用户名: 密码: 验证码:
积石峡水电站坝后Ⅰ号滑坡演化过程及稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大型复杂滑坡及其稳定性问题历来受到关注,虽然对之作了大量研究,但并未全面系统的理解其特征和机理,致使对其稳定性评价和发展演化趋势预测也缺乏正确合理的理论指导。目前的研究多基于就滑坡论滑坡,将滑坡演化与地质环境演化分离开或者联系不够紧密;同时忽略了滑坡物质和能量随时间变化时滑坡空间格局同步改变的现象,缺少将滑坡的时间演化和空间格局两方面入手研究滑坡时空演化的理论。
     在积石峡水电站坝后Ⅰ号滑坡研究过程中,结合国内外大量相关参考文献,发现滑坡演化不是纯粹、独自的随时间发展的过程,而是置身于滑坡区地质环境演化过程中,能量和物质随时间和空间不断变化的时空演化。据此,从时间演化和空间格局两方面,探讨滑坡的形成机理和演化机制,提出了滑坡的时空演化的观点。滑坡的时空演化是指在地层岩性、地质构造、地形地貌、地下水、降雨、地震、河流冲刷、风化和工程活动等因素的耦合作用下,滑坡系统的物质和能量随时间和空间而不断动态变化的过程。它既反映了滑坡在内外动力作用下物质运移形成新的空间地貌格局的变化过程,也深刻反映了能量随时间不断调整导致滑坡新的平衡状态。
     本文基于上述观点的认识,充分利用大量的现场调研以及丰富的勘探(钻孔、平硐和探槽)、试验和监测资料,对积石峡水电站坝后Ⅰ号滑坡开展系统研究。(1)从滑坡区工程地质环境入手,分析了该滑坡的形成条件和滑坡影响园素,阐述了滑坡的微地貌、滑体物质、滑体结构和滑带结构等特征。(2)基于该滑坡显著的分区和分层性特征,结合地质环境及其演化规律,根据地球系统科学和诸要素耦合作用的观点,采用力学理论、物理模型试验和数值模拟等方法,论证了该滑坡的形成机理,即该滑坡系顺层岩质斜坡岩体层间错动和溃屈所致。在此基础上,探讨了该滑坡的演化机制,再现其动态演化过程,分析了滑坡动态演化过程中,随着物质发生新的运移和能量重新的调整,不断改变的渭坡时空格局和滑坡演化机制。(3)基于对该滑坡的特征和演化机制的新认识,结合室内外试验,研究了滑坡体和滑带土的物理力学性质,给出了滑体和滑带土的物理力学参数。(4)采用工程地质分析、多种刚体极限平衡计算方法和位移监测,定性与定量相结合地评价了该滑坡当前稳定状态,以及各区和各层的稳定状态。(5)根据该滑坡的特征、形成机理、演化过程和当前稳定状态,结合影响因素及其未来变化特征,预测了该滑坡在泄洪雾雨、地震以及多种因素耦合作用下的发展演化趋势和运动特征。
     本文提出的基于地球系统科学的滑坡时空演化观点,突破了“就滑坡论滑坡”和“滑坡时空分离”的认识,强调从时间和空间上研究滑坡的形成机理和演化机制,据此可正确认识滑坡的特征,指导滑坡体(尤其滑带土)物理力学性质研究及参数选取、评价当前稳定状态、预测未来发展演化趋势以及制订相应的工程整治措施。研究结果可为复杂条件下大型滑坡的研究和工程实践提供借鉴和参考。
The large-scale and complex landslides have been noticed for many years, especially their mechanism, characteristics and stability. A lot of researches had been done, however, to analyze the stability and to predict evolution trend still lack a reasonable and proper theoretical guidance because the characteristics and mechanism of these landslides have not comprehensively and systematically understood. The current studies on landslide mostly concerned about the landslide itself so that the evolution of landslides were either completely separated from or not closely enough contacted with geological environment. The theory of spatio-temporal evolution for study landslides from both temporal evolution and special pattern is desiderated because it is ignored that the synchronous change of special pattern happens when the material and energy of landslides changes with time.
