用户名: 密码: 验证码:
阿特拉津在不同肥力土壤中的生态效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
施用农药是现代化农业的关键措施之一,在解决人口快速增长导致的粮食危机,以及对农业的持续稳定发展等方面起着十分重要的作用。而施肥作为保证粮食产量的关键措施之一,也已被广泛的应用于农业生产。阿特拉津属均三氮苯类选择性内吸传导型除草剂,为高活性、低毒农药。本文研究了阿特拉津与化肥的复合污染,分析阿特拉津在长期定位施肥条件下对土壤的微生物及酶活性的影响,及阿特拉津在不同肥力土壤中的降解情况,并且研究不同施肥制度下,土壤微生物及酶活性的季节变化规律,以期为作物合理施肥施药、减少环境污染提供理论依据。研究结果如下:
    1. 长期施肥对土壤过氧化氢酶活性、蔗糖酶活性、脲酶活性、磷酸酶活性的影响实验结果表明,长期施肥可以增加土壤中蔗糖酶、脲酶、磷酸酶活性,其中有机肥与NPK配施对于增加土壤蔗糖酶、脲酶、磷酸酶活性尤为显著。长期施肥降低土壤中过氧化氢酶活性,并且以NPK配施有机肥处理的土壤过氧化氢酶活性降低幅度最大。过氧化氢酶在2002年4~7月呈上升趋势,7月达到最高值,随后的8、9月份有所下降。蔗糖酶较稳定,无明显季节变化。磷酸酶活性在2002年4月~6月处于较高水平,然后呈现下降趋势。脲酶活性的季节变化规律比较复杂,4月~9月间不同施肥处理的脲酶活性变化不一。
    2. 长期施肥对土壤微生物类群的影响实验结果表明,长期施肥可以提高土壤中细菌、真菌、放线菌的数量,其中NPK配施有机肥对细菌的增加效果明显大于NPK配施植物秸秆和NPK处理的。长期施用NPK对真菌的增加效果比较的显著。NPK配施有机肥及NPK配施植物秸秆对放线菌的增加效果均要优于单施NPK。土壤细菌数量在4月~7月呈现明显上升趋势,最大值基本上出现在7月份,而后几个月变化幅度不大。土壤真菌数量在4月~8月间呈现上升趋势,最大值出现在8月份,而后开始下降,除NPK+S处理继续保持下降趋势外,其余三种处理在9月底均有回升趋势。土壤放线菌数量在4月~7月呈现明显上升趋势,其中NPK+M处理的放线菌数量在8月份继续保持上升趋势,而后呈现下降趋势。
    
    
    3. 长期施肥对土壤微生物生理群的影响实验结果表明,长期施肥可以提高土壤中固氮菌的数量。 NPK配施有机肥对增加土壤中氨化细菌的数量效果最佳,而NPK配施植物秸秆和NPK这两种处理都不能明显增加氨化细菌的数量。长期施肥可以明显增加土壤中硝化细菌的数量。长期施肥可以明显增加土壤中纤维素分解菌的数量,并且NPK、NPK配施植物秸秆和NPK配施有机肥这三种施肥方式对增加土壤中纤维素分解菌数量的效果及趋势均大致相同。固氮菌数量在6、7、8月份保持较高水平。氨化细菌最大值出现在8月份,在5~8月间,呈现上升趋势,8~9月有明显的下降趋势,整个9月份变化平缓。硝化细菌变化规律较为复杂,不同施肥处理数量变化不一。CK处理的纤维素分解菌数量没有明显的季节变化,其余三种处理变化趋势基本一致,即在5、7、9月呈现三个高峰值。
    4. 采用密闭静止测CO2法研究了阿特拉津对不同肥力土壤呼吸作用的影响。实验结果表明,在某一肥力条件下,阿特拉津各处理浓度之间及与对照之间无显著差异,但对四种不同肥力的土壤呼吸作用影响差异却十分显著。在整个试验周期中NPK+S施肥处理的土壤在各农药浓度处理中释放的CO2总量均为最大值,接下来依次为NPK、NPK+M、CK。CK、NPK、NPK+S这三种施肥处理中CO2的释放总量随农药浓度的提高呈现增加的趋势。在NPK+M的施肥处理中,低剂量农药处理浓度的土壤中CO2的释放总量明显高于高剂量农药处理浓度。
    5. 阿特拉津对不同肥力土壤蔗糖酶的影响实验结果表明,阿特拉津刺激了NPK、NPK+S、CK处理的土壤蔗糖酶活性,就刺激程度而言,NPK>NPK+S>CK;阿特拉津抑制NPK+M处理的土壤蔗糖酶活性。当阿特拉津浓度为20mg·kg-1时,蔗糖酶活性值最大。
    6. 阿特拉津对不同肥力土壤脲酶的影响实验结果表明,阿特拉津处理四种肥力的土壤,在实验初期时,低浓度处理对土壤脲酶活性表现为刺激作用,然后表现为抑制作用;而高浓度处理在整个处理过程中均表现为抑制作用,且随着药剂浓度的提高,抑制作用加强。CK和NPK施肥处理的土壤脲酶受抑制程度比NPK+S和NPK+M处理的大。
    7. 本文研究改进了阿特拉津在土壤中的残留分析方法。土壤中阿特
    
    拉津残留物用丙酮提取,经液-液分配和弗罗里硅土柱层析净化后,用GC-14C岛津气相色谱仪(63Ni-ECD)进行检测。阿特拉津在土壤中0.109,1.09,10.9mg·kg-1三个浓度的标准添加回收率分别为:91.41±8.05%,93.58±8.05%,90.35±9.51%,符合农药残留分析要求。
    8. 阿特拉津在土壤中残留实验结果表明,在四种不同肥力土壤中,阿特拉津的降解规律基本一致,即前28天,阿特拉津降解速率较快,在后28天,阿特拉津降解速率慢。NPK+M处理的阿特拉津降解率最高,在土壤中半衰期最短。NPK+S处理中阿特拉津降解率低,其半衰期最长。在前42天中,NPK处理的阿特拉津降解率要明显高于其余三种施肥处理。阿特拉津在CK和NPK处理的半衰期则没有明显差异。
