用户名: 密码: 验证码:
钢结构螺栓端板连接节点的受力性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高层钢结构框架中梁与柱连接节点,按其转动约束刚度可分为三类:刚性节点,半刚性节点和铰接节点。螺栓端板连接由于其易于安装和定位,施工较方便而被广泛采用。又由于其具有较高的连接刚度而常常被当作完全刚性的节点来处理。但根据R.Hansan和N.Kishi等人的研究表明,当螺栓端板连接的初始连接刚度大于10~(5.05)KN-m/rad时,这种连接才可以看作是刚性连接,否则就应将其视作半刚性连接。
     美国Northridge和日本Kobe地震震害表明,刚性连接的梁柱节点因延性较差容易发生脆性破坏。而螺栓端板连接这种连接形式只要经过正确的设计,就能够表现出较好的延性,能够承受较大的地震荷载。
     本文通过试验研究及有限元分析,对节点的受力性能、抗震延性和弯矩—转角曲线等方面进行了研究,主要内容包括:
     1.进行了三种螺栓端板连接节点的足尺试验,分析比较了它们的承载力、塑性变形能力等;
     2.对节点中不同厚度端板的静力分析,深入研究了端板对节点的初始连接刚度、梁的延性破坏、柱腹板承载力以及其本身接触状态的影响;
     3.对节点进行循环加载受力分析,研究节点的滞回曲线及包络线,对节点的抗震性能做出评价;
     4.对节点的弯矩—转角曲线及结构的抗震延性进行理论分析,总结了四参数的弯矩—转角模型和延性设计方法。
     通过本文的研究,可以得出以下结论:
     1.在试验结果的基础上,总结了节点的破坏模式和破坏规律。
     2.端板对节点的初始刚度和本身的接触应力有重要的影响,而对接触区域影响不大。
     3.分析了节点破坏模式对节点延性的影响。研究结果表明,柱腹板与梁翼缘同时进入屈服来共同耗散地震能量是一种较理想的破坏模式,有利于节点延性的发挥。
    
    浙江大学硕士学位论文2004
    中文摘要
    4.总结了物理意义明确的四参数弯矩一转角曲线表达式,为该类节点的实际应
    用提供了理论依据。
Connection in steel structures is divided into three types by rotating rigid: rigid connection, semi-rigid connection and ideal pin connection. The extended end-plate connections is fit for installation and orientation, so it has been widely adopted in practice. Duing to high stiffness, the joint is frequently regarded as rigid connection. But results from studis of R.Hansan and N. Kishi have shown that only when the initial stiffness of connection is more than 105.05 KN-m/rad, the joint is considered as rigid connection, otherwise it should be dealt with semi-rigid connction.
    From the Northridge earthquake and the Kobe earthquake, it is found out that the rigid connections of beam-to-column have poor ductility and result brittle fractures easily. But proper design of the end-plate connection has good ductility and can be subjected to severe earthquake.
    This paper,by means of experimental study and finite element analysis, investigates the behavior of the extended end-plate connections under static loading, cyclic loading and moment-rotation curves. The main scopes of this paper includes:
    1. Three kinds of bolted extended end-plate connections are tested.A series of parameters representing connections behavior are investigated and compared between the three types of connections.
    2. The paper studies the effect of end-plate to initial connection stiffness, ductility failure of beam, strength of panel zone and contact
    states itself through analysis of different thickness of end-plate in the extended end-plate connection.
    3. Evaluations of seismic behavior of connection are drawn by studying
    
    
    
