用户名: 密码: 验证码:
7A09铝合金复杂盘饼类锻件缺陷形成机理及组织性能控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铝合金盘饼类锻件广泛应用于航空领域。近年来,为了满足减重的需要,该类零件多被设计成复杂形状的整体结构件,并且对锻件的精度和组织性能的要求越来越高,对于一些重要的受力构件,还要求锻件流线按照零件的几何外形分布。铝合金盘饼类锻件由于局部金属流程较长、金属变形流动复杂且难以控制,非常容易出现充不满和折叠等缺陷。特别是一些关键受力的盘饼类锻件,由于流线多要求沿径向或环向分布,而原始坯料的流线通常沿轴向分布,还非常容易产生流线露头、涡流和穿流等缺陷。此外,该类锻件由于形状复杂,各部位金属变形程度不均匀,再加上坯料及变形方案等的影响,将使锻后组织和性能难以控制。目前,对于复杂盘饼类锻件缺陷的形成机理及组织性能控制方面的研究还不够深入,且没有系统的理论进行指导。本文采用有限元模拟和实验相结合的方法深入系统地研究了7A09铝合金复杂盘饼类锻件等温成形过程中缺陷形成的机理,揭示了成形方案及热处理工艺对锻件组织性能的影响规律。
     采用热模拟实验方法研究了7A09铝合金的高温变形行为,获得了该合金的高温流变方程,绘制了7A09铝合金的热加工图,并结合变形组织确定了该合金等温成形的最佳工艺参数。
     采用数字化技术设计了复杂盘饼类锻件的等温精密成形方案和模具,实现了模具设计制造的一体化,提高了模具设计质量和加工精度,缩短了模具设计、制造周期,降低了成本。采用有限元模拟和实验相结合的方法分析了复杂盘饼类锻件成形时模膛的充填规律,研究了成形方案对成形质量的影响,揭示了该类锻件等温成形时充不满、折叠、粗晶、流线露头、涡流、穿流和穿筋等缺陷形成的机理,提出了复杂盘饼类锻件缺陷控制的有效措施,并采用优化工艺获得了尺寸精度、表面质量和内部流线均合格的7A09铝合金复杂盘饼类锻件。
     采用光学显微镜、扫描电子显微镜及透射电子显微镜等现代分析方法,通过大量实验研究了变形工艺对7A09铝合金复杂盘饼类锻件组织和性能的影响。实验结果表明,制坯时变形程度、摩擦条件和终锻前的坯料厚度、锻造火次等都对锻件最终的组织性能有很大的影响,制定等温成形工艺方案时必须考虑这些因素的影响,才能获得更优良的锻件组织和性能。
     研究了各种热处理工艺对7A09铝合金复杂盘饼类锻件多火次等温锻造锻件组织性能的影响规律。结果表明,对于7A09铝合金复杂盘饼类锻件,采用常规过时效处理能够获得较好的综合性能,采用合理的双级时效或回归再时效制度可以在保证良好的塑性条件下获得更优良的强度、硬度和抗应力腐蚀性能。
Aluminum alloy disk forgings have been widely used in aircraft domains. In recently years, the parts are designed mostly as integral structures with complex shape in order to lighten the weight of aircraft. Moreover, there are higher and higher requirements for the precision, the microstructures and properties of the forgings, and as for some important structrural parts which bear loading, it is also demanded that the flow lines distribute along geometrical shapes of the forgings. As for aluminum alloy complex shape forgings, the defects such as underfilling and folding are very likely to happen because of the long flow distance of some local metal, the complexity and controlling difficulty of metal deformation and flow. Especially for some key stressed disk forgings, the defects such as flow line outcrop, flow line vortex and fibre breaking are very likely to occur because the required radial or circumstantial flow lines result from the original bars with the axial flow lines. Furthermore, the metal deformation of each location is inhomogeneous because of the complex of the forgings and the influence of billet as well as the deformation scheme, which will make it difficult to forecast the forged microstructures and properties. It has not beeen studied profoundly on the forming mechanics of the defects, the microstructures and mechanical properties control of this kind of forgings at present, and it has been no systemic theories to guide so far. Therefore, in this dissertation, the defect mechanism of 7A09 aluminum alloy disk forging with complex shape were studied profoundly and systemically by combining FEM simulation with experiment, and the influence laws of forming scheme and heat treatment on microsturctures and properties of the forgings were disclosed.
     The hot deformation behavior of 7A09 aluminum alloy was investigated by means of thermal simulating experiments, and constitutive equation of flow stress of the alloy at high temperatures was obtained. What’s more, the hot processing maps of 7A09 aluminum alloy were drawn, and the optimal process parameters of isothermal forming of the alloy were established by combining the processing maps with deformed microstructures.
     The forming scheme and dies of isothermal precision forming for disk forging with complex shape were designed by means of digital technology. The integrated designing and manufacturing of dies was realized, which enchanced the design quality and manufacturing precision of dies, shortened the design and manufacturing period of dies, and reduced the costs. By combining FEM simulation with experiments, the cavity filling laws of forming disk forgings with complex shape were analyzed, the influences of billet schemes on forming qualities were studied, the occuring mechanisms of the defects arising in isothermal forming, such as underfilling, folding, coarse grain, flow line outcrop, flow line vortex, fibre breaking and rib breaking, were revealed, and the valid measures to control the forging defects of disk forgings with complex shape were put forward. What’s more, 7A09 aluminum alloy disk forgings with complex shape were obtained by optimal process, which are acceptable on not only size precision, but also surface qulity and interior flow lines.
