用户名: 密码: 验证码:
镁合金的稀土元素合金化及复合材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源和环境日益成为全世界关注的重点,镁合金作为轻量化材料,应用在汽车行业,可以降低能耗、减轻汽车尾气造成的环境污染。作为结构材料,镁合金的室温性能优异,但高温强度、耐磨性和耐蚀性差,限制了镁合金的应用。如何提高镁合金的高温强度和耐磨性能成为研究的重点。
     本论文从提高镁合金高温强度、耐磨性为出发点,从合金元素强化、固溶时效强化和混杂增强复合材料等方面对镁合金进行研究。
     对固溶时效的镁钇钕合金进行显微组织分析和高温力学性能测试,在250℃Mg-Y-Nd合金的高温抗拉强度达到200MPa,延伸率22.5%,断口形貌为韧性断口。固溶时效的析出相在晶内弥散分布,在晶界为三角块状链连接,有效阻碍位错运动。析出相与基体界面为半共格界面,钇和钕元素固溶在基体使基体晶格发生畸变。摩擦磨损实验表明含钇钕的镁合金耐磨性能高于压铸AZ91合金。在AZ91-xSi合金中加入锑元素,Mg3Sb2化合物可以成为Mg2Si异质形核核心,从而改变Mg2Si汉字形状,细化晶粒,提高合金的强度和塑性。制备了Grp/Al2O3混杂增强、Mg-Y-Nd合金为基体的复合材料,干滑动摩擦磨损实验表明复合材料的润滑性能优异。
As the lightest metal structural materials magnesium alloy has low density and high performance in damping capacity, specific strength and stiffness. It is widely used in automobile, aerospace and home appliance area. But its low property as increasing the work temperature and low corrosion resistance limits its application area. Recently, some researches focus on increasing the strength of magnesium alloy and analyzing its mechanism in home and abroad. And this article gives some analysis around these two areas.
     The work chooses AZ91 alloy and Mg-Y-Nd alloy as matrix alloy. To increase the high temperature strength and wear resistance of the alloys, the investigation force on three aspects. First, analysis the microstructure of heat resistance Mg-Y-Nd alloy under the condition of cast and solution and aging, investigate the strengthening mechanism and test the high temperature properties and friction and wear property of T6 Mg-Y-Nd alloy. Second, fabricate graphite particle and Al2O3 short fibers hybrid Mg-Y-Nd matrix composite, along with the analysis of microstructure, mechanical and wear properties of the composite. Third, fabricate AZ91-xSi alloy and Sb metamorphic AZ91-xSi alloy, compare the microstructure of the alloy between and after metamorphism, then test its mechanical and wear properties.
     For heat resistance Mg-Y-Nd alloy choose the best solution and aging method, after the solution treatment at 525℃for 8h and aging treatment at 250℃for 16h, compare the microstructure, mechanical and wear properties of cast and T6 treatment alloy. The results show that the microstructure of cast Mg-Y-Nd alloy is composed ofα-Mg solid solution, Mg24Y5 and Mg12Nd eutectic phases which have reticular shape and distribute at the boundary of the grains, furthermore, there are some Y and Nd element solution in the matrix alloy. After aging treatment, the precipitated phases change to Mg24Y5、Mg12Nd and Mg14Nd2Y phases, the shape of precipitated phase inside of grains changes to block and short rod shape, inside grains the precipitated phase have dispersive distribution form; at the boundary of grains the precipitated phase connect as the shape of triangle. The distribution form of the precipitated phase enhance the strength of the alloy, at the same time some Y and Nd element inα-Mg solid solution makes theα-Mg solid solution change to supersaturated solid solution, and lead to lattice distortion of Mg, it baffles the dislocation movement and finally increases the strength of the alloy. So the precipitated phase enhances the strength of alloy by precipitation strengthening and dislocation strengthening. The precipitated phase in aging treatment has orientation relationship with the matrix, at the boundary of Mg14Nd2Y and matrix the dislocation regularly mismatch and show half coherent interface.