Using pesticide is a key measure in modern agriculture. Pesticide has an important effect on solving the food crisis caused by population explosion and maintaining the stable and sustainable development of agriculture. As a key measure of guaranteeing the output of food, fertilizers were applied widely in farming. Atrazine, Which has high activity towards the weed, low toxicity in the environment, belong to the selective systemic conductive triazine herbicides. The paper studied the compound pollution of atrazine and fertilizer. In this research paper, what were mainly studied was the effects of atrazine on the soil microbe and enzyme activity under the long-term fertilization conditions and its degradation in different fertility soils, meanwhile, what were studied was the seasonal succession of soil microbe and enzyme activity. These researches can offer bases and evidences for the safely and rationally applying of the pesticides and fertilizers so as to reduce the environmental pollution. The results could be summarized as follows:
    1. We studied the effects of long-term fertilization on the soil hydrogen peroxidase, invertase, urease, phosphatase activities. The results were as follows: Long-term application of fertilizers, especially the treatment of NPK +M could significantly promoted the soil invertase, urease and phosphatase activities. Long-term application of fertilizers reduced the soil hydrogen peroxidase activity. Soil in the treatment of NPK+M had significantly lower of hydrogen peroxidase in four treatments. Hydrogen peroxidase activity increased from April to July in 2002 and gradually reached a maximum in July, then decreased gradually. Invertase activity remained stable during the whole
    
    experimental period. Phosphatase remained the high activity from April to June, then decreased during the later period. Urease varied complicatedly.
    2. The study of the effects of long-term fertilization on the population of the soil microbe groups demonstrated that long-term fertilization augmented the population of bacteria, fungi and actinomycetes. Soil in the treatment of NPK+M had significantly higher numbers of bacteria than the treatments else. Soil in the treatment of NPK had significantly high numbers of fungi. The numbers of actinomycetes with the treatment of NPK were lower than with the treatments of NPK+M or NPK+S. The numbers of bacteria increased from April to July in 2002 and gradually reached a maximum in July, then remained stable during the later period. The numbers of fungi increased from April to August in 2002 and gradually reached a maximum in August, then decreased. The numbers of fungi with the treatment of NPK+S didn't renew during the later period, whereas the numbers of fungi with the treatments else renewed in the end of September. The numbers of actinomycetes increased from April to July in 2002. The numbers of actinomycetes with the treatment of NPK+M increased till August, then gradually decreased.