     The analytical methods such as optical microscope (OM), scanning electron microscope (SEM) and transmission electron microscope (TEM) were used to study the influence of forming process on microstructures and mechanical properties of 7A09 aluminum alloy disk forging with complex shape through a lot of experiments. The experimental results show that the final microstructures and mechanical properties of the forgings were significantly influenced by deformation extent as well as friction condition during preforming, and by billet thickness and fire times during die forging. Thereby more excellent microstructures and mechanical properties can be gained only by considering these factors in determining the process schemes of isothermal forming.
     The influence laws of heat treatment on microstructures and mechanical properties of forgings formed by multi-fires isothermal forging were studied. The results show that proper combination properties can be obtained by adopting conventional overageing treatment for 7A09 aluminum alloy disk forgings with complex shape. By reasonable two-stage ageing or retrogression and reageing treatment, better strength, hardness and stress corrosion resistance can be gained under the condition of good plasticity.
引文
1 D. B. Shan, W. C. Xu, C.H. Si, et al. Research on Local Loading Method for an Aluminium-Alloy Hatch with Cross Ribs and Thin Webs. Journal of Materials Processing Technology. 2007, 187-188: 480~485
    2 D. B. Shan, F. Liu, W. C. Xu, et al. Experimental Study on Process of Precision Forging of an Aluminium-Alloy Rotor. Journal of Materials Processing Technology. 2005, 170 (1-2): 412~415
    3杨平,单德彬,高双胜等.筋板类锻件等温精密成形技术研究.锻压技术, 2006,(3): 55~58.
    4 J. Zrink, O. Stejskal, Z. Novy, et al. Relationship of Microstructure and Mechanical Properties of TRIP-Aided Steel Processed by Press Forging. Journal of Materials Processing Technology. 2007, 192-193: 367~372
    5 L. Cecchetto, D. Alain, D. Didier, et al. A silane Pre-Treatment for Improving Corrosion Resistance Performances of Emeraldine Base-Coated Aluminium Samples in Neutral Environment. Applied Surface Science. 2008.254(6): 1736~1743
    6李小强,李元元,胡连喜等.多道次镦-挤大变形对2024铝合金组织性能的影响.金属成形工艺. 2003,21(5):37~39
    7 F. S. Du, M. T. Wang, X. T. Li. Research on Deformation and Microstructure Evolution During Forging of Large-Scale Parts. Journal of Materials Processing Technology. 2007, 187-188: 591~594
    8杨洪涛,何剑雄,谭勇等. TC6钛合金环形锻件组织与性能的研究.宇航材料工艺. 2005, (4): 52~54
    9田福泉,李念奎,崔建忠.超高强铝合金强韧化的发展过程及方向.轻合金加工技术. 2005, 33(12):1~9
    10刘静安.研制超高强铝合金材料的新技术及其发展趋势.四川有色金属. 2004(4):1~6
    11曾渝,尹志民,潘青林,郑子樵,刘志义.超高强铝合金的研究现状及发展趋势.中南工业大学学报. 2002, 33(6): 592~596
    12王洪,付高峰,孙继红,李兴杰,姜澜.超高强铝合金研究进展.材料导报, 2006, 20(2): 58~60
    13弗得良捷尔,吴学.高强度变形铝合金.上海科技出版社, 1963: 6~9
    14 S. Pratihar, V. Stelmukh, M.T. Hutchings, et al. Measurement of Residual Stress Field in MIG-welded Al-2024 and Al-7150 Aluminium Alloy Compact Temsion Speciments. Materials Science and Engineering A. 2006, 437(1): 46~53
    15蹇海根,姜锋,徐忠艳,官迪凯.航空用高强韧Al-Zn-Mg-Cu系铝合金的研究进展.热加工工艺. 2006, 35(12): 61~66
    16王涛,尹志民.高强变形铝合金的研究现状和发展趋势.稀有金属. 2006, 30(2): 197~202
    17 A. L. David, M. H. Ray. Aluminum Alloy Development Efforts for Compression Dominated Structure Aircraft. Light Metal Age. 1991, 2(9): 11~15
    18吴一雷,李永伟.超高强度铝合金的发展和应用.航空材料学报. 1994, 14(1): 49~55
    19张永安,韦强.喷射成形制备高性能铝合金材料.机械工程材料. 2001, 25(4): 22~25
    20 T. S. Srivatsan, G.. Guruprasad, et al. The Quasi Static Deformation and Fracture Behaviou of Aluminum Alloy 7150. Materials & Design. 2008, 29(4): 742~751
    21黄瑜.一种强度高于钛的超高强铝合金.国内外行业动态. 2005, 24(3): 42
    22 T. S. Srivatsan. Microstructure, Tensile Properties and Fracture Behaviour of Alloy 7150. Journal of Material Science. 1992, 27(17): 4772~4781
    23田福泉,李念奎,崔建忠.超高强度铝合金强韧化的发展过程及方向.轻合金加工技术. 2005, 33(2): 1~9
    24 B. Q. Xiong, Y. A. Zhang, L. K. Shi, et al. Research on Ultra High Strength Al-11Zn-2.9Mg-1.7Cu Alloy Prepared by Spray Process. Materials Science Forum. 2005, 475-479(4): 2785~2788
