用户名: 密码: 验证码:
c-Kit对肝细胞癌增殖及侵袭性影响的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景与目的:
     肝细胞性肝癌(Hepatocellular carcinoma,HCC)是目前最常见的恶性肿瘤之一,为当今世界第三位致死性肿瘤,占我国肿瘤死因的第二位,全世界约有100万患者,每年约有30万新增病例。在新增的病例中,45%发生在中国,主要分布在东南及沿海流域。近年来,随着乙型肝炎病毒的流行,我国肝癌的地域分布及发病趋势发生明显变化。其发病年龄高峰移向青壮年,死亡率也向小年龄组推移。目前对肝细胞癌的治疗主要基于外科手术切除,切除后使用相关的化疗药物对肝细胞癌的作用非常有限,因此研究原癌基因对肝细胞癌增殖及侵袭的影响,对进一步干预治疗,有非常重要的意义。
     c-Kit是编码受体酪氨酸激酶家族的原癌基因。目前研究表明,c-Kit与多种肿瘤的发生、发展、预后都有着密切的联系,如胃肠道间质瘤、急性髓细胞白血病、肺癌等多种人类肿瘤组织中均存在c-Kit受体的异常表达。针对这些高表达c-Kit受体的肿瘤,应用酪氨酸激酶抑制剂治疗恶性肿瘤已经取得了一定的临床疗效。目前,肝细胞癌中c-Kit受体表达的研究,国内外鲜有报道,KIT/SCF信号通路究竟在肝细胞癌中起怎样的作用,需要深入研究。
     通过查阅文献,我们收集到以下信息:首先,c-Kit原癌基因的表达上调,在多种肿瘤中都提示患者预后较差;其次,c-Kit在正常肝脏中,仅出现在汇管区的部分卵圆细胞中,而在肿瘤中的分布并不均匀,有研究报道其表达可能在肝硬化-肝癌病程进程中发生变化;第三,KIT/SCF信号的下游的部分信号通路中的PI3K/AKT信号通路,与经典的Wnt通路有密切联系,而Wnt通路是肝细胞癌侵袭转移的重要途径之一。基于以上理论,我们得出假设:KIT/SCF信号通路被激活后,可能引起下游的信号通路发生相应变化,从而引起肝细胞癌的增殖及侵袭转移特性增强。本文重点是验证上述假设,探讨c-Kit对肝细胞癌增殖及侵袭性影响及其分子机制。
     材料与方法:
     1.通过免疫组化方法在89例临床肝细胞癌组织中检测c-Kit的表达,探讨其与各临床病理因素间的关联;在不同侵袭、转移潜能的同系肝癌细胞株MHCC-97L和MHCC-97H中,利用Realtime-PCR及Western-blot方法检测其c-Kit及Kit的基因和蛋白表达,以明确其与侵袭、转移能力的关系;
     2.利用Adeasy系统,构建c-Kit重组腺病毒载体,用其转染Hep-G2肝癌细胞,通过Western-blot、侵袭实验、运动实验、裸鼠成瘤实验等方法,观察过表达c-Kit对肝癌细胞侵袭、运动能力的影响;
     3.利用外源性的c-Kit受体的配体SCF添加入SMMC-7721肝癌细胞,观察c-Kit/SCF信号系统对对β-catenin分布情况的影响;并研究c-Kit/SCF信号系统对β-catenin分布情况的影响是否是通过PI3K/AKT信号系统实现的,以及研究在此过程中PI3K/AKT信号系统中关键因子AKT,GSK-3β磷酸化情况;
     4.通过免疫组化方法在89例临床肝细胞癌组织中检测FAK的表达,探讨其与各临床病理因素间的关联,并通过统计学分析明确FAK与c-Kit的相关性;利用免疫共沉淀的方法,检测SMMC-7721和Hep-G2肝癌细胞中FAK与KIT蛋白的结合情况。
     结果及结论:
     1.在临床HCC组织标本及不同侵袭、转移潜能的肝癌细胞中检测c-Kit表达,我们得出如下结果:
     1.1. c-Kit的表达在肝细胞癌中显著增高;
     1.2. c-Kit的表达程度与肿瘤TNM分期、血管侵袭、HBsAg和HBV DNA等临床病理因素均呈显著正相关,提示c-Kit表达与HCC的进展可能有密切关系,其表达随着肿瘤的进展而上调;
     1.3.在同系中分离出的不同侵袭、转移潜能的细胞株中,高侵袭、转移潜能的肝癌细胞株MHCC-97H中c-Kit的表达明显高于低侵袭、转移潜能的MHCC-97L,提示了c-Kit的表达随着肿瘤侵袭、转移能力的增强而上调;
     2.成功构建了携带c-Kit基因的重组腺病毒载体,并能够高效转染Hep-G2肝癌细胞,目的基因得到高表达;外源性转染c-Kit基因,可以提高Hep-G2肝癌细胞的侵袭、运动能力。
     3.当外源性的c-Kit受体的配体SCF添加入SMMC-7721肝癌细胞后,PI3K/AKT信号系统被激活,其关键因子AKT及GSK-3β发生明显的磷酸化,β-catenin分布明显向细胞核内转移,加入KIT/SCF信号通路的特异性抑制剂Imatinib后,β-catenin无法向细胞核内转移;
     4.在临床HCC组织标本及不同侵袭、转移潜能的肝癌细胞中检测FAK表达,并分析FAK与c-Kit的相关性;利用免疫共沉淀的方法,检测SMMC-7721肝癌细胞中FAK与KIT蛋白的结合情况。
     4.1. FAK的表达在肝细胞癌中明显增高;
     4.2. FAK的表达与血管侵袭、肿瘤TNM分期、HBsAg和HBV DNA水平等临床病理因素均呈显著正相关。提示FAK表达与HCC的进展有密切关系,其表达随着肿瘤的进展而上调;同时FAK与c-Kit的在肝癌细胞中的表达密切相关;
     综上所述,本研究主要结论如下:
     1. c-Kit基因在HCC中的表达与肿瘤的进展密切相关,其表达上调,暗示着肿瘤的预后不良;外源性转染c-Kit基因可增强HCC的侵袭、运动、成瘤能力。
     2. c-Kit基因是肝细胞癌中的重要基因,它可以通过激活PI3K/AKT信号通路,以及与FAK发生协同作用,增加HCC的侵袭性。
     3. KIT/SCF信号通路的抑制剂Imatinib可能对HCC的发生发展起到保护性的作用。
     4.KIT蛋白在肝癌细胞中,可以特异性结合FAK。
Background and objective:
     Hepatocellular carcinoma (HCC) is one of the most common malignant tumor that has been claimed as the third most lethal tumor in the world, accounting for the second death cause of china’s tumor patients. There are now one million HCC patients in the globe, with an increase of 300 thousands each year, 45% of which are Chinese who lives in south eastern and coastal area of china. With recent years’prevalence of hepatitis B virus, the geographical distribution and incidence of liver cancer has significantly changed. Onset peak trends and mortality rate also goes to the young age group. At present, the treatment of hepatocellular carcinoma is mainly based on surgical resection, after which the use of chemotherapy-related drugs in hepatocellular carcinoma will be largely limited. Therefore, the research on the impact of proto-oncogene on the proliferation and invasion of HCC is of great significance for further treatment.