    the hysteretic behavior of the connections under cyclic loading.
    4. Through theoretically analyzing of moment-rotation curve of connection and seismic ductility of structure, the paper summarizes four parameter moment-rotation curve model and ductile designing methods.
    The main conclusions are as follow:
    1. Based on the experiments and tested results, failure models and rules are studied.
    2. The effect of end-plate to initial connection stiffness and contact stress itself is obvious, but the effect to contact states may be neglected.
    3. Analyzing the effect of failure modes to ductility of connection. Studies have show that designing both the beam and the panel zone to participate effectively in dissipating the earthquake input energy is the appropriate failure mode.
    4. The moment-rotation-curves model has four physically explicit parameters and it may be useful for the appilication of this connection.
引文
[1] FEMA.FEMA-355D State of the Art Report on Connection Performance, USA: Federal Emergency Management Agency, 2000.
    [2] William E. Gates, Manuel Morden. Professional Structural Engineering Experience Related to Welded Steel Moment Frames Following the Northridge Earthquake.The Structural Design of Tall Buildings, 1996,Vol.5:29~44.
    [3] Duane K. Miller. Lessons Learned from the Northridge Earthquake. Engineering Structures, 1998, Vol.20.Nos 4-6:249~260.
    [4] The US-Japan Seminar Report. Organization and Summary of Discussions at the US-Japan Seminar on Innovations in Stability Concepts and Methods for Seimic Design in Structural Steel. Engineering Structures, 1998, Vol.20,Nos 4-6:242~248.
    [5] 中华人民共和国建设部.建筑结构可靠度设计统一标准GB50068-2001.北京:建筑工业出版社,2001.
    [6] Giulio Ballio, Carlo A. Castiglioni. An Approach to the Seimic Design of Steel Structures Based on Cumulative Damage Criteria. Earthquake Engineering and Structural Dynamics, 1994, Vol.23: 969~986.
    [7] 李国强,孙飞飞,沈祖炎.强震下钢框架梁柱焊接连接的断裂行为.建筑结构学报,1998,第19卷第4期:19~28.
    [8] 姚国春,霍立兴,张玉凤,杨新岐.焊接钢框架梁柱节点地震下的断裂行为研究.钢结构.2000.15:25-27.
    [9] 杨尉彪,高小旺,张维岳等.高层建筑钢结构梁柱节点试验研究.建筑结构.2001,Vol.31,NO.8.
    [10] 王燕等,多高层钢框架梁柱半刚性连接性能.建筑结构 第30卷 第9期 2000.9.
    [11] 李少甫,钢结构的螺栓端板连接.建筑结构 第28卷 第8期 1998.8.
    [12] 郭兵等,梁柱端板连接节点的滞回性能的试验研究.建筑结构学报.Vol.23,No3,2002.6.
    [13] 郑延银,H型钢框架梁柱节点的设计方法.南京建筑工程学报,1997年第4期.
    [14] FEMA.FEMA-355D State of the Art Report on Connection Performance, USA: Federal Emergency Management Agency, 2000.
    
    
    [15] Stephen A. Mahin, Ronald O. Hambruger, James O. Malley. An Integrated Program to Improve the Performance of Welded Steel Frame Buildings. Eleventh World Conference on Earthquake Engineering, Acapulco,Mexico,1996,Paper No. 1114.
    [16] R.P. Ojdrovic, M. S. Zarghamee. Fracture of Steel Moment Connections in the Northridge Earthquake. Proc. Instn Civ. Engrs Structs & Bldgs,1997,123,may:209~217.
    [17] K.C. Tsai, Shun Wu, Egor P. Popov. Experimental Performance of Seismic Steel Beam-Column Moment Joints. Journal of Structural Engineering, 1995,Vol. 121, No.6,Paper No. 8504:925~931.
    [18] Egor Paul Popov, Tzong-shuoh Yang, shih-Po Chang. Design of Steel MRF Connections before and after 1994 Northridge Earthquake. Engineering Structures, 1998, 20(12), 1030~1038.
    [19] Hardy H. Campbell Ⅲ. The Northridge Fractures: Are We Learning the Right Lessons. Civil Engineering, March 1995.
    [20] American Institute of Steel Construction (AISC). Seismic Provisions for Structural Steel Buildings. 1997.
    [21] P. Maranian. Vulnerability of Existing Steel Framed Buildings Following the 1994 Northridge (California, USA) Earthquake: Considerations for Their Repair and Strengthening, The Structural Engineering, 1997,Vol.75,No. 10.
    [22] FEMA. FEMA-350 Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings, USA: Federal Emergency Management Agency, 2000.
    [1] Swanson Analysis Systems, ANSYS Element Reference, SAS Inc. USA,1999
    [2] Swanson Analysis Systems, Structural Analysis Guide, SAS Inc. USA, 1999
    [3] Yoke Leong Yee and Robert E.Melchers(1986) Moment-Rotation curves for bolted connection. Journal of Strutural Engineering.
    [4] FEMA.FEMA-355D State of the Art Report on Connection Performance, USA: Federal Emergency Management Agency, 2000.
    [5] J.W.Hancock and A.C. Mackenzie. On The Mechanisms of Ductile Failure in High-Strength Steels Subjected to Muilti-axial Stress-states. Journal Mech. Phys. Solids, 1976,Vol.24, pp147~169
    [6] Le-Wu et al. Critical Issue in Achieving Ductile Behavior of welded Moment Connections. Journal of Constructional Steel Research. Vol.55(2000),325~341
    [7] Swanson Analysis Systems, ANSYS, Inc. Theory Reference, SAS Inc. USA,1999
    