    3. The study of the effects of long-term fertilization on the population of the soil microbe physiological groups demonstrated that long-term fertilization augmented the numbers of azotobacteria. Soil in the treatment of NPK+M had significantly higher numbers of ammonifiers than the treatments else. Long-term fertilization augmented the numbers of nitrifiers obviously. Long-term fertilization augmented the numbers of cellulose-decomposing bacteria obviously, and moreover, the numbers of cellulose-decomposing bacteria with the treatments of NPK, NPK+M and NPK+S varied similarly. The numbers of azotobacteria remained the high level from June to August. The numbers of ammonifiers increased from May to August gradually and reached a maximum in August, then decreased from August to September and remained stable in the whole September. The numbers of nitrifiers varied complicatedly. The numbers of cellulose-decomposing bacteria with the
    
    treatment of CK remained stable during the whole experimental period, which with the treatments else varied similarly, that is, there we
引文
1. 白清云. 土壤微生物群落结构的化学估计方法[J].农业环境保护,1997,16 (6) :252~256
    2. 陈恩凤. 土壤酶与土壤肥力研究[M]. 北京:科学出版社,1979,54~61
    3. 陈华癸,樊庆笙. 微生物学[M]. 北京:农业出版社,1980
    4. 弓爱君,叶常明. 除草剂阿特拉津的环境行为综述[J]. 环境科学进展,1997,5(2):37~45
    5. 关松荫. 农药对土壤酶活性的抑制作用[J]. 土壤通报,1992,23(5):232~233
    6. 关松荫. 土壤酶及其研究法[M]. 北京:农业出版社,1986
    7. 和文祥,蒋新,卞永荣等. 杀虫双对土壤酶活性影响的研究[J]. 西北农林科技大学学报,2002,30(1):13~17
    8. 和文祥,朱铭茂,童江云等. 有机肥对土壤脲酶活性特征的影响[J]. 西北农业学报,1997,6(2):73~75
    9. 蒋和,翁文钰,林增泉. 施肥十年后的水稻土微生物学特性和酶活性的研究[J]. 土壤通报, 1990,21(6):265~268
    10. 瞿福平 杨义燕. 含氮农药的好氧生物降解性能及废水治理对策[J].环境科学,1999,20(4):12~15
    11. 黎孟波,张先婉. 土壤肥力概念与模式:土壤肥力研究之一[A]. 土壤肥力研究进展[M]. 北京:中国科学技术出版社,1991,208~213
    12. 林葆,林继雄,李家康. 长期施肥的作物产量和土壤肥力变化[M]. 北京:中国农业科技出版社,1996,1~179
    13. 林玉锁,龚瑞忠,朱忠林. 农药与生态环境保护[M]. 北京:化学工业出版社,2000,171~180
    14. 林增泉,翁文钰,蒋和等. 连续十年施肥对水稻土肥力的影响[J]. 福建省农科院学报,1991,6(1):35~44
    15. 农业部农药鉴定所. 农药残留量实用检测方法手册[M]. 北京:中国农业科技出版社,1995,503~507
    16. 乔雄梧,马利平. 阿特拉津在土壤中的降解途径及其对持留性的影响[J]. 农村生态环境,1995,11(4):5~8
    17. 任晋,蒋可. 内分泌干扰剂的研究进展[J]. 化学进展,2000,13(2):135~144
    18. 申继忠,刘伊玲. 莠去津在单用和混用条件下土壤中残留规律的研究[J]. 杂草学报,1992,6(4):7~10
    19. 申继忠. 埃及农业部禁用农药名单[J]. 农药科学与管理,1999,20(1):9
    20. 沈善敏. 国外长期肥料试验(一)、(二)、(三)[J]. 土壤通报,1984,(2):85~91;(3):134~138;(4):184~185
    
    
    21. 束放. 2000年全国农药需求动态[J]. 农药科学与管理. 2000,21(2):38~39
    22. 汤树德,李汉昌,石晶波. 化学除草剂对土壤微生物生态和物质转化过程的影响[J]. 土壤学报,1984,21(1):95~104
    23. 王金信. 农田杂草与防除[M]. 高等农业院校教材,1999
    24. 王静,姜丽娟,陶波等. 除草剂阿特拉津的气相色谱残留分析[J]. 东北农业大学学报,1995,26(2):197~202
    25. 王立仁,赵明宇. 阿特拉津在农田灌溉水及土壤中残留分析方法及影响研究[J].农业环境保护,2002,19(2):111~113
    26. 王险峰. 进口农药应用手册[M]. 中国农业出版社,2000
    27. 熊毅. 我国土壤科学研究的回顾[J]. 土壤,1984,16(2):41~45
    28. 薛琦. 土壤微生物和农药[J]. 农药译丛,1994,16(4):51~54,30
    29. 严昶升. 土壤肥力研究方法[M]. 北京:农业出版社,1988
    30. 杨邦俊,向世群. 有机肥对紫色水稻土磷酸酶活性及其磷素转化作用的影响[J]. 土壤通报,1990,21(3):108~110
    31. 杨炜春,王琪全,刘维屏. 除草剂莠去津(atrazine)在土壤-水环境中的吸附及其机理[J]. 环境科学,2000,21(4):94~97
    32. 叶常明,雷志芳. 阿特拉津生产废水排放对水稻危害的风险分析[J]. 环境科学,1999,20(3):82~84
    33. 叶常明,王杏军等. 阿特拉津在土壤中的生物降解研究[J]. 环境化学,2000,19(4):300~305
    34. 袁玲,杨邦俊,郑兰君等. 长期施肥对土壤酶活性和氮磷养分的影响[J]. 植物营养与肥料学报,1997,3(4):300~306
    35. 张爱云,蔡道基. 除草剂对土壤微生物活性、土壤氨化作用和硝化作用的影响[J]. 农村生态环境,1990,6(3):62~66