     c-Kit is a proto-oncogene encoding receptor tyrosine kinase family. The current study shows that c-Kit is closely linked with the development, and prognosis of a variety of tumors. Many human cancers such as gastrointestinal stromal tumors, acute myeloid leukemia and lung cancer were proved with the abnormal expression of c-Kit. Aimed directly at these c-Kit high expression tumors, tyrosine kinase inhibitors have been successfully used in clinical patient. At present, research on expression of c-Kit receptor in HCC was rarely reported. The detailed mechanisms of KIT/SCF signaling pathway in HCC need to be further elucidated.
     Our extensive literature review showed the following information: First, patients with increased c-Kit proto-oncogene expression implies poor prognosis. Second, in normal liver, c-Kit exists only in oval cells that have uneven distribution in tumor. Research indicates its changment during the process of liver cirrhosis-liver cancer. Third, the PI3K/AKT signaling pathway, a part of the down stream of KIT/SCF signaling pathway, is closely linked with Wnt pathway that is one of the most important invasion and metastasis path of HCC. On the basis of the above theories, we hypothesized that the downstream of KIT/SCF pathway develops corresponding alteration, promoting the invasion and metastasis of HCC after its activation. This study aimed to verify these assumptions and elucidate the possible underlying molecular mechanisms of c-Kit in the proliferation and invasion of HCC.
     Materials and methods
     1. 89 clinic HCC patients were selected and examined for c-Kit expression by immunohistochemistry. Results were analyzed for the correlation between c-Kit expression and clinical pathological factors. Two MHCC-97 sub cell lines with different invasion and metastasis potential, MHCC-97L and HCC-97H, were chosen and examined for c-Kit expression by Immunofluorescence, Realtime-PCR and Western-blot, and were analyzed for the correlation between c-Kit expression and invasive potential.
     2. An adenovirus vector system, Adeasy, was adopted for the construction of c-Kit containing vector. The vector was then transfected into cell line Hep-G2. Western-blot, invasion test and motility test were carried out for the contrast study of c-Kit’s role in invasion and metastasis process of HCC. Nude mice were injected with Hep-G2 that had been infected by c-Kit gene-contained recombinant adenovirus vector and its blank control. The tumor formation potential was observed and the role of c-Kit in the process of tumor forming and invasion was studied.
     3. An exogenous ligand of c-Kit receptor was introduced into SMMC-7721. the impact of c-Kit/SCF signaling system on the distribution ofβ-catenin was analyzed. Meanwhile, whether this impact is conducted through the PI3K/AKT signaling system was analyzed. And the phosphorylation status of AKT and GSK-3, the key factor of PI3K/AKT signaling system, was examined.