     In the course of study on the No.1 landslide at the downstream of the Jishxia hydropower station, combined with a large number of relevant domestic and international references, it is found that landslide evolution is not pure and sole process of time, but is a continuous spatio-temporal evolution process when material and energy changes with time and space in the process of landslide's geological environment evolution. Based on landslide is place itself in it's geological environment, from both the time evolution and spatial pattern, the formation mechanism and evolution process of landslides are discussed and knowledge of the spatio-temporal evolution is put forward. The spatio-temporal evolution of landslide is defined as a continuous dynamical process of a landslide system in which materials and energy vary with time and space due to coupled interaction of such factors as lithology, structure, physiognomy, underground water, rainfall, earthquake, erosion of river water, weathering, human activities and the others. It shows transmission of materials will shape a new spatial physiognomy pattern and energy redistribution with time will let landslide to a new balance state.
     Based on lots of data of field investigation, exploration(bores, adits and coasteans), measurement, lab and field experimentation and monitoring, the No.1 landslide at the downstream of the Jishxia hydropower station was systematically studied in light of the viewpoints and knowledge mentioned as above. Firstly, start with the landslide's engineering geological environment, the formation condition and influence factors of the landslide were analyzed, furthermore, the characteristics of the landslide were introduced and explained, including micro-physiognomy, substance, structure of slip mass and structure of sliding surface. Secondly, according to its obvious zonal and layered characteristics and the geological environments and their evolution feature, using the theory of ESS (earth system science) and the viewpoint of coupled action of factors, the formation mechanism and the dynamical process of the landslide were studied by different ways and means, such as mechanics theory, physical model experimentation, numerical simulation and so on. This landslide developed due to interlayer-shear and buckling of layered rock masses of consequent slope. The spatio-temporal pattern and the evolution mechanism varied with continuous transmission of materials and energy exchange during dynamic evolution of the landslide. Thirdly, on the basis of new understanding of the landslide's characters and evolution mechanism, the physical and mechanics properties of both sliding body and sliding zone were studied through field and laboratory tests. The