     The tensile test shows that at 200℃and 250℃, the tensile strength of T6 Mg-Y-Nd alloy is higher than AZ91 alloy at high temperature, at 200℃the tensile strength is 210MPa, and its elongation is the same as room temperature, but at 250℃the elongation goes up to 22%. The fracture surface at room temperature shows the character of brittle fracture but the fracture surface at high temperature shows the ductile fracture and has dimple in it. At dry sliding condition, the friction coefficient of T6 Mg-Y-Nd decreases as increasing the test load, at low load it changes fast, but at high load it become stable and when the test load achieve certain value the frction coefficient keeps invariant. The mass loss of the specimen increases as increasing the load, and the wear mechanism changes from oxidation wear to adhesive wear and delamination wear. At 380N, the temperature of the worn surface achieves melting temperature of the alloy and the wear mechanism changes to melting wear, the assistance of melting layer makes the specimen has lower friction coefficient. Analysis the worn surface at 2mm by XRD it shows onlyα-Mg solid solution, but under TEM analysis some square are found, but the square phase can’t be confirmed by XRD analysis because of low content. The formation of square phase is the alloy has solution process at high temperature during the friction and wear process, so it forms at non-equilibrium cooling. The salt spray test indicates that the corrosion property of T6 Mg-Y-Nd alloy is better than AZ91 alloy, and adding Y and Nd element can increase the corrosion resistance of Mg alloy.
     Fabricating composite can increase the heat and wear resistance of the Mg alloy. The test using Al2O3 and graphite as reinforcement fabricates Mg-Y-Nd matrix composite. The content of graphite 5%、10%、15% and 20% in volume fraction, respectively and the Al2O3 is 8 vol.%. The results show that the reinforcement combine closely with the matrix and disperse uniformly. Because of the assistance of Al2O3 short fibers, the microhardness and the tensile strength of the composite is higher than the single alloy, but the elongation decreases. The results of dry sliding wear test show that the friction coefficient of the composite decreases as increasing the test load, at the same load, the friction coefficient of the composite decreases as decreasing the graphite content. The mass loss increases as increasing the load, the composites show different wear mechanism at different test load, at the beginning of the wear process, the mechanism is mainly slight abrasive wear, as the temperature increasing the worn surface shows the character of oxidation wear, then the mechanism changes to delamination wear, but the melting wear can’t be found on the worn surface which indicates that the composite has better heat and wear resistance. When the graphite content is above 10%, the graphite on the worn surface and in the subsurface is extruded, then smeared on the worn surface as sliding, it forms lubricating film which can decrease the friction coefficient and friction force.
     Adding Si can increase high temperature strength of Mg alloy, and the price of which is cheap. Si can form Mg2Si with Mg, Mg2Si which has the melting point of 1085℃can works as strengthening phase especially when the content of Al is low. Mg2Si phase becomes coarsening easily and when it has the shape of chinese script type can lead to stress concentration and make the material become brittle. This test fabricates AZ91-xSi alloy, the Si content is 0.5%、1.0% and 1.5%, then adding 0.5% Sb in the series AZ91-xSi alloy, analysis the microstructure and properties of these two series alloy. The results shows that adding Si in the AZ91 alloy can refine the grains, and some Mg2Si phase of chinese script type are found in the alloy, the tensile strength of the alloy increasing but the toughness decreases and the fracture shows the character of brittle fracture. After adding Sb, the grains become smaller, Sb forms Mg3Sb2 with Mg, Mg3Sb2 becomes the core of heterogeneous nucleation of Mg2Si and it changes the shape of Mg2Si, so the tensile strength and toughness of the alloy increases and the fracture shows the character of ductile fracture. The mechanism of series alloy is similar as T6 Mg-Y-Nd alloy. At the same Si content, the wear resistance of the alloy increases after Sb metamorphic.
引文
[1] Ruden TJ, Albright DL.High Ductility Magnesium alloys in Automotive application[J].Advaced Mater&process,1999,145(6):28-32.
    [2] Friedrich H, Schumann S. Research for a new age of magnesium in the automotive industry. Journal of Materials Processing Technology, 2001, (117): 276-281.
    [3] Dwain M. A global review of magnesium parts in automobile. Light Metal Age, 1996, (8-9): 60-67.
