用户名: 密码: 验证码:
汞砷蒸气发生新方法及其在原子光谱分析中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文对蒸气发生/电化学氢化物发生(VG/EC-HG)进样技术的原理以及其在原子光谱(AS)分析中的应用,进行了较为详细的概述。AS是检测环境样品中金属元素较为成熟的分析手段,同时随着科技的发展,分析工作者对原子光谱仪器的在线分析、微型化以及环境友好等方面提出了更高的要求。论文包括了实验装置的设计,设计原理的讨论,测量条件的优化,实际样品的处理,分析方法的建立等。
     第一章首先介绍了原子光谱分析中冷蒸气发生(CVG)、氢化物发生(HG)和挥发物发生等蒸气发生进样技术,然后文中重点阐述了化学蒸气(CHG)/EC-HG的原子化机理、可能干扰以及如何消除、电解池构造、电极材料和电解质溶液的选择等。最后对CHG/EC-HG-AS体系性能改进以及实际应用做了简要概述。
     第二章研究并建立了一种新颖的微型化汞蒸气发生原子荧光(CVG-AFS)检测系统,该体系采用具有高气体渗透性和紫外光透过性的无定形聚四氟乙烯管(Teflon AF-2400)作为CVG-AFS系统的气液分离器和检测池,同时文中对Teflon-AF 2400管的渗透机理以及设计原理做了比较深入的研究。在最佳实验条件下,方法的检出限为0.02μg/L,相对标准偏差(n=11)为3.3%。该体系所占的体积小、样品消耗少、灵敏度和稳定性好,并成功应用于卷烟样品中汞含量的检测,回收率为97%~102%。
     第三章首次将固体聚合物电化学氢化发生(SPE-HG)技术应用于原子光谱分析进样,并设计了一种新型的SPE-HG电解池,采用耐腐蚀性强的镀铱钛网做阳极,延长了发生池的使用寿命;使用透气性好、高氢超电势的石墨毡做为阴极,大大提高了砷氢化物的生成效率;Nafion?117膜具有良好的质子交换能力,以及电极和质子膜之间的紧密接触,降低了反应所消耗的功率。该氢化物发生池改变了以往传统氢化发生池阳极使用酸性电解质的特点,阳极液使用纯水,电解池可直接通过四个C型夹挤压固定,该体系具有价格低廉、易于安装、环境友好的优点。将该体系与原子荧光光谱仪联用,成功地实现了卷烟样品中痕量砷的测定。方法的精密度和准确度非常理想。
A review on the theory and application of vapor generation/electrochemical hydride generation(VG/EC-HG) sampling technique used in Atomic Spectrum(AS) was introduced in detail in this article. Determination of metal elements inenvironmental samples with atomic spectrum has been a very excellent analytical method. However, many analytical workers pay more attention to sample on-line, miniature apparatus and environment-friendly in actual works. In the article the experimental apparatus were set up ; the design theory was discussed ; the effect of detecting conditions were studied; the sample pretreatment techniques were investigated and analytical methods were developed.
     In the chapter one, the various vapor sampling techniques that applied to AS including cold vapor generation(CVG), hydride generation(HG) and volatilization generation were introduced firstly. Then, the atomic mechanism of chemical hydride generation(CHG)/EC-HG, possible interference and elimination, the design of electrolysis cell, the choice of electrode material and electrolyte, etc. were discussed. Finally, the improvement and application of CHG/EC-HG technique in AS were described.
     In the chapter two, a novel miniature CVG-AFS system was developed using amorphous Teflon AF-2400 tube as the gas-liquid separator and detection cell for the determination of Hg in tobacco, based on the Teflon AF-2400 tube’s excellent gas transport behavior and high UV transparence. At the same time,the mechanization of design and gas permeation were discussed in detail. Under the optimal conditions, the detection limit was 0.02μg/L, and relative standard deviation ( RSD ) was 3.3% for eleven consecutive measurements of 0.50μg/L Hg standard solution. The novel system showed the advantages of micro-scale, low sample consumption and high sensitivity. The method had been successfully used in the determination of Hg in tobacco sample with recoveries of 97%–102%.