physical and mechanics parameters were consequently selected. Fourthly, current stability of the landslide was qualitatively and quantitatively researched with such methods as engineering geological analysis, several limit equilibrium methods and displacement monitoring. Then, using these results evaluate the stability of different layers and zones. Finally, based on characters, deformation mechanisms, evolution process, current stability, influence factors and their variation in future, the evolvement trend and movement character were forecasted on the following conditions, atomization-rain of jet overflow, earthquakes and coupled action of many factors.
     The ESS-based spatio-temporal evolution of landslides emphasized that the formation mechanisms and the dynamical evolution process of landslides must be studied from both spatial and temporal concept and modified the classic knowledge of about landslide evolution, that is, consider landslide as it stands and separately consider time and space. Based on this viewpoint, the characteristics of a landslide can be correctly cognized so as to give a rational guidance to research the physical and mechanical properties and select corresponding parameters, to evaluate current stability state, to predict future evolution trend and to map out relevant treatment measure The research results can be used for reference to study and treat other large-scale and complex landslides.
引文
[1] Wong H N, Ho K K S. 23 July 1994 landslide at KwunLung Lau, Hong Kong[J]. Canadian Geotechnical Journal, 1997, 34(6): 825-840
    [2] Cruden D M, Lu Z Y, et al. 1939 Montagneuse River landslide, Alberta[J]. Canadian Geotechnical Journal, 1997, 34(5): 799-810
    [3] AU S W C. Rain-induced slope instability in Hong Kong[J]. Engineering Geology, 1998, 51(1): 1-36
    [4] Ngecu W M, Ichang'i D W. Environmental impact of landslides on the population living on the eastern footslopes of the Aberdare ranges in Kenya: A case study of Maringa Village landslide[J]. Environmental Geology, 1999, 38(3): 259-264
    [5] 齐甦,彭少民.国内外滑坡防治与研究现状综述[J].地质勘察安全,2000(3):16-19
    [6] 殷坤龙,韩再生,李志中.国际滑坡研究的新进展[J].水文地质工程地质,2000,27(5):1-4
    [7] Schuster R L, LYNN M H. Socioeconomic impacts of landslides in the Western Hemisphere[R]. Reston, VA, USA: United States Geological Survey, 2001
    [8] 李天斌,陈明东,王兰生.滑坡实时跟踪预报[M].成都:成都科技大学出版社,1999
    [9] United States Geological Survey. Landslide hazards[R]. Reston, VA, USA: United States GS Fact Sheet, 2000
    [10] 张倬元.滑坡防治工程的现状与发展展望[J].地质灾害与环境保护,2000,11(2):89-97
    [11] 文海家,张永兴,柳源.滑坡预报国内外研究动态及发展趋势[J].中国地质灾害与防治学报,2004,15(1):1-5
    [12] Under the Sponsorship of the Sichuan Bureau of Geology and Mineral Resources. Geologic Tripping Guidebook to the Geology and Geomorphology of the Yangtze Gorges and Rock falls and Landslides[M]. Chengdu: Chengdu University of Science and Technology Press, 1992