     4. FAK expression in the 89 clinical HCC patients were examined by immunohistochemistry and the result was evaluated for the correlation between FAK and c-Kit with other pathological factors. Co-immunoprecipitation was adopted to examine the binding between FAK and KIT in cell line SMMC-7721 and Hep-G2.
     Results and Conclusions
     1. c-Kit gene expression was detected and the following results in clinical HCC tissue samples and HCC cell lines with varied potential of invasion and metastasis were obtained:
     1.1. Expression of c-Kit was significantly increased in HCC tumor cells.
     1.2. c-Kit expression level is positively correlated with vascular invasion, TNM classification, HBV DNA level and HBSAg, which indicates that c-Kit expression was closely correlated with HCC progression and its increased level with the HCC development.
     1.3. Among the sub-cell lines of MHCC-97 that with various potential of invasion and metastasis, c-Kit was significantly higher in MHCC-97H than in MHCC-97L. This result confirmed that c-Kit was up-regulated as the invasion and metastasis increased.
     2. Recombinant adenovirus containing c-Kit was successfully constructed and transfected into HCC cell line Hep-G2. After the expression of c-Kit was verified, it was observed that exogenous c-Kit increased the invasion and motility of Hep-G2.
     3. After the exogenous ligand of c-Kit receptor was introduced into SMMC-7721, PI3K/AKT signaling system was activated and its key factor AKT and GSK-3βunderwent significant phosphorylation,β-catenin showed an intranuclear redistribution. After the addition c-Kit/SCF inhibitor Imatinib,β-catenin intranuclear-redistribution was blocked.
     4. FAK gene expression was detected and the following results in clinical HCC tissue samples and HCC cell lines with varied potential of invasion and metastasis were obtained.
     4.1.FAK was significantly up-regulated in HCC cells.
     4.2.FAK level was significantly correlated with great vessel invasion,TNM classification, HBsAg and HBV DNA level, indicating that FAK expression is up-regulated as the tumor progressing. And FAK and c-Kit expression was closely connected in HCC cells.
     To sum up, the follow conclusion was obtained form this study:
     1. c-Kit gene expression was closely correlated with tumor progression and its up-regulation indicates poor prognosis. Exogenous c-Kit gene increases the invasion, motility and tumor forming potential of HCC.
     2. As a crucial gene in HCC, c-Kit increases invasion potential of HCC through activation of PI3K/AKT signaling system, showing synergistic effect with FAK.
     3. Kit/SCF signaling system inhibitor Imatinib may have protective effect on HCC progression.
     4. KIT and FAK could bind in hepatoma cell line.
引文
1. Chen G, Dang YW, Luo DZ et al. Expression of heparanase in hepatocellular carcinoma has prognostic significance: a tissue microarray study. Oncol Res. 2008;17(4):183-9.
    2. Pang R, Tse E, Poon RT. Molecular pathways in hepatocellular carcinoma. Cancer Lett. 2006 Aug 28;240(2):157-69.
    3. Singal AK. Silent cirrhosis in hepatitis B virus related hepatocellular carcinoma. Hepatogastroenterology. 2008 Sep-Oct;55(86-87):1734-7.
    4. Aghakhani A, Hamkar R, Zamani N et al. Hepatitis B virus genotype in Iranian patients with hepatocellular carcinoma. Int J Infect Dis. 2009 Jan 8.
    5. Song HU, Hwang SG. [Prevention of hepatocellular carcinoma]. Korean J Gastroenterol. 2007 Apr;49(4):201-8.
    6. Fernandez-Ruiz M, Guerra-Vales JM, Llenas-Garcia J, Colina-Ruizdelgado F. [Hepatocellular carcinoma in the elderly: clinical characteristics, survival analysis, and prognostic indicators in a cohort of Spanish patients older than 75 years]. Rev Esp Enferm Dig. 2008 Oct;100(10):625-31.
    7. Pozharisskii KM, Granov DA, Ten VP et al. [The significance of immunohistochemistry in the investigation of liver neoplasms: differential diagnosis, prognostic markers]. Vopr Onkol. 2008;54(4):417-33.
    8. Yang J, Yan LN. Current status of intrahepatic cholangiocarcinoma. World J Gastroenterol. 2008 Nov 7;14(41):6289-97.
    9. Calvisi DF, Pascale RM, Feo F. Dissection of signal transduction pathways as a tool for the development of targeted therapies of hepatocellular carcinoma. Rev Recent Clin Trials. 2007 Sep;2(3):217-36.
    10. Yano M, Hamatani K, Eguchi H et al. Prognosis in patients with hepatocellular carcinoma correlates to mutations of p53 and/or hMSH2 genes. Eur J Cancer. 2007 Apr;43(6):1092-100.
    11. Qin LF, Ng IO. Expression of p27(KIP1) and p21(WAF1/CIP1) in primaryhepatocellular carcinoma: clinicopathologic correlation and survival analysis. Hum Pathol. 2001 Aug;32(8):778-84.
