限弯矩和初始转动刚度基本没有变化,而对组合节点的塑性极限弯矩和塑性极限转角有影响,但不是十分显著。
     (5)当端板与柱翼缘之间的摩擦和螺栓预应力共同作用时,端板型半刚性组合节点的初始转动刚度大幅度的增加,但对塑性极限弯矩提高有限。
With its advantages of high carrying capacity, good ductility , good seismic performance, and convenient construction, composite structure has applied to various construction fields, and be used to in-depth studies. Current composite structure components mechanics research comes to relatively mature, but the joints research is relatively juvenility. In traditional joints design of framework, the connection among components is assumed as perfect rigidly connection or hinged connection. But a large number of practical projects had shown that the connection of beams and columns in composite structure is between rigidly and hinge connection. So it should be regarded as semi-rigidity composite joints. A semi-rigidity composite joint has advantages of large deformation, good ductility and strong capacity of energy dissipation. It improves the power of statically indeterminate structure, and constructs conveniently, and uses strength of material fully, and has benefited economic characteristics. However, because semi-rigidity composite joints perform complex mechanics, any changes of structure will affect the performance of joints.
    Therefore, the author has done a lots of research and literature review about semi-rigidity composite joints, summed up current research status of semi-rigidity composite joints, connection form, and analysis models, established a finite element models of semi-rigidity composite joints with endplate models, using of finite-element analysis software ANSYS8.0, analyzed the effects of concrete slab thickness, strength, and pre-stress on bolt, friction impact on the initial rotation stiffness, plastic limit moment, and plastic limit corner, based on correctness of model certification.
    Through research, the author makes conclusions as following:
    (1)When the thickness of concrete slab increases, the initial rotation stiffness, plastic limit moment, and plastic limit corner of Semi-rigidity composite joints increase.
    (2) When the compression and tensile strength of concrete slab
    increases, the initial rotation stiffness, plastic limit moment, and plastic limit corner of Semi-rigidity composite joints increase.
    (3)Because the Pre-stress of blots conduce the initial corner of composite joints, in order to compare the performance of different Pre-stress of blots of composite joints, it needs to eliminate the initial corner in calculations. When the Pre-stress of bolts increases, plastic limit moment and plastic limit corner of Semi-rigidity composite joints decreases, and the initial rotation stiffness increases a little,
    (4) When analyze the friction between flange column and endplate by only, the elastic limit corner, the elastic limit moment, and the initial rotation stiffness of Semi-rigid composite joints remain unchanged, but it makes insignificant effect in plastic limit moment and plastic limit corner of Semi-rigidity composite joints.
    (5) When the friction between flange column and endplate and the Pre-stress of blots work together, the initial rotation stiffness of Semi-rigid composite joints increased significantly, but the plastic limit moment is insignificant.
引文