    [13] 文宝萍.滑坡预测预报研究现状与发展趋势[J].地学前缘,1996,3(1):86-92
    [14] 汪华斌,李江风,吴树仁.滑坡灾害系统非线性研究进展[J].地球科学进展,2000,15(3):271-276
    [15] 王哲,易发成.我国地质灾害区划及其研究现状[J].中国矿业,2006,15(10):47-52
    [16] 黄润秋.20世纪以来中国的大型滑坡及其发生机制[J].岩石力学与工程学报,2007,26(3):433-454
    [17] 罗国煜.地质灾害研究现状与展望[J].水文地质与工程地质,1997(2):29-31
    [18] Stephen G E, Jerome V D. Catastrophic landslides: effects, occurrence, and mechanisms[M]. Published by the Geological Society of America, 2002
    [19] 许东俊,陈从新,刘小巍,等.岩质边坡滑坡预报研究[J].岩石力学与工程学报,1999,18(4):369-372
    [20] 黄润秋,陈龙生.中国的人类活动诱发滑坡灾害:机制及对灾害控制的意义[J].岩石力学与工程学报,2004,23(16):2766-2777
    [21] 王恭先,徐峻龄,刘光代,等.滑坡学与滑坡防治技术[M].北京:中国铁道出版社,2004
    [22] Schuster R L, Krizek R J. Landslides Analysis and Control, Transportion Research Board[M]. National Academy of Sciences, ashington, D.C, 1978
    [23] 山田刚二,渡正亮,小桥澄治(1971).崩塌、滑坡及其防治[M].北京:科学出版社,1980
    [24] 马永潮.滑坡整治及防治工程养护[M].北京:中国铁道出版社,1996
    [25] 徐邦栋.滑坡分析与防治[M].北京:中国铁道出版社,2001
    [26] 李树德.武都白龙江流域滑坡活动性探讨[J].水土保持通报,1997,17(6):28-32
    [27] Zolotarev G S. Geological Regularities of the Development of Landslides and Rockfalls as the Basis for the Theory of Their Study and Prognosis[M]. Géologie de l'Ingénieur, Sociéte Geologique de Beiigique, Liége, 1974
    [28] 叶米里扬诺娃.滑坡作用的基本规律[M].铁道部科学研究院西北所滑坡室译,重庆:重庆出版社,1986
    [29] The Royal Academy of Engineering. Landslides Hazard Mitigation With Particular Reference to Developing Countries[M]. Landon 1993
    [30] 潘懋,李铁锋.灾害地质学[M].北京:北京大学出版社,2002
    [31] 徐邦栋,王恭先.铁路滑坡防治研究的回顾与展望[A].见:铁道部科学研究院西北研究所编.滑坡文集(3)[C].北京:中国铁道出版社,1982,1-8
    [32] 秦志学.黄河流域滑坡的发育规律[A].见:滑坡文集编委会.滑坡文集(8)[C].北京:中国铁道出版社,1982,92-95
    [33] 陈曰友.对宝成线略上段滑坡的几点认识[A].见:滑坡文集编委会。滑坡文集(6)[C].北京:中国铁道出版社,1988,49-58
    [34] 张帆宇,刘高.国道212线福津河段滑坡发育特征及成因分析.地质灾害与环境保护,2005,16(2):130-134
    [35] 陈自生.浅论拱溃型顺层岩质滑坡[J].山地研究,1991,9(4):231-235
    [36] 刘广润,徐开祥.鄂西山区滑坡区域性发育规律的研究[A].见:滑坡文集编委会.滑坡文集(8)[C].北京:中国铁道出版社,1991,78-91
    [37] 张年学,盛祝平,孙广忠,等.长江三峡工程库区顺层岸坡研究[M].北京:地震出版社,1993
    [38] 史国安.对西南山区滑坡一些主要特征的认识[A].见:滑坡文集编委会.滑坡文集(11)[C].北京:中国铁道出版社,1994,7-19
    [39] 毛彦龙,彭建兵,梁伟.黄河积石峡水库Ⅰ号滑体变形趋势分析[J].西安地质学院学报,1996,18(4):62-68
    [40] 周乐群.长江上游陇南陕南地区滑坡泥石流发育程度遥感分析[J].人民长江,1996,27(2):17-19
    [41] 蒋爵光.铁路岩石边坡[M].北京:铁道出版社,1997
    [42] 白云峰,周德培,王科,等.顺层滑坡的发育环境及分布特征[J].自然灾害学报,2004,13(3):39-43
    [43] 中国科学院地质研究所.露天矿边坡稳定研究的工程地质工作方法[A].见:铁道部科学研究院西北研究所编.滑坡文集[C].北京:人民铁道出版社,1976,304-313
    [44] 孙广忠,张文彬.一种常见的岩体结构一板裂结构及其力学模型[A].见:中国科学院地质研究所编.工程地质研究文集(二)[C].1983
    [45] 乔建平.滑坡体结构与坡形[J].岩石力学与工程学报,2002,21(9):1355-1358
    [46] 北京地质学院工程地质教研室.同向岩体边坡稳定性的研究[A].见:铁道部科学研究院西北研究所编.滑坡文集[C].北京:人民铁道出版社,1976,290-304
    [47] 徐峻龄.顺层岩石滑坡的滑体厚度与岩体结构的关系[A].见:滑坡文集编委会.滑坡文集(4)[C].北京:中国铁道出版社,1984,45-52