    12. Kane JM, 3rd, Shears LL, 2nd, Hierholzer C et al. Chronic hepatitis C virus infection in humans: induction of hepatic nitric oxide synthase and proposed mechanisms for carcinogenesis. J Surg Res. 1997 May;69(2):321-4.
    13. Tovar V, Villanueva A, Llovet JM. [Cell biology and genetics in liver cancer]. Gastroenterol Hepatol. 2007 Jun-Jul;30(6):360-9.
    14. Villanueva A, Newell P, Chiang DY et al. Genomics and signaling pathways in hepatocellular carcinoma. Semin Liver Dis. 2007 Feb;27(1):55-76.
    15. Park SS, Eom YW, Kim EH et al. Involvement of c-Src kinase in the regulation of TGF-beta1-induced apoptosis. Oncogene. 2004 Aug 19;23(37):6272-81.
    16. Alison MR. Liver cancer: a disease of stem cells? Panminerva Med. 2006 Sep;48(3):165-74.
    17. Wu XZ, Chen D. Origin of hepatocellular carcinoma: role of stem cells. J Gastroenterol Hepatol. 2006 Jul;21(7):1093-8.
    18. Matthews VB, Yeoh GC. Liver stem cells. IUBMB Life. 2005 Aug;57(8):549-53.
    19. Biermann K, Zhou H, Buttner R. [Molecular pathology of testicular germ cell tumors: an update]. Pathologe. 2008 Sep;29(5):348-53.
    20. Broecker-Preuss M, Sheu SY, Worm K et al. Expression and mutation analysis of the tyrosine kinase c-kit in poorly differentiated and anaplastic thyroid carcinoma. Horm Metab Res. 2008 Oct;40(10):685-91.
    21. Ali S. Role of c-kit/SCF in cause and treatment of gastrointestinal stromal tumors (GIST). Gene. 2007 Oct 15;401(1-2):38-45.
    22. Maulik G, Bharti A, Khan E et al. Modulation of c-Kit/SCF pathway leads to alterations in topoisomerase-I activity in small cell lung cancer. J Environ Pathol Toxicol Oncol. 2004;23(4):237-51.
    23. Hines SJ, Litz JS, Krystal GW. Coexpression of c-kit and stem cell factor in breast cancer results in enhanced sensitivity to members of the EGF family of growth factors. Breast Cancer Res Treat. 1999 Nov;58(1):1-10.
    24. Emile JF. [GIST: definition, physiopathology]. J Chir (Paris). 2008;145 Suppl 3:6S1-3.
    25. Somerhausen Nde S, Fletcher CD. Gastrointestinal stromal tumours: an update. Sarcoma. 1998;2(3-4):133-41.
    26. Ohtake S. [Acute myeloid leukemia]. Gan To Kagaku Ryoho. 2007 Dec;34(13):2175-9.
    27. Felicetti F, Errico MC, Bottero L et al. The promyelocytic leukemia zinc finger-microRNA-221/-222 pathway controls melanoma progression through multiple oncogenic mechanisms. Cancer Res. 2008 Apr 15;68(8):2745-54.
    28. Besse B, Ropert S, Soria JC. Targeted therapies in lung cancer. Ann Oncol. 2007 Jul;18 Suppl 9:ix135-42.
    29. Najafizadeh K, Falah Tafti S, Shiehmorteza M et al. H pylori seroprevalence in patients with lung cancer. World J Gastroenterol. 2007 Apr 28;13(16):2349-51.
    30. Lee CH, Jan YJ, Chen JT et al. Colorectal mesenchymal tumor: a clinicopathologic study of 25 cases. J Chin Med Assoc. 2005 Jul;68(7):291-8.
    31. Tong WD, Liu BH, Zhang LY et al. Expression of c-kit messenger ribonucleic acid and c-kit protein in sigmoid colon of patients with slow transit constipation. Int J Colorectal Dis. 2005 Jul;20(4):363-7.
    32. Bateman AC, Judd M, Radenkovic D, Johnson CD. CD117/KIT expression in pancreatic adenocarcinoma. Pancreas. 2008 Jan;36(1):76-9.
    33. Nagata S, Yamaguchi K, Inoue T et al. Solid pancreatic hamartoma. Pathol Int. 2007 May;57(5):276-80.
    34. Prenen H, Dumez H, Stefan C et al. Imatinib for the treatment of patients with unresectable or metastatic malignant KIT-positive gastrointestinal stromal tumours: an open-label Belgian trial. Acta Gastroenterol Belg. 2006 Oct-Dec;69(4):367-71.
    35. Utikal J, Ugurel S, Kurzen H et al. Imatinib as a treatment option for systemic non-Langerhans cell histiocytoses. Arch Dermatol. 2007 Jun;143(6):736-40.
    36. Li Y, Kniss DA, Lasky LC, Yang ST. Culturing and differentiation of murine embryonic stem cells in a three-dimensional fibrous matrix. Cytotechnology. 2003Jan;41(1):23-35.