     In the chapter three, solid polymer electrolyte hydride generation technology (SPE-HG) for metal elements determination was first applied in AS analysis. A new SPE-HG cell, mainly composed of three components was laboratory manufactured and employed for detecting As in tobacco samples by coupling to AFS. A corrosion- resisting Ti mesh modified by Ir was chosen as anode material which could lengthen the cell’s using life; high porous graphite felt with high hydrogen overvoltage was used as cathode, which enhanced the productivity of AsH3; Nafion 117 membrane as the ion exchange membrane and close contaction between electrodes with membrane reduced the power efficiency. Water as an alternative anolyte was first used in the SPE-HG cell. The entire arrangement was fastened with four clamps of C type at fourdifferent directions. So the new system has advangtages of low-cost, long-life, easy-assembly and environment friendly. It was successful to detect As in tobacco by coupling the new cell to Atomic Fluorescence Spectrum with high precision.
引文
[1]威尔茨著,李家熙等译. 1989.原子吸收光谱法[M].北京:地质出版社: 87-88.
    [2]庞永强陈再根陈欢等.2010.冷原子吸收光谱法测定卷烟主流烟气中的汞[J].烟草科技,9: 47-50.
    [3] Yuan CG, Lin K, Chang AL. 2010. Determination of trace mercury in environmental samples by cold vapor atomic fluorescence spectrometry after cloud point extraction[J]. Microchim. Acta 171:313–319.
    [4] Angeli V, Ferrari C, Longo I, et al.2011. Microwave-assisted photochemical reactor for the online oxidative decomposition and determination of p-Hydroxymercurybenzoate and its thiolic complexes by cold vapor generation atomic fluorescence detection [J].Anal.Chem., 1: 338-343.
    [5]郭小伟,郭旭明. 1994.饮用水中超痕量镉的蒸气发生:原子荧光光谱法测定[J].上海环境科学, 13: 12-14.
    [6] Gil S, Costas M, Pena F, et al. 2010. On-line UV photoreduction in aflow- injection/stopped-flow manifold for determination of mercury by cold vapour atomic absorption spectrometry[J]. Anal. Meth., 2: 1798-1802.
    [7]訾洪静,淦五二,韩素平等. 2009.流动注射在线吸附预富集一冷蒸气原子荧光法测定矿泉水中的痕量无机汞[J].分析化学,37:1029-1032
    [8] Shao LJ, Gan WE, Zhang WB et al. 2005. Determination of mercury in mainstream cigarette smoke withon-line oxidation coupled to atomic fluorescence spectrometry[J]. J. Anal.At.Spectrom., 20, 1296–1298.
    [9] Arbab-Zavar MH, Rounaghi GH, Chamsaz M,et al. 2003.Determination of mercury(II) ion by electrochemical cold vapor generation atomic absorption spectrometry[J]. Anal. Sci. 19: 743–746.
    [10]张王兵,陈同云,苏召飞等.2009.电解冷蒸气发生原子荧光法测定痕量汞[J].分析化学. 37:935-938.
    [11] Holak W. 1969. Gas-sampling technique for arsenic determination by atomic absorption spectrophotomertry. Anal Chem., 41: 1712-1713.
    [12] Braman RS, Justen LL,Foreback CC. 1972. Direct volatilization-spectral emission type detection system for nanogram amounts of arsenic and antimony. Anal Chem., 44:2195-2199
    [13] Wu H, Wang XC, Liu B, et al 2011. Simultaneous speciation of inorganic arsenicand antimony in water samples by hydride generation-double channel atomic fluorescence spectrometry with on-line solid-phase extraction using single-walled carbon nanotubes micro-column[J]. Spectrochim.Acta PartB, 66: 74-80.
    [14] Matusiewicz H, Krawczyk M. 2010. Determination of germanium and tin and inorganic tin species by hydride generation in situ trapping flame atomic absorption spectrometry [J]. Anal. Lett.,43: 2543-2562.
    [15]邓勃. 2004.原子吸收光谱分析的原理、技术与应用[M] .北京:清华大学出版社,.