    36. 张翔,朱洪勋等. 长期施肥对土壤微生物和腐殖质组分的影响[J]. 华北农学报, 1998,13(2):87~92
    37. 郑重. 农药的微生物降解[J]. 环境科学,1990,11(2):68~72
    38. 中国化工产品大全(下),除草剂[M]. 化工出版社,1994
    39. 中国科学院南京土壤研究所微生物室. 土壤微生物研究法[M]. 北京:科学出版社,1985
    40. 周新文,陈鹤年,陆贻通. 化学农药对土壤微生物的影响[J]. 上海环境科学,1997,16(12):35~37
    41. A.B.Bоеводин. 除草剂对土壤微生物的影响[J]. 农药译丛,1989,11 (3):23~26
    42. Alan Newman. Atrazine found to cause chromosomal breaks[J]. Environ. Sci. Tech., 1995,29(10):450A
    43. Andreas Brecht. A direct optical immunosensor for atrazine detection[J]. Analytical Chemic Acta,1995,31(1):289~299
    
    
    44. Behki R M, Khan S U. Degradation of atrazine by Pseudomonas:N-dealkylation and dehalogenation of atrazine and its metabolites[J]. J. Agri. Food Chem.,1994,42:1237~1241
    45. Bjarni B, Nikolas B, Sergei E, et al. Flow injection enzyme immunoassay of atrazine herbicide in water[J]. Anal. Chem. Acta,1997,347(1-2):111~120
    46. Bolton H J, Elliott L F, et al. Soil microbial biomass and selected soil enzyme activities:Effect of fertilization and cropping practices[J]. Soil Biology and Biochemistry,1985,17(3):297~302
    47. Brouwer W W M, Boesten J J T, Siegers W G. Adsorption of transformation products of atrazine by soil[J]. Weed Res.,1990,30:123~128
    48. Burrows E P, Brueggeman E E, Hoke S H. Chromatographic trace analysis of guanioline, substituted guanidines and s-trianzines in water[J]. J. Chromatogr.,1984,294:494~498
    49. Capriel P, Haisch A, Khan S U. J. Agri. Food Chem.,1985,33:567~569
    50. Chapin R E, Stevens J T, Hughes C L, et al. Atrazine:Mechanisms of hormonal imbalance in female SD rats[J]. Funda. Appl. Toxicol.,1996,29:1~17
    51. Dalal R C. The tipic and properties of soil enzymes in the congo[J]. Soil Science,1975,120:206
    52. Das Joyce V. Spectrophotometric determination of atrazine using p-aminobenzoic acid and its applications[J]. J. Indian Chem. Soc.,1995,72(10):765~766
    53. Dodson S L, Merritt C M, Shannahan J P. Low exposure concentrations of atrazine increase male production in Daphnia[J]. Environ. Toxicol.& Chemistry,1999,18(7):1568~1573
    54. Donna A, Betta P G, Robutti F, et al. Ovarian mesothelial tumors and herbicides:A case-control study[J]. Carcinogenesis,1984,5(7):941~945
    55. Donnelly P K, Entry J A, Crawford D L. Degradation of atrazine and 2,4-dichlorophenoxyacetic acid by mycorrhizal fungi at three nitrogen concentration in vitro[J]. Appl. Environ. Microbiol.,1993,59:2612~2617[34]
    56. Doran J W, et al. Defining soil quality for a sustainable environment[A]. Soil Society of America Special Publication[M]. No. 35, Madison, Wisconsin,1994,3~234
    57. Dufek P. Comparison of the HPLC behavior of s-triazine derivatives of various stationary phases[J]. J. Chromatogr.,1980,187:341~349
    58. EL-Sheekh M M, Kotkat H M, Hammouda O H E. Atrazine herbicide on growth, photo-synthesis, protein synthesis and fatty acid composition in the unicellular green algae Chlorella kessleri[J]. Ectoxicol. Environ. Safty,1994,29:319~358
    59. Erickson L E, Lee K H. Degradation of atrazine and related s-triazines[J]. Crit. Rew. Environ. Control,1989,19:1~14
    
    