    37. Ischenko I, Seeliger H, Schaffer M et al. Cancer stem cells: how can we target them? Curr Med Chem. 2008;15(30):3171-84.
    38. Yoshida S. Casting back to stem cells. Nat Cell Biol. 2009 Feb;11(2):118-20.
    39. Kajiguchi T, Lee S, Lee MJ et al. KIT regulates tyrosine phosphorylation and nuclear localization of beta-catenin in mast cell leukemia. Leuk Res. 2008 May;32(5):761-70.
    40. Lee SJ, Yoon JH, Song KS. Chrysin inhibited stem cell factor (SCF)/c-Kit complex-induced cell proliferation in human myeloid leukemia cells. Biochem Pharmacol. 2007 Jul 15;74(2):215-25.
    41. Hongyo T, Hoshida Y, Nakatsuka S et al. p53, K-ras, c-kit and beta-catenin gene mutations in sinonasal NK/T-cell lymphoma in Korea and Japan. Oncol Rep. 2005 Feb;13(2):265-71.
    42. Abbosh PH, Zhang S, Maclennan GT et al. Germ cell origin of testicular carcinoid tumors. Clin Cancer Res. 2008 Mar 1;14(5):1393-6.
    43. Perrais M, Chen X, Perez-Moreno M, Gumbiner BM. E-cadherin homophilic ligation inhibits cell growth and epidermal growth factor receptor signaling independently of other cell interactions. Mol Biol Cell. 2007 Jun;18(6):2013-25.
    44. Chetty R, Serra S, Salahshor S et al. Expression of Wnt-signaling pathway proteins in intraductal papillary mucinous neoplasms of the pancreas: a tissue microarray analysis. Hum Pathol. 2006 Feb;37(2):212-7.
    45. Fuchs BC, Fujii T, Dorfman JD et al. Epithelial-to-mesenchymal transition and integrin-linked kinase mediate sensitivity to epidermal growth factor receptor inhibition in human hepatoma cells. Cancer Res. 2008 Apr 1;68(7):2391-9.
    46. Niu RF, Zhang L, Xi GM et al. Up-regulation of Twist induces angiogenesis and correlates with metastasis in hepatocellular carcinoma. J Exp Clin Cancer Res. 2007 Sep;26(3):385-94.
    47. Blom T, Fox H, Angers-Loustau A et al. KIT overexpression induces proliferation in astrocytes in an imatinib-responsive manner and associates with proliferationindex in gliomas. Int J Cancer. 2008 Aug 15;123(4):793-800.
    48. Gilbert JA, Goetz MP, Reynolds CA et al. Molecular analysis of metaplastic breast carcinoma: high EGFR copy number via aneusomy. Mol Cancer Ther. 2008 Apr;7(4):944-51.
    49. Zhang H, Ye D, Yao X et al. Role of KIT expression in the prognosis of clear cell renal cell carcinomas in Chinese patients. J Cancer Res Clin Oncol. 2009 Feb;135(2):249-53.
    50. Sun J, Pedersen M, Ronnstrand L. The D816V mutation of c-Kit circumvents a requirement for Src family kinases in c-Kit signal transduction. J Biol Chem. 2009 Apr 24;284(17):11039-47.
    51. Barnes G, Bulusu VR, Hardwick RH et al. A review of the surgical management of metastatic gastrointestinal stromal tumours (GISTs) on imatinib mesylate (Glivec). Int J Surg. 2005;3(3):206-12.
    52. Bai CG, Liu XH, Xie Q et al. A novel gain of function mutant in C-kit gene and its tumorigenesis in nude mice. World J Gastroenterol. 2005 Dec 7;11(45):7104-8.
    53. Maitra A. Calcium phosphate nanoparticles: second-generation nonviral vectors in gene therapy. Expert Rev Mol Diagn. 2005 Nov;5(6):893-905.
    54. Curbo S, Lagier-Tourenne C, Carrozzo R et al. Human mitochondrial pyrophosphatase: cDNA cloning and analysis of the gene in patients with mtDNA depletion syndromes. Genomics. 2006 Mar;87(3):410-6.
    55. Luo J, Deng ZL, Luo X et al. A protocol for rapid generation of recombinant adenoviruses using the AdEasy system. Nat Protoc. 2007;2(5):1236-47.
    56. Liang LQ, Zhan ZP, Xu HS et al. [Abnormal signaling activity of phosphatidylinositol 3-kinase pathway in peripheral blood T cells from patients with systemic lupus erythematosus]. Zhonghua Yi Xue Za Zhi. 2008 Jul 29;88(29):2036-40.
    57. Kim MS, Radinger M, Gilfillan AM. The multiple roles of phosphoinositide 3-kinase in mast cell biology. Trends Immunol. 2008 Oct;29(10):493-501.
    58. Carnero A, Blanco-Aparicio C, Renner O et al. The PTEN/PI3K/AKT signallingpathway in cancer, therapeutic implications. Curr Cancer Drug Targets. 2008 May;8(3):187-98.