    [16] Feng YL, Sturgeon RE, Lam JW, 2003. Chemical vapor generation characteristics of transition and noble metals reacting with tetrahydroborate(Ⅲ)[J].J.Anal.At. Spectrum., 18:1435-1442.
    [17] Pena-Vazquez E , Villanueva-Alonso J, Bermejo-Barrera P, 2008. Vapor Generation for metal determination in steels using ICP-OES[J]. Atomic Spectroscopy. 29:180-185.
    [18] Pohl P, Zyrnicki W. 2001. On the transport of some metals into inductively coupled plasma during hydride generation process[J]. Anal Chem Atca. 429:135-143
    [19] Luna AS, Sturgeon RE,Decampos RC. 2000. Chemical vapor generaion: Atomic absorption by Au,Cu and Zn following reduction of aquo ions with sodium tetrahydroborate(Ⅲ)[J].Anal Chem., 72:3523-3531
    [20] Ertas G, Ataman O Y. 2004. Electrothermal atomic absorption spectrometric determination of gold by vapor formation and in situ trapping in graphite tubes[J]. Appl. Spectrosc., 58:1243–1250.
    [21] Matousek T, Sturgeon R E. 2004. Chemical vapour generation of silver: reduced palladium as permanent reaction modifier for enhanced performance[J]. J. Anal. At. Spectrom., 19:1014–1016.
    [22] Qiu DR,, Vermeiren K, Dams R, et al.1990. Continuous hydride generation inductively coupled plasma atomic emission spectrometry for tin optimization of working parameters and approach to clarifying the mechanism of stannane generation[J]. Spectrochim. Acta Part B, 45:439-451.
    [23]邱德仁,陈治红,罗晓雯. 1994.氢化物发生的碱性模式[J].光谱学与光谱分析, 14: 77-79.
    [24]张锂,韩国才. 2006.碱性模式氢化物发生原子荧光光谱法测定铁矿石中砷[J].分析测试学报, 25: 120-122.
    [25] Rigin VI,Verkhoturov GN. 1977. Atomic absorption determination of arsenic using prior electrochemical reduction[J]. Zh.Anal. Khim., 33: 1963
    [26] Brockman A, Ku HM, Golloch A. 1991. Colloquium Atomspektrometrische Spurenanalytik, ed. B. Welz, Bodenseewerk Perkin Elmer, Uberlingen, pp:439-447.
    [27] Brockman A, Nonn C, Golloch A. 1993. New concept for hydride generation technique electrochemical hydrie generation[J]. J.Anal.At.Spectrom., 8: 397-401.
    [28] Lin YH, Wang XR, Yuan DX, et al. 1992. Flow-injection electrochemical hydride generation technique for atomic absorption spectrometry [J]. J.Anal.At.Spectrom., 7: 287-291.
    [29] Zhang WB, Yang XA, Ma YY, et al.. 2011. Continuous flow electrolytic cold vapor generation atomic fluorescence spectrometric determination of Hg in water samples[J]. Micro.Chem.,97: 201-206.
    [30] Arbab-Zavar MH, Chamsaz M, Yousefi A, et al.2009. Electrochemical hydride generation of thallium[J]. Talant, 79: 302-307.
    [31] Shentu C, Hou YZ, Fan YC, et al. 2009. Ion chromatography coupled with bi-anode electrochemical hydride generation-Atomic Fluorescence Spectrometry for determination of arsenic species in dental pulp inactivative agent type I[J]. Chinese J. Anal. Chem., 37: 263-266.
    [32] Busheina IS, Headridge JB. 1982. Determination of indium by hydride generation and atomic absorption spectrometry. Talanta, 29: 519-520
    [33] Du Y , Zhang Y, Shen CQ, et al. 1984. Determination of indium and thallium by hydride generation and atomic absorption spectrometry. Talanta, 31: 133-134
    [34] Liao YP, Li AM. 1993. Indium hydride generation atomic absorption spectrometry with instu preconcentration in a graphite furnace coated with palladium. J.At.Absorpt. Spectrom., 8: 633-636
    [35] Liao YP,Chen G, Yan D, Li AM, Ni Z. 1998. Investigation of thallium hydride generation using in situ trapping in graphite tube by atomic absorption spectrometry.Anal. Chim.Acta, 360:209-214.