    25 Q. Wei, B. Q. Xiong, Y. A. Zhang, et al. Production of High Strength Al-Zn-Mg-Cu Alloys by Spray Forming Process[J]. Transaction of Nonferrous Metals Society of China. 2001, 11(2): 258~261
    26 J. A. Juarez-Islas, R. Perez. Microstructurel and Mechanical Evaluations of Spray-Deposited 7×××Al-Alloys After Conventional Consolidation. Mater Sci Eng A. 1994, 179-80(1): 614~618
    27 P. Lengseld, J. A. Juarez Islas, et al. Microstructure and Mechanical Behavior of Spray Deposited Zn Modified 7×××Series Al Alloys. International Journal of Rapid Solidification. 1995, 8(4): 237~265
    28杨林,田冲,陈桂云等.喷射沉积AlZn12Mg2Cu2合金的组织结构及力学性能.材料工程. 2002, (2): 23~26
    29 M. Kanno, I. Araki, Q. Cui. Precipitation Behavior of 7000 Alloys During Retrogression and Re-aging Treatment. Materials Science Technoloty. 1994, 10(7): 599~603
    30刘晓涛,崔建忠. Al-Zn-Mg-Cu系超高强铝合金的研究进展.材料导报. 2005, 19(3): 47~51
    31黄世民.铝合金在飞机结构上的应用和发展[J].轻合金,1985,(1):39~42
    32张君尧.铝合金材料的新进展[J].轻合金加工技术,1998,26(5):1~6
    33 H. Zhang, L. X. Li, D. Yuan, et al. Hot Deformation Behavior of the New Al-Mg-Si-Cu Aluminum Alloy During Compression at Elevated Temperatures. Materials Characterization. 2007, 58(2): 168~173
    34 R. Kaibyshev, F Musin, E. Avtokratova, et al. Deformation Behavior of a Modified 5083 Aluminum Alloy. Materials Science and Engineering A. 2005, 392(1-2): 373~379
    35 G. X. Tang, W. M. Mao, Z. H. Zhou. Thixotropic Behavior of a Semi-Solid AlSi6Mg2 Aluminum Alloy under Cyclic Shear Deformation, Beijing Keji Daxue Xuebao/Journal of University of Science and Technology Beijing. 2007, 29(3): 306~309
    36 N. Srinivasan, Y. V. R. K. Prasad, P. Rama Rao. Hot Deformation Behaviour of Mg-3Al Alloy—A Study Using Processing Map. Materials Science and Engineering A. 2008, 476(1-2): 146~156
    37 M. Vedani, F. D’Errico, E. Gariboldi. Mechanical and Fracture Behaviour of Aluminium-Based Discontinuously Reinforced Composites at Hot Working temperatures. Composites Science and Technology. 2006, 66(2): 343~349
    38 H. J. McQueen. Development of Dynamic Recrystallization Theory. Materials Science and Engineering A. 2004, 387-389: 203~208
    39 H. J. McQueen, C. A. C. Imbert. Dynamic Recrystallization: Plasticity Enhancing Structural Development. Journal of Alloys and Compounds. 2004, 378(1-2): 35~43
    40胡卓超,张德芬,黄涛,左良,王福. 3104铝合金的流变应力行为与动态再结晶.机械工程材料. 2005, 29(2): 6~9
    41王祖唐,关廷栋.金属塑性成形理论.机械工业出版社, 1989: 143~147
    42 G. S. Fu, K. W. Qian, W. Z. Chen, et al. Feature of Flow Stress of Aluminum Sheet Used for Can During Hot Compression. Transactions of Nonferrous Metals Society of China. 2000, 10(5): 671~674
    43傅高升,陈文哲,钱匡武.罐用铝材高温流变应力行为的研究.特种铸造及有色合金. 2005, 25(9): 513~516
    44 J. Zhou, T. G. Zhang, X. M. Zhang, L. Zhou. The Influence of Strain Rate and Solution Treatment on Dynamic Recrystallization of 7075 Aluminum Alloy. Rare Metal Naterials and Engineering. 2004, 33(6): 580~584
    45 H.Yamagata. Dynamic Recrystallization and Dynamic Recovery in Pure Aluminum at 83K. Acta Metallurgica et Materialia. 1995, 43(2): 273~279
    46 L. M. Dougherty, I. M. Robertson, J. S. Vetrano. Direct Observation of the Behavior of Grain Boundaries during Continuous dynamic Recrystallization in an Al-4Mg-0.3Sc Alloy. Acta Metallurgica et Materialia. 2003, 51(15): 4367~4378
    47 R. D. Doherty, D. A. Hughes, F. J. Humphreys, J. J. Jonas. Current Issues in Recrystallization: a Review. Materials Science & Engineering A. 1997, 238(2): 219~274
    48沈剑,唐京辉,谢水生. Al-Zn-Mg合金的热变形组织演化.金属学报. 2000, 36(10): 1033~1036
    49 H.J. McQueen. Development of Dynamic Recrystallization Theory. Mater. Sci. Eng. A. 2004, 387-389: 203~208
    50崔忠圻.金属学与热处理.机械工业出版社, 1988: 214~216
    51 A. M. Habraken, C. Bouffioux, M. Carton, J. Lecomte-Beckers. Study of a 2024 Aluminium Rod Produced by Rotary Forging. Journal of Materials Processing Technology. 2007, 184(1-3):19~26