    [48] Huang S L. et al. Application of fractal characterization and modeling to rock joint profiles[J]. Iht J Rock Mech Min Sci & Geomech Abstr, 1992, 29(2): 89
    [49] 黄河水利委员会规划大队,地质科学研究院水文、工程地质研究所,清华大学水利系.黄河某水库坝址区基岩滑坡的初步探讨[A].见:铁道部科学研究院西北研究所编.滑坡文集[c].北京:人民铁道出版社,1976,247-260
    [50]米勒L.李世平等译,岩石力学[M].北京:煤炭工业出版社,1981
    [51]徐邦栋.岩石顺层滑坡的性质与防治[A].见:滑坡文集编委会.滑坡文集(3)[C].北京:中国铁道出版社,1982,9-15
    [52]胡厚田,唐永富.层间错动及其与顺层滑坡的关系[A].见:滑坡文集编委会.滑坡文集(3)[C].北京:中国铁道出版社,1982,16-24
    [53]孙广忠,张文彬.一种常见的岩体结构—板裂结构及其力学模型[J].地质科学,1985,(3):275-282
    [54]倪国荣,叶梅新.“板裂”结构岩体的力学分析法[J].岩土工程学报,1987,9(1):99-108
    [55]Hoek E, Bray J W. Rock Slope Engineering[M]. London: E and FN Spon, 1981
    [56]卢螽桶.滑坡预测的基本内容及途径探索[A].见:滑坡文集编委会.滑坡文集(4)[C].北京:中国铁道出版社,1984,13-21
    [57]杨清廷,马衍泉,李朝国.层状岩体高边坡渍屈失稳研究[J].四川水力发电,1993,(1):29-35
    [58]白云峰,周德培,冯君.顺向坡岩层走向与边坡走向夹角的上限值[J].西南交通大学学报,2005,40(3):326-329
    [59]交通部第一铁路设计院.铁路工程地质手册[M].北京:人民交通出版社,1975
    [60]中国水利发电工程编委会.中国水利发电下程.工程地质卷[M].北京:中国电力出版社,2000,189-190
    [61]常士镖,张苏民.简明工程地质手册[M].北京:中国建材下业出版社,1998
    [62]崔冠英.水利工程地质[M].北京:中国水利水电出版社,2000,182-183
    [63]畅益锋,李仁华.白龙江泄流坡滑坡变形特征及成因分析[J].中国地质灾与防治学报,1999,10(1):93-95
    [64]白云峰.乌江下游沿岸滑坡发育特征[J].中国地质灾害与防治学报,2005,16(2):43-46
    [65]白云峰,周德培.319国道涪陵至彭水沿线滑坡发育特征[J].山地学报,2003,21(6):721-725
    [66]邹谨敞,邵顺妹,屈健鹏,等.北祁连东段及其邻区地震滑坡的基本特征和危险区预测[J].高原地震,1993,8(2):50-60
    [67]宋立胜.历史地震与滑坡灾害[J].山西地震,1994(2):55-57
    [68]王赞军,江志萍,张家庆,等.滑坡危险性分析中地震动的概率性估算及地震滑坡的危险性评判[J].高原地震,1998,10(1):40-45
    [69]唐川,朱静,张翔瑞.GIS支持下的地震诱发滑坡危险区预测研究[J].地震研究,2001,24(1):73-81
    [70]丁彦慧,王余庆,孙进忠.地震崩滑与地震参数的关系及其在边坡震害预测中的应用[J].地球物理学报,1999,42(sup):101-107
    [71]Keefer D K. Landslides caused by earthquakes[J]. Geol. Soc. Am. 1984, 95:406-421
    [72]Keefer D K. The importance of earthquake-induced landslides to long-term slopeerosion and slope-failure hazard sinseismically active regions[J]. Geomorphology, 1994, 10:265-284
    [73]辛鸿博,王余庆.岩土边坡地震崩滑及其初判准则[J].1999,21(5):591-594
    [74]李忠生.国内外地震滑坡灾害研究综述[J].灾害学,2003,18(4):61-70
    [75]康来迅,邹谨敞,蒋荣发.昌马断裂带地震滑坡的基本特征[J].华南地震,1995,15(1):49-54
    [76]陈晓利,叶洪,程菊红.GIS技术在区域地震滑坡危险性预测中的应用—以龙陵地震滑坡为例[J].工程地质学报,2006,14(03):333-338
    [77]毛彦龙,胡广韬,赵法锁,等.地震动触发滑坡体滑动的机理[J].西安工程学院学报,1998,20(4):45-52
    [78]Brand E W, Premchitt J, Phillipson H B. Relationship between rainfall and landslide in Hong Kong[A]. In: Proceedlings of the 4th Symposium on Landslides[C]. Rtterdam: A, A, Balkema, 1984, 377-384
    [79]Anderson M G, Richards K S. Slope Stability[M]. 1987, 265-286
    [80]谢守益,张年学,许兵.长江三峡库区典型滑坡降雨诱发的概率分析[J].工程地质学报,1995,3(2):60-69
    [81]邢建民.堆积层滑坡与降雨关系浅析[J].长江职工大学学报,1999,16(3):51-52
    [82]兰恒星,周成虎,王苓涓,等.地理信息系统支持下的滑坡—水文耦合模型研究[J].岩石力学与工程学报,2003,22(8):1309-1314
    [83]魏丽,单九生,章毅之.暴雨型滑坡灾害形成机理及预测方法研究思路[J].江西气象科技,2005,28(3):3-6