    [4]王祝堂.世界原镁产能将大幅增长.有色金属世界,1999(10):51~54.
    [5]董春明,郭继东.1999年中国镁工业的基本现状与展望.中国镁业,2000(3):13~24.
    [6] Adolph Beck. The Technology of Magnesium and Its Alloys. London :F A Hughes and Co. Limited, 1940.
    [7]刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用[M] .机械工业出版社,2002.
    [8] Demmier A. Europe’s Automotive Components Business [J]. 1997(1):102~117.
    [9] Luo A, Renaud J, Nakatsugawa I, et al. Magnesium castings for automotive applications. JOM, 1995, 47(7): 28-31.
    [10] Vanfleteren R. Magnesium for automotive applications. Advanced Materials and Process, 1996, (5): 33-34.
    [11] Winandy C D. Magnesium die-casting in motor vehicles. Magnesium-the Light Weight Solution, 1998, (5): 8-9.
    [12]陈振华.镁合金.化学工业出版社:p2.
    [13]叶宏,冯燕熹,王希山.镁合金化学镀镍工艺研究.表面技术,2002.31(6):32-36.
    [14]曾爱平,薛颖,钱宇峰.镁合金的化学表面处理.“腐蚀与防护”.
    [15]张大顺.TL-2化学镀Ni-P合金工业研究.“表面技术”,1999.(4):12-16.
    [16] Avedesian Michael M, Baker Hugh. Magnesium and Magnesium Alloys. ASM International, 1999.
    [17]马图哈K H主编.非铁合金的结构与性能.丁道云等译.北京:科学出版社,1999.
    [18] Martio John.镁的消费远景及其对新增产能的要求.中国镁业,1999(5):1-9.
    [19]陆树荪,顾开道,郑来苏编.有色铸造合金及熔炼.北京:国防工业出版社,1983.
    [20] Partridge P G. Cyclic Twinning in Fatigue Close-Packed Hexagonal Metals. Philosophical Magazine,1965,12(119):1043~1054.
    [21] Clark J B. Age Hardening in a Mg-9wt.% Al Alloy. ACTA Metallurgica, 1968(16):141~152.
    [22] B Yrown. 49thanaual magnesium conference. Light Metal Age,1992.(50) :21-24.
    [23] WUYin shun, LIJiuqing,ZHANGWei,Corrosionbehvior of magnesium and magnesium alloys Trans Nonferrous Met.Soc,China 2004 (14):1-10.
    [24] Pekgueryuz M O. Avedesian M M .Mg alloying Some pole mials for Alloy Development. Keikinzakul Journal of Japan Institute of Light Metals .1992 (42): 679-682.
    [25]王渠东,曾小勤,铝宜振等.高温铸造镁合金的研究与应用.材料导报,2000,14(3):27.
    [26]郭旭涛,李培杰,曾大本.稀土在耐热镁合金中的作用.稀土,2002.23(2):63.
    [27]裴利霞,张金山,高义斌.稀土元素镧对AZ91合金显微组织和硬度影响铸造设备研究,2005.1.
    [28]刘光华,稀土固体材料学[M],北京:机械工业出版社,1997第一版.
    [29]范才河,陈刚,严红革,陈振华.材料导报,2005.
    [30]罗治平,张少卿,汤亚力等.稀土在镁合金溶液中作用的热力学分析.中国稀土学报,1995,13(2):119-122.
    [31]王渠东,吕宜振等.稀土在铸造镁合金中的应用.特种铸造和有色合金,1999.(1):40-43.
    [32] Nair K S, Mittal M C. Rare earths in magnesium alloys. Materials Science Forum, 1988, (30): 89-104.
    [33]稀土.冶金工业出版社,1978年版
    [34]王渠东,吕宜振,曾小勤等.镁合金在电子器材壳体中的应用.材料导报,2000,14(6):22-24.
    [35]高洪涛,吴国华,樊昱等.CeCl3对含Ce镁合金精炼过程中Ce损耗量的影响.中国有色金属学报,2005,15(12):2003-2008.