    60. Frank R, Siron G J. Atrazine:its use in production and its loss to stream water in Southern Ontario 1975~1977[J]. Sci. Total Environ.,1979,12(3):223~239
    61. Frassanite R. Determination of s-triazine metabolites: a mass spectrometric investigation[J]. J. Agric. Food Chem.,1996,44(8):2282~2286
    62. Grego S, et al. Agricultural practices and biological activity in soil[J]. Fresenius Environmental Bulletin,1996,5:282~288
    63. Grigg C B, Assaf N A, Turco R F. Removal of atrazine contamination in soil and liquid systems using bioaugmentation[J]. Pesticide Science,1997,50:211~220
    64. Gruessner B. Patterns of herbicide contamination in selected Vermont streams detected by enzyme immunoassay and GC/MS[J]. Environ. Sci. Tech.,1995,29(11):2806~2813
    65. Hayes M C. Determination of atrazine in water by magnetic particle immunoassay collaborative study[J]. J. AOAC Int.,1996,79(2):529~537
    66. Hurle K B, Freed V H. Effect of electrolytes on the solubility of some s-triazine and substituted ureas and their adsorption on soil[J]. Weed Res.,1972,12(1):1~10
    67. Janda V, Marha K. Recovery of s-triazine from water and their analysis by gas chromatography with photoionization detection[J]. J. Chromatogr.,1985,329(1):186~188
    68. Jenks B M, Roeth F W, Martin A R. Comparison of an enzyme immunoassay with gas chromatography for atrazine determination in water[J]. Bull. Environ. Contam. Toxical.,1997,58:696~703
    69. Jha V K. Infrared study on the interaction of sodium salt of 2,4-D and atrazine with H+-, Na+-, Ca2+-, Al3+- and Fe3+- bentonite[J]. J. Nepal Chem. Soc., 1995,14:6~13
    70. Keith R. Solomon, David B. Baker, R. Peter Richards et al. Ecological risk assessment of atrazine in North American surface waters[J]. Environ. Toxicol. Chem., 1996,15(1):31~76
    71. Kennday A C, et al. Microbial characteristics of soil quality[J]. Journal of and water conversation,1995,(50):243~248
    72. Koskinen W C, Haper S S. The retention process:mechanisms. In pesticide in the soil environment[M]. Soil Science Society of America(SSSA)Book series;SSSA:Madison,WI,1990,51~77
    73. Lacorte S, Vreuls J J, Salau J S. Monitoring of pesticides in river water using fully automated on-line solid-phase extraction and liquid chromatography with diode array with a novel filtration device[J]. J. Chromatogr. A.,1998,795:71~82
    Laskowski D A. 农药土壤降解的研究方法[J]. 农药译丛,1987,9(1):28~
    
    74. 32
    75. Lekova K, Kardzhieva L, Khlebarava N, et al. Gas-liquid chromatography of s-triazines on a surface-bonded support in short columns[J]. J. Chromatogr.,1981,212(1):85~91
    76. Liliana G, Filomena S, Antonio V. Pesticide effects on the activity of free, immobilized and soil invertase[J]. Soil Biol. Biochem.,1995,27(9):1201~1208
    77. Louter A J H, Van Beekvelt C A, Cid Montanes P. Analysis of microcontaminations in aqueous samples by fully automated on-line soild-phase extraction-gas chromatography-mass selective detection[J]. J. Chromatogr. A.,1996,725:67~83
    78. Maguire R J, Occurrence of pesticides in the Yamaska River Queber[J]. Arch. Environ. Contam. Toxicol.,1993,25(2):220~226