    [36]李琳,黄淦泉. 1997. Cr(Ⅵ)及Cr(Ⅲ)混合物中Cr(Ⅵ)的原子吸收测定.理化检验(化学分册), 33: 253-354
    [37] Erber D, Cammann K. 1995. On-line preconcentration of nickel by carbonyl vaporization with flow injection and conditions flow system in combination with sensitive determination by electrothermal atomic absorption spectrometry.Analyst, 120: 2699-2705.
    [38] Dedina J, etal. 1980,Hydride atomization in a cool hydrogen-Oxygen flame buring in a quartz tube atomizer. Spectrochim. Acta, 35B: 119-128.
    [39]张锦茂,张勤,宁建统等. 1998.氩氢火焰低温自动点燃装置用于氢化物发生-原子荧光光谱分析的研究[J].岩矿分析, 17: 22-28.
    [40]赵一宾,李安模. 1987.原子吸收分析中共价氢化物原子化机理初探[J].光谱学与光谱分析, 7: 41-45.
    [41]赵一宾,李安模. 1988.氢化物原子吸收机理的研究I. H2和空气在氢化物原子化中的作用[J].分析化学, 16: 415-418.
    [42]郑衍生,王明慧,马强. 1993.电热石英管中AsH3和SeH2的原子化过程[J].吉林大学自然科学学报, 1: 110-112
    [43]郑衍生,王明慧. 1993,电热石英管中氢化锗原子化过程的研究[J].岩矿测试, 12: 101-104.
    [44] D’Ulivo A, Marcucci K, Bramanti E, et al. Studies in hydride generation atomic fluorescence determination of selenium and tellurium. Part 1 - self interference effect in hydrogen telluride generation and the effect of KI. 2000. Spectrochim Acta, 55B:1325.
    [45]张宝松. 1999.氢化物发生—原子荧光光谱法测定铁镍基高温合金中微量硒的研究[J].光谱实验室, 16: 372.
    [46]姜能座. 2002.氢化物-非色散原子荧光法测定饲料矿物添加剂中的砷[J].光谱实验室, 19: 672.
    [47] Welz B, Melcher M. Mutual interactions of elements in hydride technique in atomic absorption spectrometry: Part1. Influence of selenium on arsenic detemination[J]. Anal Chim Acta, 1981, 131:17.
    [48] D’Ulivo A, Dedina J, Lampugnani L J. 2005. Effect of contamination by oxygen at trace level in miniature flame hydride atomizers[J]. J.Ana.l At. Spectrom., 20:40-45.
    [49]李刚. 2000. HG—AFS仪双道测定铋汞时的光谱干扰及其消除[J].矿物岩石, 20:102-104.
    [50] Corns WT, Stockwell PB. 1993. The role of atomic fluorescence spectrometry the automatic environmental monitoring of trace-element analysis[J]. J. Anal.At. Spectrom., 15: 79-84.
    [51] Morita H, Tanaka H, Shimomura S. 1995. Atomic fluorescence spectrometry of mercury principles and developments. Spectrochim. Acta PartB, 50:69-94.
    [52] Huang BL. 2006. On-line pre-reduction of Se(VI) by thiourea for selenium speciation by hydride generation. Spectrochim.Acta PartB, 61: 803-809.
    [53] Howard AG.1997. (Boro)hydride techniques in trace element speciation - Invited lecture[J]. J. Anal. At. Spectrom.,12: 267-272.
    [54] Ribeiro AS, Vieira MA, Grinberg P, et al.2009, Vapor generation coupled with furnace atomization plasma emission spectrometry for detection of mercury[J]. J.Anal.At.Spectrom., 24: 689-694.
    [55] Kula I, Arslan Y, Bakirdere S, et al. 2009. Determination and interference studies of bismuth by tungsten trap hydride generation atomic absorption spectrometry[J]. Talant. 80: 127-132.
    [56] Brockmann A, Nonn C, Golloch A.1993. New concept for hydride generation technique electrochemical hydride generation[J]. J.Anal.At. Spectrom.,8:397–401.