    [36]杨遇春.稀土漫谈.化学工业出版社,1998.
    [37]余琨,黎文献.含稀土镁合金的研究与开发川特种铸造及有色合金,2001(1):41-43.
    [38] Cahn R W,丁道云译.非铁合金的结构与性能[M] .北京:科学出版社,1999.
    [39] R. Ninomiya, T.Ojiro and K.Kubota, Acta Metall Mater. Vol. 43, No.2 (1995):669-674.
    [40] M. Mabuchi, K.Higashi, The critical strain rate for accommodation helper mecha-nism in superplasticity of metal matrix composites, Material Transactions, 1999,40(8),787-793.
    [41] Aliravci C A, Gruzleski J E. Effect of strontium on the shrinkage microporosity in magnesiums and casting [J]. AFS Transactions,1992,(115),353-362.
    [42] Aida T, Hatta H, Ramesh C, Workability and mechanical properties Lighter than waterMg-Li alloy [A], Proc of the 3rd Inter Magnesium Confer Manchester [C], Manchster , 1996 :143-153.
    [43]陈晓,傅高升,钱匡武.铸造镁合金的研究与发展现状.铸造技术,2004,(25):11.
    [44]黎文献,田文璋.镁及镁合金.中南大学出版社.
    [45]宽富.金属力学性质微观机理.科技技术出版社,1983.
    [46] P.Lyon, J.F. King and Nuttall, in Proc. 3rd Intl. Magnesium Conf (ed. G.. W. Lorimer),1996,99-108.
    [47]张菊梅,蒋百灵,王志虎,袁森.镁合金强韧化的研究现状及发展.热加工工艺,2006(35)第8期.
    [48]肖晓玲,罗承萍,刘江文等.AZ91镁铝合金中HCP/BCC相界面结构[J] .中国有色金属学报,2003,(23)2:25-29.
    [49] Hanawalt J D,Nelson C E, Peloubet J A. Corrosion Studies of Magnesium and its alloys ,Trans. AM .Inst.Mining.Met.Eng.1942,147:273-278.
    [50] James E H.The Effect of Heavy Metal Contamination on Magnesium Corrosion Perfermance. SEA Technical Paper,830523,Detroit,1983.
    [51]朱祖芳.有色金属的耐腐蚀性能及其应用.北京:化学工业出版社,1995 61-68.
    [52]黄正华.AZ91D镁合金的组织与性能研究:硕士学位论文.陕西:西安理工大学材料系,2000.
    [53] Kaibyshev R,GaliyevA, Sitdikov O. On the possibility of producing a nanocrystalling structrure in magnesium and magnesium alloy .nanostructured Materials , 1995 ,6(5-8):621-623.
    [54] Suiter J W,Wood W A.J.Inst. Metals, 1952,81(4)181-184.
    [55] Shigeru Iwasawa, YUJI Negishi, Shigeharu Kamdo, et al,Age hardening characteristics and high temperature tensile properties of Mg-Dy alloys. Journal of japan Institute of light metals, 1994,44(1):3-8.
    [56]黄亮.,铝和稀土元素对镁合金腐蚀性能的影响.硕士学位论文.上海:中科院上海冶金研究所,2001.
    [57]霍伟宏,李瑛镁.合金的腐蚀与防护材料导报,2001(7):25.
    [58]周婉秋,单大勇.2001年全国镁业年会论文集北京,2001:58.
    [59]张承忠.金属的腐蚀与防护.北京:冶金工业出版社,1985.
    [60]谢水生,黄声宏.半固态金属加工技术及其应用.北京:冶金工业出版社,1999.
    [61]曹楚南.腐蚀电化学原理[M] .北京:化学工业出版社,1994.
    [62] Rokhlin L L .Magnesium Alooys Containing Rare Earth Metals,London:Taylor and Francis,2003.
    [63] Rokhlin L L,Tarytina I E.Investigation of precipitation of a supersaturated solidsolution in alloys of magnesium with 23 wt.% terbium. Fizika Metallov Metalllovedenie,1985,59(6):1188-1193.