    59. Wilker E, Lu J, Rho O et al. Role of PI3K/Akt signaling in insulin-like growth factor-1 (IGF-1) skin tumor promotion. Mol Carcinog. 2005 Oct;44(2):137-45.
    60. Riley JK, Carayannopoulos MO, Wyman AH et al. The PI3K/Akt pathway is present and functional in the preimplantation mouse embryo. Dev Biol. 2005 Aug 15;284(2):377-86.
    61. Chang F, Lee JT, Navolanic PM et al. Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia. 2003 Mar;17(3):590-603.
    62. Tu CL, Chang W, Xie Z, Bikle DD. Inactivation of the calcium sensing receptor inhibits E-cadherin-mediated cell-cell adhesion and calcium-induced differentiation in human epidermal keratinocytes. J Biol Chem. 2008 Feb 8;283(6):3519-28.
    63. Prasad A, Paruchuri V, Preet A et al. Slit-2 induces a tumor-suppressive effect by regulating beta-catenin in breast cancer cells. J Biol Chem. 2008 Sep 26;283(39):26624-33.
    64. Wu R, Hendrix-Lucas N, Kuick R et al. Mouse model of human ovarian endometrioid adenocarcinoma based on somatic defects in the Wnt/beta-catenin and PI3K/Pten signaling pathways. Cancer Cell. 2007 Apr;11(4):321-33.
    65. Mhashilkar AM, Stewart AL, Sieger K et al. MDA-7 negatively regulates the beta-catenin and PI3K signaling pathways in breast and lung tumor cells. Mol Ther. 2003 Aug;8(2):207-19.
    66. Dreyer C, Raymond E, Faivre S. [Targeted therapies and their indications in solid neoplasias.]. Rev Med Interne. 2009 May;30(5):416-24.
    67. Sims D, Duchek P, Baum B. PDGF/VEGF signaling controls cell size in Drosophila. Genome Biol. 2009 Feb 12;10(2):R20.
    68. Matsuo M, Sakurai H, Ueno Y et al. Activation of MEK/ERK and PI3K/Akt pathways by fibronectin requires integrin alphav-mediated ADAM activity in hepatocellular carcinoma: a novel functional target for gefitinib. Cancer Sci. 2006Feb;97(2):155-62.
    69. Xie J, Qian J, Yang J et al. Critical roles of Raf/MEK/ERK and PI3K/AKT signaling and inactivation of p38 MAP kinase in the differentiation and survival of monocyte-derived immature dendritic cells. Exp Hematol. 2005 May;33(5):564-72.
    70. Shelton JG, Steelman LS, Lee JT et al. Effects of the RAF/MEK/ERK and PI3K/AKT signal transduction pathways on the abrogation of cytokine-dependence and prevention of apoptosis in hematopoietic cells. Oncogene. 2003 Apr 24;22(16):2478-92.
    71. Tang Y, Nakada MT, Rafferty P et al. Regulation of vascular endothelial growth factor expression by EMMPRIN via the PI3K-Akt signaling pathway. Mol Cancer Res. 2006 Jun;4(6):371-7.
    72. Radisavljevic Z. Locus of fragility in robust breast cancer system. J Cell Biochem. 2004 Aug 1;92(5):1020-4.
    73. Laughner E, Taghavi P, Chiles K et al. HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1alpha (HIF-1alpha) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Mol Cell Biol. 2001 Jun;21(12):3995-4004.
    74. Knight B, Tirnitz-Parker JE, Olynyk JK. C-kit inhibition by imatinib mesylate attenuates progenitor cell expansion and inhibits liver tumor formation in mice. Gastroenterology. 2008 Sep;135(3):969-79, 79 e1.
    75. Richardson A, Malik RK, Hildebrand JD, Parsons JT. Inhibition of cell spreading by expression of the C-terminal domain of focal adhesion kinase (FAK) is rescued by coexpression of Src or catalytically inactive FAK: a role for paxillin tyrosine phosphorylation. Mol Cell Biol. 1997 Dec;17(12):6906-14.
    76. Schaller MD, Borgman CA, Cobb BS et al. pp125FAK a structurally distinctive protein-tyrosine kinase associated with focal adhesions. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):5192-6.
    77. Corsi JM, Rouer E, Girault JA, Enslen H. Organization and post-transcriptional processing of focal adhesion kinase gene. BMC Genomics. 2006;7:198.
    78. Segarra M, Vilardell C, Matsumoto K et al. Dual function of focal adhesion kinase in regulating integrin-induced MMP-2 and MMP-9 release by human T lymphoid cells. FASEB J. 2005 Nov;19(13):1875-7.
    79. Zhao J, Zheng C, Guan J. Pyk2 and FAK differentially regulate progression of the cell cycle. J Cell Sci. 2000 Sep;113 ( Pt 17):3063-72.