    [57] Denkhaus E, Bueschler P, Gerhard R, et al. 2001. Electrolytic hydride generation atomic absorption spectrometry for the determination of antimony, arsenic, selenium, and tin - mechanistic aspects and figures of merit[J]. Fresenius.J.Anal.Chem.,370:735–743
    [58] Laborda F, Bolea E, Castillo J R. 2007, Electrochemical hydride generation as a sample introduction technique in atomic spectrometry: fundamentals, interferences, and applications[J]. J. Anal.At. Spectrom. 16:870-878
    [59] DenkHaus E, Beck F, Bueschler P,et al. 2001.Electrolytic hydride generation atomic absorption spectrometry for the determination of antimony, arsenic, selenium, and tin - mechanistic aspects and figures of merit [J]. Fresenius. J. Anal. Chem., 370: 735-743.
    [60] Sima J, Rychlovsky P. 1998. Design of a Combined Cell for the Electrochemical Generation of Volatile Coumpounds in the Atomic Absorption Spectrometric Method. Chem. Listy., 9:676-679.
    [61] Laborda F, Bolea E, Castillo J R. 2000. Tubular electrolytic hydride generator for continuous and flow injection sample introduction in atomic absorption spectrometry[J]. J.Anal. At Spectrom., 15: 103-107
    [62] Pyell U, Nitschke F, Neidhart B. et al. 1999. Flow injection electrochemical hydride generation atomic absorption spectrometry (FI-EHG-AAS) as a simple device for the speciation of inorganic arsenic and selenium[J]. J.Anal. Chem., 363: 495-498.
    [63] Wang XR, Zhu EY, Huang BL et al. l993. Proceedings of first Chinese Postdotoal Conference . Beijing(北京): National Defense Industry Press(国防工业出版社): 1464~1467.
    [64]陈德芳,李师鹊,戚苓,金念祖,汤国才. 1990.电解氢化物发生—原子吸收法测定人尿中的砷[J].分析试验室, 9: 63-64
    [65] Schaumlǒfel D,Neidhart B. 1996. A FIA-system for As(III)/As(V)-determination with electrochemical hydride generation and AAS-detection.Fresentius.J.Anal. Chem., 354:866-869.
    [66] Ding WW, Sturgeon RE. 1996. Evaluation of electrochemical hydride generation for the determination of arsenic and selenium in sea water by graphite furnace atomic absorption with in situ concentration. Spectrochim. Acta Part B, 51:1325-1334.
    [67] Denkhaus E, Golloch A, Guo XM, et al. 2001. Electrolytic hydride generation (EC-HG) - a sample introduction system with some special features[J]. J.Anal. At. Spectrom. 16: 870–878.
    [68] Bolea E, Laborda F, Castillo J R,et al. 2001. Interferences in electrochemical hydride generation of hydrogen selenide. Spectrochim. Acta B 56: 2347–2360.
    [69] Ding WW, Sturgeon RE. 1996. Interference of Copper and nickel on electrochemical hydride generation[J]. J. Anal. At. Spectrom., 11: 421-425.
    [70] Machao LFR, Jacintho AO, Gine MF. 2000. Electrochemical hydride generation for selenium determination in a flow injection system with air-GLP flame atomic absorption spectrometric detection[J]. Quim. Nova., 23:30-33
    [71] Bole E, Labora F, Belarra MA et al. 2001. Interferences in electrochemical hydride generation of hydrogen selenide[J]. Spectrochim.Acta B, 56:2346-2360.
    [72] Bolea E, Arroyo D, Cepria G, et al. 2006. Elucidation of interference mechanisms caused by iron on stibine electrochemical generation by differential pulse anodic stripping voltametry. A case study[J]. Spectrochim Acta B 61: 96-103.
    [73] Junkova A, Sima J, Rychlovsky P. 2003. Interferences of selected transition and noble metals and hydride forming elements in electrochemical hydride generation of H2Se[J]. Chem Pap-Chem. Zvesti., 57: 192-196.