    52 V. S. Senthil Kumar, D. Viswanathan, S. Natarajan. Theoretical Prediction and FEM Analysis of Superplastic Forming of AA7475 Aluminum Alloy in a Hemispherical Die. Journal of Materials Processing Technology. 2006, 173(3): 247~251
    53 I. Tikhovskiy, D. Raabe, F. Roters. Simulation of Earing During DeepDrawing of an Al-3% Mg Alloy(AA5754) Using a Texture Compont Crytal Plasticity FEM. Journal of Materials Processing Technology. 2007, 183(2-3): 169~175
    54 E. S. Puchi. Constitutive Equations for Commercial Purity Aluminum Deformed under Hot-Working Conditions. Journal of Engineering Materials and Technology, Transactions of the ASME. 1995, 117(1): 20~27
    55 A. D. Freed, K. P. Walker. Viscoplastic Model Development with an Eye Toward Characterization. J. Eng. Mater. Technol.. 1995, 117: 8~13
    56王孟君,杨立斌,甘春雷,彭大暑. 6063铝合金高温流变本构方程.华中科技大学学报(自然科学版). 2003,31(6): 20~26
    57 M. Zhou. Constitutive Equations for Modeling Flow Softening Due to Dynamic Recovery and Heat Generation During Plastic Deformation. Mechanics of Materials. 1998, 27(2): 63~76
    58王少林,阮雪榆,俞新陆.金属高温本构方程的研究.上海交通大学学报. 1996, 30(8): 20~24
    59 Z. Gronostajshi. The Constitutive Equations for FEM Analysis. Journal of Materials Processing Technology. 2000, 106(1-3): 40~44
    60 R. Q. Liang, S. Akhtar, Khan. A Critical Review of Experimental Results and Constitutive Models for BCC and FCC Metals over a Wide Range of Strain Rates and Temperatures. International Journal of Plasticity. 1999, 15(9): 963~980
    61 H.J. McQueen, N.D. Ryan. Constitutive Analysis in Hot Working. Materials Science & Engineering A. 2002, 332(1-2): 43~63
    62沈健.热压缩2091Al-Li合金的流变应力行为.稀有金属. 1998, 22(1): 47~50
    63 R. N. Wright, M. S. Paulson. Constitutive Equation Development for High Strain Deformation Processing of Aluminum Alloys. Journal of Materials Processing Technology 1998, (80–81):556~559
    64曾卫东,周义刚,周军等.热功当量加工图理论研究进展.稀有金属材料与工程. 2006, 35(5): 763~767
    65 Y. V. R. K. Prasak, H. L. Gegel, S. M. Doraivelu, et al. Modeling of Dynamic Material Behavior in Hot Deformation: Forging of Ti-6242. Metallurgical Transactions A. 1984, 15(10): 1883~1892.
    66 Y.V.R.K. Prasad, S. Sasidhara, V. K. Sikka. Hot Characterization of Mechanisms of Hot Deformation of As-Cast Nickel Aluminide Alloy. Intermetallics. 2000, 8(9-11): 987~995
    67 H. Ziegler, L. K. Yu. Progress in Solid Mechanics. Incompressible Reiner-Rivlin Fluids Obeying the Orthogonality Condition. Ingenieur-Archiv. 1972, 41(2): 89~99
    68 C. H. Park, Y. G. Ko, C. S. Lee, et al. High-Temperature Deformation Behavior of ELI Grade Ti-6Al-4V Alloy with Martensite Microstructure. Materials Science Forum. 2007, 551-552: 365~372
    69 S. Venuqopal, P. V. Sivaprasad. A Journey with Prasad's Processing Maps. Journal of Materials Engineering and Performance. 2003, 12(6): 674~686
    70 K. P. Rao, Y. V. R. K. Prasad, K. Sivaram. Deformation Processing Map for Control of Microstructure in Al-4Mg alloy. Materials Letters. 1990, 10(1-2): 66~70
    71 Y. V. R. K. Prasad, T. Seshacharyulu. Processing Maps for Hot Working of Titanium Alloys. Materials Science EngineeringA. 1998, 243(1-2): 82~88
    72 G. Ganesan, K. Raghukandan, R. Karthikeyan, B.C. Pai. Development of Processing Maps for 6061 AL/15SiCp Composite Material. Journal of Materials Processing Technology. 2005, 166(3): 423~429
    73 S. Ramanathan, R. Karthikeyan, G. Ganasen. Development of Processing Maps for 2124Al/SiCp Composites. Materials Science EngineeringA. 2006, 441(1-2): 321~325
    74 C. Y. Wang, X. J. Wang, H. Chang, K. Wu, M.Y. Zheng. Processing Maps for Hot Working of ZK60 Magnesium Alloy. Mater. Materials Science EngineeringA. 2007, 464 (1-2): 52~58
    75 Tae Kwon Ha, Jae Young Jung. A Study on the Hot Workability of a Cast Ti-Al Intermetallic Compound. Materials Science EngineeringA. 2007, 448-451: 139~143
    76 V. Gopala Krishna, Y. V. R. K. Prasad, N. C. Birla, et al. Processing Map for the Hot Working of Near-αTitanium Alloy 685. Journal of Materials Processing Technology. 1997, 71 (3): 377~383