    [64] Vostry P ,Stulikova l,Smolla B, et al. A Study of Supersaturated Mg-Y-Nd,Mg-Y,Mg-Nd alloys zeitschrift fur Metallkande, 1988,79(5):340-344.
    [65] Inem B, Pollard G. Interface Structure and Fractography of a Magnesium-Alloy, Metal-Matrix Composite Reinforced with SiC Particles. Journal of Materials Science (UK), 1993, 28(16):4427~4434.
    [66] Lim Suk-won, Imai Tsunemichi, Nishida Yoshinori, etc. High Strain Rate Super Plasticity of TiC Particulate Reinforced Magnesium Alloy Composite by Vortex Method. Scripta Metallurgica et Materialia, 1995, 32( 11):1713~1717.
    [67] Li Y,Langdon TG. Creep Behavior of an AZ91 Magnesium Alloy Reinforced with Alumina Fibers. Metallurgical and Materials Transactions A (USA), 1999, 30A (8):2059~2066.
    [68] Nakagawa M, Wada T, Kamado S, etc. Manufacturing Conditions and Mechanical Properties of Alumina Short Fiber/AZ91D Magnesium Alloy Composites. Journal of Japan Institute of Light Metals, 1995, 45(1):21~26.
    [69] Rudajevova A, Lukac P, Kiehn J, etc. Thermal Diffusivity of Short-fibre Reinforced Mg-Al-Zn-Mn Alloy. Scripta Materialia, 1998, 40(1):57~62.
    [70] Zheng Mingyi, Wu Kun, Zhao Min, etc. Precipitates in Aged SiCw/AZ91 Magnesium Matrix Composite. Journal of Materials Science Letters, 1997, 16(13):1106~1108.
    [71]张修庆,滕新营,王浩伟.镁基复合材料的制备工艺.Hot Working Technology,2004,(3):58~61.
    [72] Mordike B L,Ebert T.Magnesium: Properties-application-potential.Materials Science and Engineering.2001,A302(1):37-45.
    [73] Mikucki B A,Mercer W E,Green W G, Magnesium matrix composites at Dow: status update, Light Metal Age,1986,(10): 16~20.
    [74] QI Qing-ju,LIU Yong-bing,YANG Xiao-hong. Effect of rare earths on friction and wear characteristics of magnesium alloy AZ91D. Trans.Nonferrous Met.Soc. 2003,13(1):111-115.
    [75] Polmear I J, Magnesium alloys and applications[J], Materials Science and Technology,1994,10(1):106.
    [76]陈剑峰,于志强,武高辉.金属基复合材料强度的影响因素.金属热处理,2003,28(2):1-9.
    [77] Mikuchi B A. Magnesium matrix composites at dow: status update. Light Metal Age, 1986, 44(10): 16-20, Y57.
    [78] Sire Urguhart A W.Molten metals,MMCs,CMCs.Advanced Materials&Processes,1991,140(1):35.
    [79] Cool A J,Wenner P S.Pressure in Infiltration of metal Matrix Composites.Materials Science and Engineering A.1991,144:189.
    [80] Clyne T W.Squeeze Infiltration Process for Fabrication of Metal-matrix Composites.Metallurgical Transaction A.1987,18:1519-1526.
    [81] Saavanan R A,Surappa M K.Fabrication and characterization and characteristics of pure magnesium -30vil.%SiCp particle composite. Material Science and Engineering A.2003,348(1-2):67-75.
    [82] Lloyd D J,Particles reinforced aluminium and magnesium matrix composites,International Materials Reviews,1994,39: 1~23.
    [83]李淑波,吴昆,郑明毅,姚忠凯。SiCw/AZ91复合材料及AZ91镁合金的高温压缩变形的研究材料工程2003,(2)17-20.
    [84] Mikucki B A,Mercer W E,Green W G, Extruded magnesium alloys reinforced with ceramic particles, Light Metal Age,1990,(6): 12~16.
    [85]王荣国,武卫莉,谷万里,复合材料概论,哈尔滨工业大学出版社[M],2004
    [86] Zheng M Y,Wu K,Kamado S,et al.Aging Behavior of squeeze cast SiCw/AZ91 magnesium matrix composite.Materials Science and Engineering A.2003,348(1-2):67-75.