    [74] Schickling C, Yang JF, Broekaert JAC. 1996. Optimization of electrochemical hydride generation coupled to microwave-induced plasma atomic emissionspectrometry for the determination of arsenic and its use for the analysis of biological tissue sample[J]. J.Anal.At. Spectrom. 11: 739-745.
    [75]孙汉文,锁然. 2009.过渡金属元素挥发性氢化物发生效率的影响因素及其存在形态[J]冶金分析,29: 10-15.
    [76]郭小伟,李中玺. 2000,三十年来蒸气发生原子吸收、原子荧光光谱法的进展[J].现代科学仪器,(增刊):59-63
    [77]刘明钟,郭小伟,张锦茂. 1988.脉冲空心阴极灯作为氢化物发生非色散原子荧光法的光源的研制[J].分析化学, 16:34-39
    [78]郭小伟,杨密云,吴堂等. 1983.双道氢化物非色散原子荧光光谱仪的研制[J].光谱学与光谱分析, 3:124-129.
    [79]齐璐路,宋亚东,何乃文. 2005.人体微量元素医学专用MB5和MG2检测仪的研制开发[J].现代科学仪器, 4:12-16
    [80]郭小伟,郭旭明. 1995.断续流动氢化物发生法在AAS/AFS中的应用[J].光谱学与光谱分析, 15: 97-101.
    [81] Tao GH, Fang ZL. 1993. Determination of trace and ultra-trace amounts of germanium in environmental samples by perconcentration in a graphite furnace using a flow injection hydride generation technique[J]. J.Anal. At. Spectrom., 8: 577-584.
    [82]马泓冰,徐淑坤,周焕英等. 2000.砷和汞的顺序注射-蒸气发生原子吸收光谱测定[J].光谱学与光谱分析, 20: 529-532.
    [83]陈甫华,郁健全,戴树佳. 1996.离子色谱/氢化物发生/原子吸收法测定天然淡水中的4种砷形态[J].中国环境科学, 16: 77-80.
    [84]刘建静,于洪侠,杨曙明. 2008.液相色谱-氢化物发生.原子荧光联用同时测定预混合饲料中阿散酸和洛克沙胂[J].应用化工,37: 694-696
    [85] Han SP, Gan WE,Su QD, et al.2008. On-line pressurized electro- magnetic induction heating digestion:a promising sample preparation technique for trace mercury analysis[J]. J. Anal. At. Spectrom. 23: 773–776.
    [86] Li X, Wang ZH. 1991. Determination of mercury of intermittent flow electrochemical cold vapor generation coupled to atomic fluorescence spectrometry[J]. Anal. Chim. Acta, 252:53-57
    [87]李毅,章诒学,刘坤.2008.减雾—火焰原子吸收法检测矿石中微量银[J].现代科学仪器.4: 102-104.
    [88] Hernandez-Zavala A, Matousek T, Drobna Z, et a1. 2008. Oxidation statespecific generation of arsines from methylated arsenicals based on L-cysteine treatment in buffered media for speciation analysis by hydride generation- automated cryotrapping-gas chromatography-atomic absorption spectrometry with the multiatomizer [J]. Spectrochim. Acta Part B, 63: 396-406.
    [89] Dong LM, Yan XP. 2005. On-line coupling of flow injection sequential extraction to hydridegeneration atomic fluorescence spectrometry for fractionation of arsenic in soils. Talanta, 65: 627-631.
    [90] Klostermeier A, Engelhard C, Evers S, et al.2005. New torch design for inductively coupled plasma optical emission spectrometry with minimised gas consumption J.Anal.At.Spectrom. 20:308-3014
    [91] Jiang XJ, Gan WE, Wan LZ, et al 2010. Electrochemical hydride generation atomic fluorescence spectrometry for detection of tin in canned foods using polyaniline-modified lead cathode[J]. J. Hazard. Mater., 184: 331–336.
    [92] Yu YL, Du Z, Chen ML, et a1. 2008. A miniature lab-on-valve atomic fluorescence spectrometer integrating a dielectric barrier discharge atomizer demonstrated for arsenic analysis[J]. J. Ana1. At. Spectrom. 23: 493-499.