    77吕炎.精密塑性体积成形技术.国防工业出版社, 2003: 1~30
    78肖景容等.精密模锻.机械工业出版社, 1985: 156~161
    79 D. B. Shan, W. C. Xu, Y. Lu. Study on Precision Forging Technology for a Complex-shaped Light Alloy Forging. Journal of Materials Processing Technology. 2004, 151(9): 289~293
    80 R. Kopp. Some Current Development Trends in Metal Forming Technology. Materials Processing Technology. 1996, 60(6): 1~10
    81 E. Korner. Possibilities of Warm Extrusion in Combination with Cold Extrusion. Journal of Materials Processing Technology. 1996, 75(7): 63~65
    82胡亚明,车路长.精锻成形技术现状及发展.锻压机械. 1996, 31(3): 6~92
    83王勇.铝合金不动环等温成形实验研究.哈尔滨工业大学硕士学位论文. 2006: 1~6
    84曹红锦,陈毅挺.国外军工生产精密成形技术的现状及发展趋势.综述. 2004,(3): 8~10
    85吕炎,单德彬,薛克敏等.大型、复杂形状锻件等温精锻工艺的研究与应用.机械工人(热加工). 2000, (2):15~16
    86 D. B. Shan, Z. Wang, Y. Lu, K. M. Xue. Study on Isothermal Precision Forging Technology for a Cylindrical Aluminium-Alloy Housing. Journal of Materials Processing Technology,1997,(72):403~406
    87 D.B. Shan, W.C. Xu, Y. Lu. Study on Precision Forging Technology for a Complex-Shaped Light Alloy Forging. Journal of Materials Processing Technology. 2004, 151 (1-3): 289~293
    88张立斌. TC11压气机盘超塑等温锻造工艺.航天工艺. 1996, (4): 38~41
    89李惠曲,王淑去,李辉忠等. LD11铝合金等温变形工艺研究.热加工工艺. 2000, (4): 24~26
    90鄢明皋. LC9铝合金叶轮等温锻造及热处理工艺对组织性能的影响.热加工工艺. 1996, (3): 26~28
    91王家宜,杜忠权.钛铝合金摇臂热模/等温锻造成形工艺研究.锻压技术. 1995, (1): 6~10
    92孟庆通,庞克昌,王晓英.钛合金整体叶盘等温锻造技术.上海钢研. 2006, (2): 16~18
    93 G. A. Salishchev, R. M. Galeyev, O. R. Valiakhmetov, et al. Effect of deformation conditions on grain size and microstructure homogeneity of beta-rich titanium alloys. Journal of Materials Engineering and Performance. 2005, 14(6): 709~716
    94王晓枫,陈建华,朱光胜.模具快速制造技术的发展方向.模具工程. 2005, 48(3): 10~13
    95黄树槐,史玉升,魏表松等.模具的数字化设计与快速制造技术.航空制造技术. 2007, (2):50~52
    96罗学敏。数字化制造技术。电子工艺技术。2007,28(1):52~54
    97陈炜,高霖,杨继昌等.车身覆盖件模具数字化制造技术.中国机械工程. 2004,15(24): 2195~2198
    98高广军.集成数字化技术在复杂拉深成形模具设计制造中的应用.冷加工. 2007, (7): 71~72
    99宇迪,云杉,鸢尾.技术提升实力,合作创造未来.航空制造技术. 2006, (6): 66~70
    100 O. C. Zienkiewicz, P. N. Godbole. Flow of Plastic and Viscoplastic Solids with Special Reference to Extrusion and Forming Process. International Journal for Numerical Methods in Engineering. 1974, (8): 3~15
    101 S. Kobayashi, S. I. Oh, T. Altan. Metal Forming and the Finite Element Method. Oxford University Press. 1989: 11~16
    102 S. I. Oh. Finite Element Analysis of metal Forming Processes with Arbitrarily Shaped Dies. International Journal of Mechanical Sciences. 1982, 24(8): 479~488
    103 S. Kabayashi, N. Nishimura. Analysis of Dynamic Soil-Structure Interactions by Boundary Integral Equation Method. Methodes Numeriques de l'Ingenieur, Comptes Rendus du Troisieme Congres International. 1983: 342~353
    104 S. I. Oh, H.Gegel. T. Altan. Practical Experience and Future Developments in Computer Applications in Forging. Advanced Manufacturing Processes. 1986, 1(2): 195~221
    105 S. I. Oh, G. D. Lahoti, T. Altan. ALPID-A general purpose FEM program for metal forming. Manufacturing Engineering Transactions. 1981:83~88
    106 K. R. Vemuri, S. I. Oh, T. Altan. Bid: A knowledge-based system to automate blocker design. 1989, 29(4): 505~508
    107 J. A. Ficke, S. I. Oh, J. Malas. Use of Electronic Geometry Transfer and FEM Simulation in the Design of Hot Forming Dies for a Gear Blank. CIRP Annals. 1984, 33(1): 123~127
    108 J. J. Park, S. I. Oh, T.Altan. Analyses of Axisymmetric Sheet FormingProcesses by Rigid-Viscoplastic Finite Element Methodl. Journal of Engineering for Industry, Transactions ASME. 1987, 109(4): 347~354
    109 H. Kim, K. Sweeney, T. Altan. Application of Computer-Aided Simulation to Investigate Metal Flow in Selected Forging Operations. Journal of Materials Processing Technology. 1994, 46(1-2): 127~154