    [84]Wang Fa-wu. Fluidization Mechanisms and Motion Simulation on Flowslides Triggered by Earthquake and Rainfall[J]. Chinese Jourunal of Rock Mechancs and Engineering, 2005, 24(10): 1654-1661
    [85]汤明高,许强,黄润秋,等.滑坡体基质吸力的观测试验及变化特征分析[J].岩石力学与工程学报,2006,25(2):355-362
    [86]李悼芬,陈虹.雨水渗透与香港滑坡灾害[J].水文地质工程地质,1997,24(4):34-38
    [87]夏金梧,郭厚祯.长江上游地区滑坡分布特征及主要控制因素探讨[J].水文地质工程地质,1997(1):19-32
    [88]Schmid B H. On the overland modeling; Can rainfall excess be treated as independent of flow depth Journal of Hydrology[J]. 1989, 10(7): 7-8
    [89]Singh V P. Kinematic Nave Modeling in Water Resources: Surface Water Hydrology[M]. New York; John Wiley & Sons, 1996
    [90]段丽萍,郑万模,李明辉,等.川西高原主要地质灾害特征及其影响因素浅析[J].沉积与特提斯地质,2005,25(4):95-98
    [91]中村浩之.论水库滑坡[J].水土保持通报,1990,10(1):53-64
    [92]廖红建,盛谦,高石夯,等.库水位下降对滑坡体稳定性的影响[J].岩石力学与工程学报,2005,24(19):3454-3458
    [93]朱冬林,任光明,聂德新,等.库水位变化下对水库滑坡稳定性影响的预测[J].水文地质工程地质,2002(3):6-9
    [94]Terzaghi K. Mechanism of landslides[J], In S. Paige (ed) Application of Geology to Engineering Practice Geological Society of America, Berkey, 1950:83-123
    [95]Skempton A W. Residual Strength of clays in landslide, folded strata, and the laboratory[J]. Geotechnique, London, 1966, 35(1): 3-18
    [96]Ter-Stepanian G. Creep of a clay during shear and its rheological model[J]. Géotechnique, 1975, 25(2): 229-320
    [97]Bromhead E. Landslides in Research, Theory and Practice[A]. Procedings of 8th International Symposium on Landslides[C]. 2000
    [98]张倬元,王士天,王兰生等.工程地质分析原理[M].北京:地质出版社,1994
    [99]高根树,张咸恭.大型高速滑坡滑动机理[J].中国地质灾害与防治学报,1992,3(1):29-32
    [100]王家鼎.强震作用下低角度黄土斜坡滑移的复合机理研究[J].岩土工程学报,2001,23(4):446-450
    [101]晏同珍.滑坡学[M].武汉:中国地质大学出版社,2001
    [102]Broadbent C D, Ko K C. Rheology aspects of rock slope failure[C]: Proceedings of 13th Symposium on Rock Mechanics. Illinois, USA: [s.n.] 1971:537-572
    [103]Lo K Y, Wai R S C. Time-dependent deformation of shaly rocks in southern Ontario[J]. Canada Geotechnical Journal, 1978, 15(2): 537-547
    [104]黄润秋.20世纪以来中国的大型滑坡及其发生机制[J].岩石力学与工程学报,2007,26(3): 433-454
    [105]朱冬林,聂德新,符文熹.溃屈型滑坡稳定性分析中三个问题的探讨[J].地质灾害与环境保护,1999,10(4):32-36
    [106]李树森,朱冬林,符文熹,等.溃屈型滑坡滑动面特征及滑带土强度参数的关联性分析[J].山地学报,2000,18(sup):34-38
    [107]黄润秋,王士天,张悼元,等.中国西南地壳浅表层动力学过程与工程环境效应研究[M].成都:四川大学出版社,2002
    [108]库特H.K.边坡非纯滑动型破坏的机理[A].见:米勒主编.岩石力学[C].北京:煤炭工业出版社,1981
    [109]孙广忠,张文彬.一种常见的岩体结构—板裂结构及其力学模型[A].见:中国科学院地质研究所编.工程地质研究文集(二)[C].1983
    [110]李云鹏,杨治林,王芝银.顺层边坡岩体结构稳定性位移理论[J].岩石力学与工程学报,2000,19(6):747-750
    [111]Brideau M A. et al. 2005. Quaternary, structural and engineering geology of the Aishihik River landslide, Cracker Creek area (NTS 115A/15), Yukon. In: Yukon Exploration and Geology 2004,D.S. Emond, L.L. Lewis and G.D. Bradshaw (eds.), Yukon Geological Survey, p. 83-94
    [112]吕美君,晏鄂川.顺层边坡岩体结构稳定性分析[J].地球与环境,2005,33(sup):285-289