    80. Oktay M, Wary KK, Dans M et al. Integrin-mediated activation of focal adhesion kinase is required for signaling to Jun NH2-terminal kinase and progression through the G1 phase of the cell cycle. J Cell Biol. 1999 Jun 28;145(7):1461-9.
    81. Zhao JH, Reiske H, Guan JL. Regulation of the cell cycle by focal adhesion kinase. J Cell Biol. 1998 Dec 28;143(7):1997-2008.
    82. Almeida EA, Ilic D, Han Q et al. Matrix survival signaling: from fibronectin via focal adhesion kinase to c-Jun NH(2)-terminal kinase. J Cell Biol. 2000 May 1;149(3):741-54.
    83. Cary LA, Chang JF, Guan JL. Stimulation of cell migration by overexpression of focal adhesion kinase and its association with Src and Fyn. J Cell Sci. 1996 Jul;109 ( Pt 7):1787-94.
    84. Ilic D, Furuta Y, Kanazawa S et al. Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature. 1995 Oct 12;377(6549):539-44.
    85. Lev S, Moreno H, Martinez R et al. Protein tyrosine kinase PYK2 involved in Ca(2+)-induced regulation of ion channel and MAP kinase functions. Nature. 1995 Aug 31;376(6543):737-45.
    86. Cance WG, Harris JE, Iacocca MV et al. Immunohistochemical analyses of focal adhesion kinase expression in benign and malignant human breast and colon tissues: correlation with preinvasive and invasive phenotypes. Clin Cancer Res. 2000 Jun;6(6):2417-23.
    87. Owens LV, Xu L, Craven RJ et al. Overexpression of the focal adhesion kinase (p125FAK) in invasive human tumors. Cancer Res. 1995 Jul 1;55(13):2752-5.
    88. Wei L, Yang Y, Zhang X, Yu Q. Anchorage-independent phosphorylation ofp130(Cas) protects lung adenocarcinoma cells from anoikis. J Cell Biochem. 2002;87(4):439-49.
    89. Itoh S, Maeda T, Shimada M et al. Role of expression of focal adhesion kinase in progression of hepatocellular carcinoma. Clin Cancer Res. 2004 Apr 15;10(8):2812-7.
    90. Fujii T, Koshikawa K, Nomoto S et al. Focal adhesion kinase is overexpressed in hepatocellular carcinoma and can be served as an independent prognostic factor. J Hepatol. 2004 Jul;41(1):104-11.
    91. Cai L, Han J, Zhuo X et al. Overexpression and significance of focal adhesion kinase in hepatocellular carcinoma and its relationship with HBV infection. Med Oncol. 2008 Nov 20.
    92. Garcia S, Dales JP, Charafe-Jauffret E et al. Overexpression of c-Met and of the transducers PI3K, FAK and JAK in breast carcinomas correlates with shorter survival and neoangiogenesis. Int J Oncol. 2007 Jul;31(1):49-58.
    93. Touyz RM, Berry C. Recent advances in angiotensin II signaling. Braz J Med Biol Res. 2002 Sep;35(9):1001-15.
    94. Girault JA, Labesse G, Mornon JP, Callebaut I. The N-termini of FAK and JAKs contain divergent band 4.1 domains. Trends Biochem Sci. 1999 Feb;24(2):54-7.
    95. Kallergi G, Agelaki S, Markomanolaki H et al. Activation of FAK/PI3K/Rac1 signaling controls actin reorganization and inhibits cell motility in human cancer cells. Cell Physiol Biochem. 2007;20(6):977-86.
    96. Pylayeva Y, Gillen KM, Gerald W et al. Ras- and PI3K-dependent breast tumorigenesis in mice and humans requires focal adhesion kinase signaling. J Clin Invest. 2009 Feb;119(2):252-66.
    97. Eisinger DA, Ammer H. Delta-opioid receptors activate ERK/MAP kinase via integrin-stimulated receptor tyrosine kinases. Cell Signal. 2008 Dec;20(12):2324-31.
    98. Yee KL, Weaver VM, Hammer DA. Integrin-mediated signalling through the MAP-kinase pathway. IET Syst Biol. 2008 Jan;2(1):8-15.
    99. Zeng ZZ, Jia Y, Hahn NJ et al. Role of focal adhesion kinase and phosphatidylinositol 3'-kinase in integrin fibronectin receptor-mediated, matrix metalloproteinase-1-dependent invasion by metastatic prostate cancer cells. Cancer Res. 2006 Aug 15;66(16):8091-9.
    100. Lee J, Jung ID, Chang WK et al. p85 beta-PIX is required for cell motility through phosphorylations of focal adhesion kinase and p38 MAP kinase. Exp Cell Res. 2005 Jul 15;307(2):315-28.
    101. Velling T, Nilsson S, Stefansson A, Johansson S. beta1-Integrins induce phosphorylation of Akt on serine 473 independently of focal adhesion kinase and Src family kinases. EMBO Rep. 2004 Sep;5(9):901-5.