    110 G. Shen, S. L. Semiatin, E. Kropp, T. Altan. Technique to Compensate for Temperature History Effects in the Simulation of Non-Isothermal Forging Processes. Journal of Materials Processing Technology. 1992, 33(1-2): 125~139
    111赵国群.锻造过程的正反向数值模拟.上海交通大学博士学位论文. 1991: 67~70
    112赵国群,张鸿光.锻造过程刚-粘塑性有限元模拟系统.机械工程学报. 1992, (6): 14~19
    113卫原平,彭颗红,阮雪榆.金属塑性成形过程的计算机模拟系统.上海交通大学学报. 1996, (3): 132~137
    114郭会光,张有义,卢志永.大型锻造的模拟研究.锻压机械. 2002, (3): 34~37
    115 H. Yoon, D. Y. Yang. Rigid-plastic Finite Element Analysis of Three-Dimensional Forging by Considering Friction on Continuous Curved Dies with Initial Guess Generation. International Journal of Mechanical Sciences. 1988, (30): 887~898
    116唐文亭,陈楚杰. FM法锻造的模拟研究.应用力学学报. 1990, 7(1): 86~73
    117 H. Yoon, D. Y. Yang. Rigid-plastic Finite Element Analysis of Three-Dimensional Forging by Considering Friction on Continuous Curved Dies with Initial Guess Generation. International Journal of Mechanical Sciences. 1988, (30): 887~898
    118 J. H. Argyris, J. Luginsland. Three-Dimensional Thermo-Mechanical Analysis of Metal Forming Processes. Proceedings of the International Workshop, Berlin: Springer Press. 1986: 125~169
    119 D.Y.Yang, J.H.Yoon. Analysis and design of multiblow hammer forging processes by the explicit dynamic finite element method. CIRP Annals - Manufacturing Technology. 1997, 46(1): 191~194
    120 R. Cho, N. K. Lee, D. Y. Yang. A 3D Simulation for Non-Isothermal Forging of a Steam Turbine Blade by the Thermoviscoplastic Finite Element Method. Journal of Engineering Manufacture, 1993, 207(1): 265~273
    121 A. G. Mamalis,D .E. Manolakos, A. K. Baldoukas. Finite-Element Simulation of Axisymmetric Performs in Precision Forging at Elevated Temperatures. Journal of Materials Processing Technology,1996, 57(1-2): 103~111
    122左旭.集成与CAD系统得汽车零件等大多工位体积成形三维CAE仿真.上海将通大学博士学位论文. 1998: 30-41
    123 M. Zhan, Y. L. Liu, H. Yang. A 3D Rigid-Viscoplastic FEM Simulation of Compressor Blade Isothermal Forging. Journal of Materials Processing Technology. 2004, 117(1-2): 56~61
    124 H. Yang, M. Zhan, Y. L. Liu. A 3D Rigid-Viscoplastic FEM Simulation of the Isothermal Precision Forging of a Blade with a Damper Platform. Journal of Materials Processing Technology, 2002, 122(1): 45~50
    125 K. Shi, D. B. Shan, W. C. Xu, Y. Lu. Near Net Shape Forming Process of a Titanium Alloy Impeller. Journal of Materials Processing Technology. 2007, 187-188: 582~585
    126吕炎.锻压成形理论与工艺.机械工业出版社, 1991: 380~439
    127 T.Altan等.现代锻造.北京:国防工业出版社,1982: 240~252
    128吕炎等.锻模设计手册.北京机械工业出版社, 2006: 1~90
    129 M. W. Fu, Z. J. Luo. The Prediction of Macro-defects During the Isothermal Forging Process by the Rigid-Viscoplastic Finite-Element Method. Journal of Materials Processing Technology. 1992, 32(3): 599~608
    130 M. Arentoft, P. Henningsen, N. Bay, T. Wanheim. Simulation of Defects in Metal Forming-an Example. Journal of Materials Processing Technology. 1994, 45, (1-4): 527~532
    131 M. S. Joun, S. W. Lee, J. H. Chung. Finite Element Analysis of a Multi-Stage Axisymmetric Forging Process. International Journal of Machine Tools & Manufacture. 1998, 38(7): 843~854
    132 Y. H. Moon, C. J. Van Tyne. Validation via FEM and Plasticine Modeling of Upper Bound Criteria of a Process-Induced Side-Surface Defect in Forgings. Journal of Materials Processing Technology. 2000, 99(1): 185~196
    133 P. Petrov, V. Perfilov, S. Stebunov. Prevention of Lap Formation in Near Net Shape Isothermal Forging Technology of Part of Irregular Shape Made of Aluminium Alloy A92618. Journal of Materials Processing Technology. 2006, 177(1-3): 218~223
    134 G. Q. Zhao, Z. D. Zhao, T. H. Wang, Ramana V.Grandhi. Preform Design of a Generic Turbine Disk Forging Process. Journal of Materials Processing Technology. 1998, 84(1-3): 193~201
    135 I. H. Son, Y. W. Han, H. S. Kim, Y. T. Im. Modified Looping Technique for Femeshing of Forming Simulations with Free Surface Folding. Journal of Materials Processing Technology. 2003, 140(1-3): 465~470