    79. Mandelbaum R T, Wackett L P, Allan D L. Mineralization of the s-triazine ring of atrazine by stable bacterial mixed cultures[J]. Appl. Environ. Microbiol.,1993,59:1695~1701
    80. Martyniuk S, Wagner G H. Quantitative and qualitative examination of soil microflora associated with different management systems[J]. Soil Science, 1978, 125, 343~350
    81. Matisova E, Krupcik J. Separation of multicomponent mixtures of N-dealkylated degradation products of s-triazine herbicides and their parent compounds by glass capillary gas-liquid chromatography[J]. J. Chromatogr.,1981,205(2):464~469
    82. Mersie Wondi, Seybold Cathy. Adsorption and desorption of atrazine, DEA, DIA and HA on levy wetland[J]. J. Agric. Food Chem.,1996,44(7):1925~1929
    83. Miler J L, Wollum A G, Weber J B. Degradation of Carbon-14-atrazine and Carbon-14-Metolachlor in Soil from Four Depth[J]. J. Environ. Qual.,1997,26(3):633~638
    84. Mills M, Thurman E M. Preferential dealkylation reaction of s-triazine herbicides in the unsaturated zone[J]. Environ. Sci. Technol.,1994,28:600~650
    85. Nalina S, Elizabeth D. A review of epidemiologic studies of atrazine herbicides and cancer[J]. Critical Reviews in Toxicology,1997,27(6):599~613
    86. Nanda S K, Das P K, Behera B. Effects of continuous manuring on microbial population, ammonification and CO2 evolution in a rice soil[J]. Oryza,1998,25(4):413~416
    87. Nannipieri P, Bollag J M. Use of enzymes to detoxify pesticides-contaminated soils and waters[J]. J. Environ. Qual.,1991,20:510~517
    88. Nasser A A, Turco R F. Accelerated biodegradation of atrazine by a microbial consortium is possible in culture and soil[J]. Biodegradation,1994,5:271
    
    
    89. Nassetta M, Remedi M V, Rossi R H. Effect of surfactants on the solubility of herbicides[J]. J. Agric. Food Chem,1991,39(6):175~178
    90. Ndayeyamiye A, Cote D. Effect of long-term pig slurry and solid cattle manure application on soil chemical and biological properties[J]. Canadian Journal of Soil Science,1989,69(1):39~47
    91. Nikolelis D P. Electrochemical transduction of interaction of atrazine with bilayer lipid membrances[J]. Electroanalysis,1996,8(7):643~647
    92. Pichon V, Aulard-Macler E, Oubihi H. Supercritical-Fluid extraction coupled with immunoaffinity clean-up for the trace analysis of organic pollutants in different matrices[J]. Chromatographia,1997,46(9/10):529~536
    93. Pimentel D. Effects of Pesticides on Non-target Species[M]. Washington,U.S.GOV. Print,1971
    94. Popl M, Voznakova Z, Tatar V. Determination of triazine in water by GC and LC[J]. J. Chromatogr. Sci.,1983,21(1):39~42
    95. Powlson D S, et al. Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation[J]. Soil Biology and Biochemistry,1987,19:159~164
    96. Prasad T A V, Reddy D C. Atrazine toxicity on hydromineral balance of fish. Tilapia mossambicus[J]. Ectoxicol. Environ. Safty,1994,28:313~316
    97. Purkayastha R. Simultaneous detection of the residues of atrazine and linuron in water, soil, plant and animal samples by thin-layer chromatography[J]. J. Agric. Food Chem.,1973,21:93~98
    98. Roloff B D, Belluck D A, Meisner L F. Cytogenetic studies of herbicide interactions in vitro and in vivo using atrazine and linuron[J]. Arch. Environ. Contam. Toxicol.,1992,22:267~271