    102. Bachelot C, Rameh L, Parsons T, Cantley LC. Association of phosphatidylinositol 3-kinase, via the SH2 domains of p85, with focal adhesion kinase in polyoma middle t-transformed fibroblasts. Biochim Biophys Acta. 1996 Mar 27;1311(1):45-52.
    103. Rovida E, Navari N, Caligiuri A et al. ERK5 differentially regulates PDGF-induced proliferation and migration of hepatic stellate cells. J Hepatol. 2008 Jan;48(1):107-15.
    104. Campbell M, Trimble ER. Modification of PI3K- and MAPK-dependent chemotaxis in aortic vascular smooth muscle cells by protein kinase CbetaII. Circ Res. 2005 Feb 4;96(2):197-206.
    1. Walkup MH, Gerber DA. Hepatic stem cells: in search of. Stem Cells. 2006 Aug;24(8):1833-40.
    2. Roskams TA, Theise ND, Balabaud C et al. Nomenclature of the finer branches of the biliary tree: canals, ductules, and ductular reactions in human livers. Hepatology. 2004 Jun;39(6):1739-45.
    3. Jakubowski A, Ambrose C, Parr M et al. TWEAK induces liver progenitor cell proliferation. J Clin Invest. 2005 Sep;115(9):2330-40.
    4. Petersen BE, Grossbard B, Hatch H et al. Mouse A6-positive hepatic oval cells also express several hematopoietic stem cell markers. Hepatology. 2003 Mar;37(3):632-40.
    5. Ichiba M, Shimomura T, Murai R et al. Dual effects of adenovirus-mediated thrombopoietin gene transfer on hepatic oval cell proliferation and platelet counts. Biochem Biophys Res Commun. 2005 Sep 30;335(3):723-9.
    6. Menthena A, Deb N, Oertel M et al. Bone marrow progenitors are not the source of expanding oval cells in injured liver. Stem Cells. 2004;22(6):1049-61.
    7. Yamazaki S, Miki K, Takayama T et al. Hepatic gene induction in murine bone marrow after hepatectomy. J Hepatol. 2006 Feb;44(2):325-33.
    8. Oliver JA, Maarouf O, Cheema FH et al. The renal papilla is a niche for adult kidney stem cells. J Clin Invest. 2004 Sep;114(6):795-804.
    9. El-Helou V, Dupuis J, Proulx C et al. Resident nestin+ neural-like cells and fibers are detected in normal and damaged rat myocardium. Hypertension. 2005 Nov;46(5):1219-25.
    10. Mayer EJ, Carter DA, Ren Y et al. Neural progenitor cells from postmortem adult human retina. Br J Ophthalmol. 2005 Jan;89(1):102-6.
    11. Herrera MB, Bruno S, Buttiglieri S et al. Isolation and characterization of a stem cell population from adult human liver. Stem Cells. 2006 Dec;24(12):2840-50.
    12. Anjos-Afonso F, Siapati EK, Bonnet D. In vivo contribution of murine mesenchymal stem cells into multiple cell-types under minimal damage conditions. J Cell Sci. 2004 Nov 1;117(Pt 23):5655-64.
    13. Lee KD, Kuo TK, Whang-Peng J et al. In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology. 2004 Dec;40(6):1275-84.
    14. Taub R. Liver regeneration: from myth to mechanism. Nat Rev Mol Cell Biol. 2004 Oct;5(10):836-47.
    15. Petersen BE, Bowen WC, Patrene KD et al. Bone marrow as a potential source of hepatic oval cells. Science. 1999 May 14;284(5417):1168-70.
    16. Wang X, Montini E, Al-Dhalimy M et al. Kinetics of liver repopulation after bone marrow transplantation. Am J Pathol. 2002 Aug;161(2):565-74.
    17. Yin L, Lynch D, Ilic Z, Sell S. Proliferation and differentiation of ductular progenitor cells and littoral cells during the regeneration of the rat liver to CCl4/2-AAF injury. Histol Histopathol. 2002 Jan;17(1):65-81.
    18. Kuhlmann WD, Peschke P. Hepatic progenitor cells, stem cells, and AFP expression in models of liver injury. Int J Exp Pathol. 2006 Oct;87(5):343-59.
    19. Fiegel HC, Gluer S, Roth B et al. Stem-like cells in human hepatoblastoma. J Histochem Cytochem. 2004 Nov;52(11):1495-501.
    20. Libbrecht L, Desmet V, Roskams T. Preneoplastic lesions in human hepatocarcinogenesis. Liver Int. 2005 Feb;25(1):16-27.
    21. Uenishi T, Kubo S, Yamamoto T et al. Cytokeratin 19 expression in hepatocellular carcinoma predicts early postoperative recurrence. Cancer Sci. 2003 Oct;94(10):851-7.
    22. Roskams T. Liver stem cells and their implication in hepatocellular and cholangiocarcinoma. Oncogene. 2006 Jun 26;25(27):3818-22.
    23. Ponta H, Sherman L, Herrlich PA. CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol. 2003 Jan;4(1):33-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700