    [113]王琦庆.黄河小浪底地区河谷岸坡变形的探讨[A].见:铁道部科学研究院西北研究所编.滑坡文集(6)[C].北京:中国铁道出版社,1988,99-107
    [115]任光明,李树森,聂德新.顺层坡滑坡形成机制的物理模拟及力学分析[J].山地研究,1998,16(3):182-87
    [116]冯文凯,石豫川,柴贺军,等.缓倾角层状高边坡变形破坏机制物理模拟研究[J].中国公路学报,2004,17(2):32-36
    [117]郝建斌,门玉明,彭建兵,等.层状岩体边坡动力稳定性模型试验研究[J].公路交通科技,2005,22(6):72-75
    [118]胡新丽,殷坤龙.大型水平顺层滑坡形成机制数值模拟方法[J].山地学报,2001,19(2):175-179
    [119]Fawu WANG, Takeshi OKUNO. Deforming Mechanism of The Giant Jinnosuke-dani Landslide in Haku-san mountainous area, Japan[J]. Journal of Geological Hazardsand Environment Preservation, 2004, 15(3): 48-54
    [120]白云峰.顺层岩质边坡稳定性及工程设计研究[D].成都:西南交通大学,2005
    [121]弗兰纽斯.土体稳定的静力计算[M].北京:水利出版社,1957
    [122]Bishop A W. The use of the slip circle in the stability analysis of slopes[J]. Geotichnique, London, 1955, 5(1): 7-17
    [123]Janbu N. Earth pressures and bearing capacity calculations by generalized procedure of slices[J]. Proceedings of the fourth international conference on soil mechanics and foundation engineering, 1957, 2
    [124]Janbu N. Slope stability computations[M]. Embankment Engineering, 1973
    [125]Morgenstern N R, Price V E. The analysis of the stability of general slip surfaces[J]. Geotechnique, London, 1965, 15(1): 79-93
    [126]Spencer E A. Method of analysis of the stability of embankments assuming parallel interstice forces[J]. Geotechnique, London, 1967, 17(1): 11-26
    [127]Hock E, Bray J W, Boyd J M. The stability of a rock slope containing a wedge resting on two intersecting discontinuities[J]. Quarterly J. Engineering Geology. 1973, 6(1)
    [128]Revilla J, Castillo E. The calculus of variation applied to stability of slope[J]. Geotech, 1977, 27(1): 1-11
    [129] Sarma S K. Stability analysis of embankments and slopes[J]. J. Geotech. Eng. 1979, 105(12): 1511-1524
    [130] Leshchinsky D. Slope stability analysis:Generalized approach[J]. J. Geotech. Eng. 1990, 116(5): 851-867
    [131] Chen Z-Y, Shao C-M Evaluation of minimum factor of safety in slope stability analysis[J]. Can. Geotech. J. 1988, 25(4): 735-748
    [132] Baker R. Determination of the critical slip surface in slope stability computations[J]. International for Numerical and Analytical Methods in Geomechanics. 1980,1(4): 333-359
    [133] Greco V R. Efficient Monte Carlo technique for locating critical slip surface [J].Geotechl. Eng. 1996, 122(7): 517-525
    [134] 汪益敏,陈辉.路基边坡问题研究现状[J].中南公路工程,2004;29(2):51-53
    [135] 雷晓燕.岩体工程数值计算[M].北京:中国铁道出版社,1999
    [136] 廖红建,王铁行,等.岩体工程数值分析[M].北京:机械工业出版社,2006
    [137] 郑颖人,赵尚毅.有限元强度折减法在土坡与岩坡中的应用[J].岩石力学与工程学报[J].2004,23(19):3381-3388
    [138] 黄润秋,张倬元,王士天.高边坡稳定性的系统工程地质研究[M].成都:成都科技大学出版社,1991
    [139] 黄润秋,邓荣贵,等.高边坡物质运动全过程模拟[M].成都:成都科技大学出版社,1993
    [140] 黄润秋,许强,陶连金,等.地质灾害过程模拟和过程控制研究[M].北京:科学出版社,2002
    [141] 邓聚龙.灰色预测与决策[M].武汉:华中理工大学出版社,1986