[1] 施龙杰,陈宏.钢结构半刚性梁柱节点的数值模拟分析.工业建筑,2003,增刊,731~734
    [2] 何天森,李国强,周宏宇,肖勇.端板连接组合节点的性能研究.2003,增刊,690~699
    [3] 胡夏闽,高华杰.组合结构在欧洲的新进展.工业建筑,2002,32(5),75~76;2002,32(6),72~73
    [4] 胡夏闽,过轶青,高华杰,刘建平.半刚性钢—混凝土组合节点受弯承载力的计算.南京工业大学学报(自然科学版),2002,24(5),25~29
    [5] 过轶青,胡夏闽.端板型钢—混凝土组合节点受弯承载力塑性计算方法.钢结构,2003,18(63)
    [6] 胡夏闽,过轶青,刘建平.半刚性组合节点初始转动刚度计算.工业建筑,2004,34(3)
    [7] Y. Xiao. Composite Connections in Steel and Concrete. Part 1: Exerimental Behavior of Composite Beam-Column Connections. 1994, vol.31, 3-30
    [8] Y. Xiao, B. S. Choo and D. A. Nethercot. Composite Connections in steel and concrete. Part 2-Moment Capacity of End Plate Beam to Column Connection. 1996, vol.37 (1), 63~91
    [9] Weynand K, Jaspart J P, Steenhuis M. Economy Studies of Steel Building Frames with Semi-rigid Joints. 1998, 46(1-3), 85
    [10] D. Anderson, J. M. Aribert, H. Bode and H. J. Kronenburger. Design rotation capacity of composite joints. The Structural Engineer, 2000, 78 (6), 25~28
    [11] D. A. Nethercot. Design of composite connections. The Structural Engineer, 1995, 73 (13), 218~219
    [12] L. Simoes da Silva, Rui. D. Simoes and Paulo J. S. Cruz. Experimental behavior of end-plate beam-to-column composite joints under monotonical loading. Engineering Structures, 2001, 23(11): 1383~1407
    [13] Altmann R, Maquoi R, Jaspart JP. Experimental study of the nonlinear behavior of beam-column composite joints. 1991, 18(1) 45~54
    [14] Roberto T. Leon. Semi-Rigid Composite Construction. Journal of Constructional Steel Research, 1990, 15, 99~120
    [15] Hlmut Bode, Hans-Josef Kronenberger. Semi-Rigid Composite Joints. Instiute of Steel Construction
    [16] J. M. Aribert. Classification and Behaviour Prediction of Beam-to-Column Composite Joints in Braced Frames. Instite National des Sciences Appliquees(INSA)-Rennes-France
    [17] 顾正维,孙炳楠,杨绮.高层钢结构伸展螺栓端板钢结点的三维非线性有限元分析.第十七届高层建筑结构学术会议论文 2002年
    [18] 不同排列伸展螺栓端板半刚性节点的三维非线性分析.钢结构,2003,18(68),54~68
    [19] 刁波,叶英华,焦俊婷.钢—混凝土组合构件非线性分析.工业建筑,2002,32(2),44~45
    [20] 郭兵,柳锋,顾强.多层钢框架梁柱端板连接中柱翼缘厚度探讨.建筑技术开发,2003,30.(11)10~11
    [21] 彭祖洋.板梁组合结构的有限元分析.管理与技术,2001,.4,20~22
    [22] 匡祯斌,孙炳楠,顾正维.螺栓端扳连接节点的三维非线性有限元分析.钢结构,2004,19(71),47~50
    [23] 孙飞飞,李国强,胡凌华.梁柱组合节点的实验研究新进展.建筑钢结构进展,2004,6(2),37~41
    [24] 杨顺滨.组合结构的应用及其发展前景.工程设计与研究,2005,1,38~40
    [25] 陈爱国,郭兵,赵海元.半刚性钢框架的弹性屈曲研究.《工程力学》增刊,113~116
    [26] 周瑞忠,尹志刚.半刚性连接框架的变形特点和截面内力计算.钢结构,2003,18(68),57~59
    [27] 施刚,石永久等.钢结构半刚性端板连接的设计方法与应用.工业建筑:2003,33(8)
    [28] 博嘉科技.有限元分析软件:ANSYS融会与贯通.北京:中国水利水电出版社,2002
    [29] ANSYS高级工程有限元分析范例精选.北京:电子工业出版社,2004
    [30] 最新经典ANSYS及Workbench教程.北京:电子工业出版社,2004.6
    [31] 李风.低周循环荷载下冷弯型钢与混凝土组合结构节点抗震性能研究:[博士学位论文].西安:西安建筑科技大学,2002
    [32] 高华杰.支托型半刚性组合节点的试验研究:[硕士学位论文].南京:南京工业大学,2003
    [33] 陈林.钢-混凝土组合梁与钢筋混凝土柱节点设计方法的试验研究:[硕士学位论文].南京:东南大学,2003
    [34] 王琼芬.端板型半刚性组合节点弹塑性有限元分析:[硕士学位论文].昆明:昆明理工大学,2006
    [35] 陈伟恩.钢—混凝土组合结构节点抗震性能研究:[硕士学位论文].福州:福州大学,2002
    [36] 徐秉业,刘信声.应用弹塑性力学.北京:清华大学出版社,1999
    [37] 刘北辰.工程计算力学——理论与应用.机械工业出版社,1994
    [38] 周维垣.高等岩石力学.水利电力出版社,1993
    [39] 钟善桐.高层钢—混凝土组合结构.华南理工大学出版社,2003
    [40] 陈忠汉,胡夏闽.组合结构设计.中国建筑工业出版社.2002
    [41] 陈惠发,A.F.萨里普.土木工程材料的本构方程.武汉:华中科技大学出版社,1998
    [42] 日本钢结构协会著,陈以一,傅功义译.钢结构计术总览[建筑篇].中国建筑工业出版社,2003
    [43] 混凝土结构设计规范,GB50010—2002
    [44] Eurocode 3.Annex J(欧洲规范3附录J),1993-1-1:291~315

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700