    136 C. Lu, L. W. Zang. Numerical Simulation on Forging PProcess of TC4 Alloy Mounting Parts. Transactions of Nonferrous Metals Society of China. 2006, 16(6): 1386~1390
    137 M. Poursina, J. Parvizian, C. A. C. Antonio. Optimum Pre-Form Dies in Two-Stage Forging. Journal of Materials Processing Technology. 2006, 174(1-3): 325~333
    138 J. J. Park, H. S. Hwang. Preform Design for Precision Forging of an Asymmetric Rib-Web Type Component. Journal of Materials Processing Technology. 2007, 187-188: 595~599
    139 T. Ishikawa, N. Yukawa, Y. Yoshida, Y. Tozawa. Analytical Approach to Elimination of Surface Micro-Defects in Forging. CIRP Annals- Manufacturing Technology. 2005, 54(1): 249~252
    140 D.B. Shan, W.C. Xu, C. H. Si, Y. Lv. Research on Local Loading Method for an Aluminium-Alloy Hatch with Cross Ribs and Thin Webs. Journal of Materials Processing Technology. 2007, 187-188: 480~485
    141 Y. S. Kim, H. S. Son, C. I. Kim. Rigid-Plastic Finite Element Simulation for Process Design of Impeller Hub Forming. Journal of Materials Processing Technology. 2003, 143-144(1): 729~734
    142 C. C. Antonio, C. F. Castro, L. C. Sousa. Antonio. Eliminating Forging Defects Using Genetic Algorithms. Materials and Manufacturing Processes. 2005, 20(3): 509~522
    143 G. Banaszek, A. Stefanik. Theoretical and Laboratory Modeling of the Closure of Metallurgical Defects During Forming of a Forging. Journal ofMaterials Processing Technlolgy. 2006, 177(1-3): 238~242
    144 J. Kumpfert, Y. W. Kim, D. M. Dimiduk. Effect of Microstructure on Fatigue and Tensile Properties of the Gamma TiAl Alloy Ti-46.5Al-3.0Nb-2.1Cr-0.2W. Materials Science and Engineering A. 1995, 192/193: 465~473
    145 J. Majta, J. G. Lenard, M. Pietrzyk. A Study of the Effect of the Thermomechanical History on the Mechanical Properties of a High Niobium Steel. Materials Science and Engineering. A 208(2): 249~259
    146 S. Y. Liu, J. D. Hu, H. Y. Wang, Z. X. Guo, C. Yu, A. N. Chumakov, A. Bosak. A Study on Microstructures and Properties of P/M Valve Seats of Hot Forging by Laser Irradiation. Optics & Laser Technology. 2007, 39(4): 758~762
    147 Y. G. Zhou, W. D. Zeng, H. Q. Yu. An Investigation of a New Near-Beta Forging Process for Titanium Alloys and Its Application in Aviation Components. Materials Science and Engineering A. 2005, 393(1-2): 204~212
    148 A. Hishunuma, M. Tabuchi, T. Sawai. Development and Tensile Properties of Ti-40Al-10V Alloy. Intermaetallics. 1999, 7(8): 875~879
    149艾云龙,王家宣,程玉桂.热处理对Ti-6Al-7Nb合金等高温锻件组织和性能的影响.国外金属热处理. 2001, 22(3): 32-34
    150王孟君,杨立斌,甘春雷,彭大暑. 6063铝合金高温流变本构方程.华中科技大学学报(自然科学版). 2003, 31(6): 20~22
    151 J. P. Lin, T. C. Lei, X. Y. An. Dynamic Recrystallization during Hot Compression in Al-Mg Alliy. Scripta Metall Mater. 1992, 26(12): 1869~1874
    152 J. Shen. Hot Deformation Behaviors of AA7005 Aluminium Alloy. Chinese Journal of Nonferrous Metals. 2001. 11(4): 593~597
    153 M. Zhou, M. P. Clode. Constitutive Equations for Modeling Flow Softening due to Dynamic Recovery and Heat Generation During Plastic Deformation. Mechanics of Materials. 1998, 27(2): 63~76
    154 H. J. McQueen, M. G. Akben, J. J. Jones. Mechanical Metallograpgy in Hot Working. Proceedings of the Riso International Symposium on Metallurgy and Materials Science. 1984, (0108-8599): 397~404
    155 H. J. McQueen, E. Evangelista, M. Cabibbo. Unified Terminology for Strain Induced Boundaries. JOM. 2004, 56(11): 222
    156王孟君,甘春雷. 6061铝合金低温快速流变行为的研究.金属热处理. 200328(6): 16~18
    157 K. D. Vemon-Parry, T. Furu, D. J. Jensen, F. J. Humphreys. Deformation Microstructure and Texture in Hot Worked Aluminium Alloy. Materials Science Technology. 1996, 12(11): 889~895
    158 Lillywhite S J, Prangnell P B, F. J. Humphreys. Interactions between Precipitation and Recrystallization in an Al-Mg-Si Alloy. Material Science and Technology. 2000, 16(10): 1112~1120
    159 J. P. Poirier.晶体的高温塑性变形.关德林,译.大连理工大学出版社, 1989: 276~281
    160沈健.热压缩2091Al-Li合金的流变应力行为.稀有金属, 1998, 22(1): 47~50