    [87] Sasaki G, Yoshida M, Fuyama N et al. Modeling of compocasting process andfabrication of AZ91 magnesium alloy matrix composites. Journal of MaterialsProcessing Technology,2002,130~131: 151~155.
    [88]王小宁,杨林,陈立佳,等. SiC颗粒增强AZ81镁合金基复合材料.汽车工艺与材料. 2007, (2): 40-41.
    [89]都雨林,张文兴,柴东琅等,粉末冶金法制备SiC颗粒增强镁基复合材料工艺及性能的研究,热加工工艺,2001,(5): 24~26.
    [90] Trojanova Z,Lukac P,ferkel H,et al.Stability of microstructure in magnesium reinforced by nanoscaled alumina particles.Materials Science and Engineering A.1997,234-236.
    [91] Xi Y L,Chai D L,ZhangW X,et.al.Titanium alloy reinforced magnesium matrix composite with improved mechanical properties. Scripta Materialia,2006,54(1):19-23.
    [92] Huard G,Angers R,Krishnadev M R et al. SiCP/Mg composites made by low-energymechanical processing. Canadian Metallurgical Quarterly,1999, 38(3): 193~200.
    [93] Hong T W, Kim S K, Park G S et al. Fabrication of Mg2NiH. from Mg and Ni chips by hydrogen induced planetary ball milling. Materials Transactions JIM, 2000,41(3):393~398.
    [94]刘家浚.材料磨损原理及其耐磨性.北京:清华大学出版社,1993:44-59.
    [95]中国机械工程学会热处理学会编.金属的摩擦磨损与热处理[M] .机械工业出版社.
    [96]张春江,张荻.Mg-Li-Al合金的力学性能和阻尼性能[J] .中国有色金属学报,2000,10(1):10-14.
    [97] HIRATSUKA K, ENOMOTO A, SASADA T. Friction and wear of Al2O3, Zr2O and SiO2 rubbed against pure metals[J]. Wear, 1992,153(2):361-373.
    [98] ALAHELISTEN A, BERGMAN F, OLSSON M, et al. On the wear of alumimium and magnesium metal matrix composites[J]. Wear, 1993,165(2):221-226.
    [99] BAU P J, WALUKAS M. Sliding friction and wear of magnesium alloy AZ91D produced by two different methods[J]. Tribology International, 2000,33(8):573-579.
    [100]祁庆据,刘勇兵,杨晓红.稀土对镁合金AZ91D摩擦磨损性能的影响.中国稀土学报,2002,20(5):428-432.
    [101]祁庆据.石墨AZ91镁基复合材料及其摩擦磨损性能的研究.特种铸造及有色合金,2006,26(6):353-355.
    [102]杨晓红,刘勇兵,王军等.混杂增强AZ91复合材料的制备及其显微组织和性能.吉林大学学报(工学版),2004,34(1):60-64.
    [103]杜军,李文芳,刘耀辉等.AZ91镁合金及其Al2O3纤维-石墨颗粒混杂增强复合材料的滑动摩擦磨损性能研究.摩擦学学报,2004,24(4):341-344,s35.
    [104] MAJUMDAR J D, GALUN R, MORDIKE B L, et al. Effect of laser surface melting on corrosion and wear resistance of a commercial magnesium alloy[J]. Materials Science and Engineering A, 2003,A361(1-2):119-129.s36.
    [105] Rokhlin L L,Magnesium Alloy Containing Rare Earth Metals Published by Taylor and Francis ,2003.
    [106] Masalski T B,William W,Binary Alloy Phase Diagrams. Second Edition. Scot,Jr,1990.
    [107] Drits M E,Sviderskaya Z A,Rokhlin L L in metallurgiya,Metallovedenie Fiziko-khimicheskie Metody Issledovaniya. Russian Academy of Sciences Publishers,1962,(12):143-151.
    [108] Peason W B,The Crystal Chemistry and Physics of Metals and Alloy,Wiley-Interscience, New York-London-Sydney-Toronto,1972.