    
    [1] 中华人民工和国建设部.建筑抗震试验方法规程JGJ101-96.北京:中国建筑工业出版社,1997
    [1] Melchers, R.E., and Kaur, D., "Behavior of Frames with Flexible Joints," Proceeding of the 8th Australian Conference on Mechanics of Structural Materials, Newcastle, Australia, 1982, pp.27.1~27.5
    [2] Frye, M. J., and Morris, G. A. "Analysis of Flexibly Connected Steel Frames," Canadian Journal of Civil Engineering. Vol. 2, No.3, Sept., 1975,pp.280~291
    [3] Jones, S. W., Kirby, P. A., and Nethercot, D. A., "Modelling of Semi-Rigid Connection Behavior and Its Influence on Steel Column Behavior," Proceedings of the international Conference on Joints in Structural Steelwork, Teeside Polytechnic, UK, 1981, pp. 5.37~5.87
    [4] Krishnamurthy, N., Huang, H. T., Jeffrey, P. K., and Avery, L. K., "Analytical M-Curves for End-Plate Connections," Journal of the Structural division, ASCE, Vol. 105, No. ST1, Proc. Paper 14294, Jan., 1979, pp. 133~145
    [5] Surtees, J. O., and Mann, A. P., "End-Plate Connections in Plastically Designed Structures," Proceeding of the confercence of Joint in Structures, Vol. 1, Paper 5, Univ. of Sheffield, England, July '70
    [6] Whittaker, D.,and Walpole W. R., "Bolted End-Plate Connections for Seismically Designed Steel Frames," Research Report 82-11 Dept. of Engineering, Univ. of Canterbury, New Zealand, Sept., 1982
    [7] Packer, J. A., and Morris, L. J., "A Limit State Design Method for the Tension Region of Bolted Beam-Column Connections," The Structural Engineer, Vol.55, No. 10, Oct., 1977, pp.446~458
    [8] Yee, Y. L., "Prediction of Nonlinear Behavior of End-Plate Eave Connections," thesis presented to Monash Univ., Melbourne, Australia, in 1984, in fulfillment of the requirements for the degree of Doctor of Philosophy
    [9] Agerskov, H., "High-Strength Bolted Connections Subject to Prying," Journal of the Structural Division, ASCE, Vol. 102, No. ST1, Proc. Paper 11840, Jan., 1976, pp.161~175
    
    
    [1] Bertero VV. Ductilty structural design. State-of-the art report. Ninth World Conf Earthquake Engng, 1988; 3: 673~86
    [2] Jaspart JP, Steenhuis M, Anderson D. Characterization of the joint properties by means of the component method. In: Control of semi-rigid behavior of civil engineering structures connections. COST Conference, Liege, 17-19 September 1998: 115-24
    [3] Mazzolani FM, Piluso V. Theory and design of seismic resistant steel frames. London: E&FN Spon, 1996
    [4] Mazzolani FM, Piluso V. A simple approach for evaluating performance levels of moment-resisting steel frames. In: Fajfar P, Krawinkler H, editors. Seismic design methodologies for the next generation of codes. Rotterdam: Balkema, 1997: 241~52
    [5] Mazzolani FM, Piluso V. Plastic design of seismic resistant steel frames. Earthquake Engng Struct. Dynamics 1997; 26:167~91
    [6] Bertero RD., Bertero VV. Tall reinforced concrete structures: Conceptual earthquake resistant design methodology. Report UCB/EERC-92/16,1992
    [7] Gioncu V, Petcu D. Available rotation capacity of wide-flange beams and beams-column Part Ⅰ: Theoretical approaches, Part Ⅱ. Experimental and numerical tests. J Const Steel Res. 1997, 43: 161~217

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700