    99. Roy W R, Krapac I G. Adsorption and desorption of atrazine and deethylatrazine by low organic carbon geologic materials[J]. J. Environ. Qual.,1994,23:556~649
    100. Sabra F S, Mansee A H, Khattab M M. Residual effect of three common herbicides on certain soil enzyme activity[J]. Alexandria Journal of Agricultural Research,1997,42(2):89~99
    101. Salau J S, Honing M, Tauler R. Resolution and quantitative determination of coeluted pesticide in liquid chromatography-thermospray mass apectrometry by multivariate curve resolution[J]. J. Chromatogr. A.,1998,795:3~12
    102. Schmitt Ph. Capillary electrophretic study atrazine photolysis[J]. J. Chromatogr. A.,1995,709(1):215~225
    103. Siebersy J. Pesticides in precipitation in northern Germany[J]. Chemosphere,1994,28(8):1559~1570
    
    
    104. Skipper H D, Volk V V, Morthland M M, et al. Hydrolysis of atrazine on soil colloids[J]. Weed Science,1978,26:46~51
    105. Spalding R F, Snow D D, Cassada D A, et al. Study of pesticide occurrence in two closely spaced lakes in northeastern Nebraska[J]. J. Environ. Qual.,1994,23:571~578
    106. Srivastava S C, Singh J S. Microbial C、N and in dry tropical forest soils: Effects of alternate land-use and nutrient flux[J]. Soil Biology and Biochemistry,1991,23 (2):117~124
    107. Stoks P G. Detection of s-triazine derivatives at the nanogram level by gas-liquid chromatography[J]. J. Chromatogr.,1979,168:455~460
    108. Susanne Wust. A Sensitive Enzyme Immunoassay for the Detection of Atrazine Based Upon Sheep, Antibodies Analytical Letters[M]. Toronto:Academic Press Inc.,1992,1317~1408
    109. Thomas B, Moorman. US-DA-Agricultural Research Service, Ames, Iowa[M]. National Soil Tilth Laboratory, 1999, 50011, USA
    110. Tindle R C, Gehrke C W, Aue W A. Improved GLC (gas-liquid chromatography) method for s-triazine residue determination[J]. J. Assoc. Off. Anal. Chem.,1968,51:682~688
    111. Traub Eberhard U, Henschel K P, Kordel W. Influence of different field sites on pesticide movement into subsurface drains[J]. Pesticide Science,1995,43(2):121~129
    112. U.S. Environmental Protection Agency. Rules and Regulation. Fed. Regist.[M].1991, 56:3552
    113. Van Leeuwen J A, Walnter-Toews D, Abernathy T. Associations between stomach cancer incidence and drinking water contamination with atrazine and nitrate in Ontario (Canada) agroecosystems, 1987~1991[J]. International Journal of Epidemiology,1999,28(5):836~840
    114. Wainwright M. A review of the effects of pesticides on microbial activity in soils[J]. Soil Science,1978,29(3):287
    115. Young H Y, Chu A. Microdetermination of chloro-s-triazines in soil by gas-liquid chromatography with nickel electron capture of electrolytic conductivity detection[J]. J. Agric. Food Chem.,1973,21:711~713
    116. Zhu T, Desgardins R L, Macpherson . Aircraft measurements of the concentration and flux of agrochemicals[J]. Environ. Sci. Tech.,1998,32(8):1032~1038
    117. Zimdahl R L, Catizone P. Degradation of pendimenthalin in soil[J]. Weed Sci.,1984,32(3):408~412

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700