    [109] Drits M E, Rokhlin L L,Izv, Vyss,Metall ,1977,(1):168-171.
    [110] B.Smola,I. Stul′?kováEquilibrium and transient phases in Mg-Y-Nd ternary alloys, Journal of Alloys and Compounds 2004, (38): L1–L2.
    [111]潘金生.材料科学基础.清华大学出版社.
    [112]陈振华.镁合金.化学工业出版社,2004.
    [113] P.vostry,I.Stulikova,B.Smola,M.Cieslar,B.L.Mordike, AStudy of the decompomsition of Supersaturated Mg-Y-Nd ,Mg-Y, Mg-Nd Alloy,Z.Metall. 1988 79,34.
    [114] C.Antion,P.Donnadieu,F.Perrard,Hardenining precipitation in a Mg-4Y-3RE alloy ActaMaterialia 2003 (51) :5335-5348.
    [115] J.F.Nie,B.C.Muddle ,Ccharacterization of Strengthening Precipitate Phases in a Mg-Y-Nd alloy ,Acta Mater 2000.48,1691.
    [116] Williams J C,黄孝瑛译.金属和合金的强化.中美双边冶金学术会议论文集.“物理冶金进展评论”,1981,312.
    [117]胡赓祥,钱苗根.金属学.上海科学技术出版社,265-268.
    [118] YANG Xiao-hong LIU Yong-bing QI Qing-ju fraction and wear characteristics of Rare Earth-Containing magnesium alloy AZ91D PROCEEDINGS OF THE THIRD CHINA INTERNATIONAL DIECASTING CONGERSS.
    [119]杨晓红,张奎,张美娟,罗克帅,刘勇兵.Mg-Y4-Nd3合金的组织与摩擦磨损性能.吉林大学学报(工学版),2008 Vol38(4):835-839.
    [120] J.An,R.G..Li,Y.Lu, Dry sliding wear behavior of magnesium alloys WEAR 2008 (265):97-104.
    [121] M.F.ASHBY,J.ABULAWI and H.S.KONG. Temperature Maps for Frictional Heating in Dry Sliding[J].TRIBOLOGY TRANSACTIONS Volume 34 1991 (4):577-587
    [122] S.C.LIM and M.F.ASHBY.WEAR-MECHANISM MAPS. Acta metal.Vol.35.1987(1): 1-24.
    [123]黎文献.镁及镁合金.中南大学出版社.
    [124] Song Guangling,Andrj Atrens,Xian Liangwu,et al,Corrosion Behavior of AZ21,AZ501and AZ91 IN Sodium Chloride. Corrosion Science,1998 (40):1769-1971.
    [125] TurnbullK. Journal of Applied Physics.1950, 21(10): 1022-1028.
    [126] YANG Ming-bo(杨明波)1, 2, SHEN Jia(沈佳)1, PAN Fu-sheng(潘复生),Effect of Sb on Microstructure of semi-solid isothermal heat-treated AZ61-0.7Si magnesium alloy transaction of noferrous metals society of china 2009, (19):32-39.
    [127] B.L.BrantfR, Metal, trans. 1971 (6):1258.
    [128] Maziasy J and Mckamey C G. Mater Sci &Eng , 1992 , A152:322.
    [129] I.F.Zhang, L.C.Zhang, Y.W.Mai. Particle effects on friction and wear of aluminum matrix composites. Journal of Materials Science, 1995, (30): 5939-6004
    [130] Llorca J, Marin A, Ruiz J, et al. Particulate fracture during deformation of a spray formed metal-matrix composite. Metall Trans, 1993, 24A: 1575.
    [131] Mummery P M, Derby B, Scruby C B. Acoustic emission from particulate reinforced metal matrix composites, Acta Metall Mater, 1993,(41):1431.
    [132] Whitehouse A F, Clyne T W. Cavity formation during tensile straining of particulate and short fibre metal matrix composites. Acta Metall Mater, 1993, (41):1701.
    [133] Y.LIU, P.K.ROHATHI, S.RAY. Tribological characteristics of aluminum-50vol pct graphite composite. Metall Trans, 1993, 24A: 151-159.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700