    [142] 李彰明.模糊分析在边坡稳定性评价中的应用[J].岩石力学与工程学报,1997,16(5):490-495
    [143] 秦四清,张倬元,等.非线性工程地质学导引[M].成都:西南交通大学出版社,1993
    [144] 祝玉学.边坡可靠性分析[M].北京:冶金工业出版社,1993
    [145] Zhang, Ch. H. Application of distinct element method in dynamic analysis of high rock slopes and blocky structures[J]. Soil Dynamics and Earthquake Eng., 1997, 16:385-394
    [146] 聂德新.黄河积石峡水电站峡口坝址段软弱夹层工程地质特性研究报告[R].成都:成都理工大学,1991
    [147] 彭建兵,毛彦龙,杜东菊,等.黄河积石峡水电站水库滑坡工程地质研究[M].西安:陕西科学技术出版社,1997
    [148] Terzaghi K. Stability of steep slopes on hard unweathered rocks[J]. Geotechnique, 1962, 12(4): 251-270
    [149] Coates D.E Rock mechanics principles[M]. Ottawa.. Information Canada, 1970
    [150] 谷德振.岩体工程地质力学基础[M].北京:科学出版社,1979
    [151] 孙玉科,牟会宠,姚宝魁.边坡岩体稳定性分析[M].北京:科学出版社,1988
    [152] 陈祖煜,汪小刚,杨键,等.岩质边坡稳定分析—原理·方法·程序[M].北京:中国水利水电出版社,2004
    [153] 邓清禄,王学平.长江三峡库区滑坡与构造活动的关系[J].工程地质学报,2000,8(2):136-141
    [154] 康来迅,昌马断裂带滑坡之研究[J].内陆地震,1988,2(4):376-381
    [155] 冯希杰.活动断裂与滑坡、崩塌关系探讨[J].西安地质学院学报,1990,12(1):92-99
    [156] 赵健.活动断裂与滑坡关系的探讨[].中国水土保持1992,(4):20-21
    [157] 谌文武,赵志福,刘高,等.兰州—海口高速公路甘肃段工程地质问题研究[M].兰州:兰州大学出版社,2006
    [158] 李树德.白龙江中游滑坡初探[J].水文地质工程地质,1995(6):13-15
    [159]夏正楷,杨晓燕,叶茂林.青海喇家遗址史前灾难事件[J].科考通报,2003,48(11):1200-1204
    [160]傅鹤林,周宁,罗强,等.板裂介质理论在牟珠洞滑坡机理分析中的应用[J].中南大学学报(自然科学版),2006,37(1):188-193
    [161]刘钓.顺层边坡溃层问题的计算方法[J].水文地质工程地质,1997(6):37-41
    [162]刘均.顺层边坡弯曲破坏的力学分析[J].工程地质学报,1997,5(4):335-39
    [163]李新坡,何思明,徐骏,层状岩质边坡临界高度极限分析上限解[J].四川大学学报(工程科学版),2007,39(1):44-47
    [164]刘小丽,周德培,用弹性板理论分析顺层岩质边坡的失稳[J].岩工力学,2002,23(2):162-165
    [165]王建林.“欧拉定理”分析顺层斜坡稳定性探讨[J].云南水力发电,2003,19(3):21-22
    [166]孙双科,刘之平.泄洪雾化降雨的纵向边界估算[J].水利学报,2003(12):53-58
    [167]梁在潮.中国水利水电工程技术进展.雾化水流理论[M].北京:海洋出版社,1999
    [168]肖光斌.高坝泄洪水流雾化问题研究综述[A].泄水工程与高速水流论文集[C].成都:成都科技大学出版社,1994
    [169]薛玺成,刘家才,孙湄.雾化雨诱发岩质边坡失稳的机理[J].工程地质学报,1999,7(3):207-212
    [170]李渭新,王韦,许唯临,等.挑流消能雾化范围的预估[J].四川联合大学学报(工程科学版),1999,3(6):17-23
    [171]梁在潮.雾化水流理论[[J].泄水工程与高速水流,2000,(2):1-4
    [172]向光红,江义踌,金蕾.构皮滩水电站泄洪雾化及防护研究[J].贵州水力发电,2005,19(2):34-36
    [173]朱济祥,薛乾印,薛玺成.龙羊峡水电站泄流雾化向导致岩质边坡的蠕变变位分析[J].水力发电学队,1997,58(3):31-42
    [174]李瓒.龙羊峡水电站挑流水雾诱发滑坡问[J].大坝与安全,2001,(3):17-20
    [175]刘之平,等.二滩水电站高双曲拱坝泄洪雾化原型观测报告[R].北京:中国水利水电科学研究院,2000
    [176]李吉庆,毛昶熙.渗流作用下土坡稳定计算方法的研究[J].水利水运科学研究,1991(3):245~257
    [177]柳海涛,孙双科,刘之平,等.泄洪雾化预测的人工神经网络方法探讨[J].水利学报,2005,36(10):1241-1244
    [178]宋晓晨,徐卫亚,邵建富,等.雾玉作用下的非饱和边坡稳定性研究[J].河海大学学报(自然科学版),2002,30(6):16-20
    [179]胡云进,速宝玉,詹美礼.溪洛渡水垫塘区岸坡雾化雨入渗数值分析[J].岩石力学与工程学报,2003,22(8):1291-1296
    [180]张卓,练继建,杨晓慧.雾化雨作用下的裂隙岩体边坡渗流分析[J].四川大学学报(工程科学版),2006,38(2):15-18
    [181]周雄华,沈军辉,王兰生,等.锦屏Ⅰ级水电站坝址区雾化边坡稳定性分析[J].地质灾害与环境保护,2004,15(1):65-69
    [182]刘明,黄润秋,严明.锦屏一级水电站Ⅳ—Ⅵ山梁雾化边坡稳定性分析[J].岩石力学与工程学报,2006,25(sup):2801-2806

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700