    161 T. Sheppard, N. C. Parson, M. A. Zaidi. Dynamic recrystallization in Al-Mg[J]. Metal Science. 1983, 17(10): 481~487
    162 K. P. Rao, Y. V. R. K. Prasad. High Temperature Deformation Kinetics of Al-Mg Alloy. J. Mechenical Working Technology. 1986, 13(1): 83~95
    163韩冬峰,郑子樵,蒋呐,李劲风.高强可焊2195铝-锂合金热压缩变形的流变应力.中国有色金属学报, 2004, 14(12): 2090~2095
    164周军. Ti-17钛合金片状组织球化规律研究.西北工业大学硕士毕业论文. 2005: 29~34
    165曾卫东,周义刚,周军,俞汉清,张学敏,徐斌.加工图理论研究进展.稀有金属材料与工程. 2006, 35(5): 673~677
    166 S. Ramanathan, R. Karthikeyan, G. Ganasen. Development of processing maps for 2124Al/SiCP composites. Materals Science and Engineering A. 2006, 441(1-2): 321~325
    167鞠泉,李殿国,刘国权. 15Cr-25Ni-Fe基合金高温塑性变形为的加工图.金属学报. 2006, 42(2): 218~224
    168 Y. V. R. K. Prasad, T. Seshacharyulu. Modelling of Hot Deformation for Microstructural Control. International Materials Reviews. 1998, 43(6): 243-258
    169彭必友,傅建,李树平.铝型材挤压模具CAD/CAE/CAM集成系统研究.电加工与模具. 2003, (5):37~39
    170曾渝,尹志民,朱远志等. RRA处理对超高强铝合金微观组织与性能的影响.中国有色金属学报. 2004, 14(7): 1188~1194
    171宁爱林,刘志义,曾苏民.大冷变形对2024铝合金组织和性能的影响.金属热处理. 2006,31(9): 22~24
    172鼓北山,宁爱林,蒋寿生等.形变热处理对7A04铝合金组织和性能的影响.材料热处理. 2006, 35(18): 30~32
    173 B. A. Behrens, I. Schmidt. Improving the properties of forged magnesium parts by optimized process parameters. Journal of Materials Processing Technology. 2007, 187-188: 761~765
    174赵静,郭鸿镇,姚泽坤等.等温压缩工艺对1933铝合金组织性能的影响.航空制造技术. 2007, (7): 82~85
    175姜延飞,武建军.形变和时效处理对铝合金组织及性能的影响.热加工工艺. 2005,(12): 50~51
    176李海,王芝秀,郑子樵.预变形及时效处理对7055铝合金组织和性能的影响.稀有金属材料与工程. 2006, 35(8): 1276~1279
    177金相图谱编写组.变形铝合金金相图谱.冶金工业出版社, 1975: 156~176
    178郑强,陈康华,黄兰萍等. Al-Zn-Mg系铝合金应力腐蚀性能.粉末冶金材料科学与工程. 2004, 9(2): 168~173
    179张茁,陈康华.固溶处理对Al-Zn-Mg-Cu铝合金电导率的影响.粉末冶金材料科学与工程. 2004, 9(1):79~83
    180宁爱林,曾苏民.固溶处理对高纯高强铝合金组织和性能的影响.金属热处理. 2004, 29(4):13~16
    181 D. W. Suba, S. Y. Lee, K. H. Lee, et al. Microstructural Evolution of Al-Zn-Mg-Cu-(Sc) Alloy during Hot extrusion and Heat Treatment. Journal of Material Processing Technology. 2004,155-156(30): 1330~1336
    182 F. Alexander, S. Anders, J. R. Hans. Strain Localization in Solution Heat Treated Al-Zn-Mg Alloy. Materuals Science and Engineering. 2001,(A300): 165~170
    183 K. H. Chen. The Improvement of Constituent Dissolution and Mechanical Properties of 7055 Aluminum Alloy by Stepped Heat Treatment. Journal of Materials Processing Technology. 2003, 142(1): 190~196
    184蹇海根,姜锋,官迪凯,张茜.固溶处理对7B04铝合金组织和性能的影响.材料热处理学报. 2007, 28(3): 72~76
    185中国航空材料手册编辑委员会.中国航空材料手册.第3卷,铝合金、镁合金.中国标准出版社, 2002: 501-700
    186宁爱林,曾苏民. 7A04铝合金快速热处理工艺研究.轻金属. 2004, 22(6): 51~54
    187宁爱林,曾苏民,蒋寿生,彭北山. 7A04铝合金高温固溶的微观组织和力学性能.轻合金加工技术. 2005, 33(5): 48~51
    188林高用,张颖,杨立斌,彭大署.时效制度对LC52铝合金组织与性能的影响.金属热处理. 2004, 29(10): 32~35
    189田福泉,崔建忠.双级时效对7050铝合金组织和性能的影响.中国有色金属学报. 2006, 16(6): 958~963
    190黄继武,尹志民,聂波,方家芳,陈继强.双级时效对7A52铝合金组织与性能的影响.中南大学学报. 2007, 38(6): 1045~4049
    191曾渝,尹志民,朱远志,潘青林,周昌荣. RRA处理对超高强铝合金微观组织与性能的影响.中国有色金属学报. 2004, 14(7): 1188~1194
    192 F. Viana, A. M. P. Pinto, H. M. C. Santos. Rrtrogression and Reageing of 7075 Aluminum Alloy: Microstructural Characterization. Materials Processing Technology. 1999, 92-93: 54~59
    193 T. Engdahl, V. Hansen, P. J. Warren, K. Stiller. Investigation of Fine Precipitates in Al-Zn-Mg Alloys after Various Heat Treatments. Material Science Engineering A. 2002, 327(1): 59~64
    194秦铁光.高强度铝合金的多级时效处理及其组织特征.航空工艺技术. 1995,(2): 39~41
    195姜文举,宋微,曹广然. 7A09 T73锻件时效热处理工艺研究.铝加工技术工程. 2007, 3: 42~44
    196 G. W. Lorimer, R. B. Nicholson. Futher Results on the Nucleation of Precipitates in the Al-Zn-Mg System. Acta Meall. 1966, 14: 1009~1012
    197 L. B. Ber. Accelerated artificial ageing regimes of commercial aluminum alloys. Materials Science and Engineering A. 2000, 280(1): 91~96
    198黄继武,尹志民,聂波,方家芳,陈继强.双级时效对7A52铝合金组织与性能的影响.中南大学学报,自然科学版. 2007, 38(6): 1045~1049
    199冯春,刘志义,宁爱林,曾苏民.超高强铝合金RRA热处理工艺的研究进展.材料导报. 2006, 20(4): 98~101

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700