    [93] Zhang WB, Gan WE, Lin XQ. 2006. Development of a new electrochemical hydride generator with tungsten wire cathode for the determination of As and Sb by atomic fluorescence spectrometry[J]. Talanta. 68: 1316-1321.
    [94] Bolea E, Laborda F, Castillo J R,et al. 2004. Electrochemcal hydride generation for the simultaneous determination of hydride forming elements by inductively coupled plasma-atomic emission spectrometry[J]. Spectrochim. Acta B 59: 505-513.
    [95] Pohl P, Zapata IJ, Bings NH. 2008. Optimization and comparion of chemical and electrochemical hydride generation for optical emission spectrometric determination of arsenic and antimony using a novel miniaturized microwave induced argon plasma exiting the microstrip wafer[J]. Anal Chim. Acta, 606:9-18.
    [96] Hranicek J, Cerveny V, Rychlovsky P. 2008. Miniaturization of flow through electrolytic cells for electrochemical generation of volatile coumpound in AAS [ J]. Chem. Listy. 102:200-204.
    [97] Jiang XJ, Gan WE, He YZ, et al. 2009. Design and application of a novelintegrated electrochemical hydride generation cell for the determination of arsenic in seaweeds by atomic fluorescence spectrometry. Talanta. 79: 314-318.
    [98]王小如,庄峙厦.2001.原子光谱/质谱联用新技术、新方法及其在中药现代化中的应用[J].40: 466-476.
    [99] Wang XR. Zhuang ZX.Yang CL. et a1. 1998. The application of flow injection iminodiacetic acid ethylcellulose membrane preconcentration and separation technique to atomic spectrometry [J].Spectrochim.Acta Part B, 53: 1437-1445.
    [100] Yu YL, Zhou D, Wang JH.2007. The development of a miniature atomic fluorescence spectrometric system in a lab-on-valve for mercury determination[J]. J.Ana1.At.Spectrom. 22: 650-656.
    [101] Ding WW, Sturgeon RE.1996. Evaluation of electrochemical hydride generation for the determination of arsenic and selenium in sea water by graphite furnace atomic absorption with in situ concentration[J]. Spectrochim.Acta Part B, 51: 1325-1334.
    [102] Zhai GS, Liu JF, Jiang GB, et al. 2007. On line coupling HPLC and quartz surface-induced luminescence FPD with hydride generation and microporous membrane gas-liquid separator as interface for the speciation of methyltins[J]. J.Ana1.At.Spectrom.22: 1420-1426.
    [103] Magnuson ML, Creed JT, Brockhoff CA. 1997. Speciation of arsenic compounds in drinking water by capillary electrophoresis with hydrodynamically modified electroosmotic flow detected through hydride generation inductively coupled plasma mass spectrometry with a membrane-gas-liquid separator[J]. J.Ana1.At.Spectrom.12: 689-695.
    [104]马名扬,张丽佳,徐万祥.2008.微波消解样品-蒸气发生-原子荧光光谱法测定石脑油中砷和汞[J].理化检验(化学分册), 44: 1184-1186.
    [105]程先忠,何启生,李小丹,邵坤,张瑞华. 2009.氢化物发生-原子荧光光谱法测定硫磺中微量铋[J].冶金分析. 29: 10-14.
    [106]高舸,陶锐,张钦龙,梅玉琴.2008.持久性化学改进剂钨一铱用于电热原子吸收光谱法测定水和植物性食品中痕量镉[J].理化检验(化学分册).44: 391- 394.
    [107]赖冬梅,邓天龙.2010.抗坏血酸-磺胺增效氢化物发生-原子荧光光谱法测定土壤中镉[J].分析化学, 4:
    [108]王慧丽张加玲.2010.浊点萃取-氢化物发生原子荧光光谱法测定水样中痕量铋[J].冶金分析, 9: 54-58.
    [109]张钦龙,高舸,王玲. 2009.持久性化学改进剂铱在电热原子吸收光谱法测定粮食中痕量铅中的应用[J].37: 28-28.
    [110]王勇,焦凤菊.2009.流动注射氢化物发生-原子吸收光谱法测定钢铁中的砷、锑[J].5: 1360-1363.
    [111] Ipolyi I, Stefanka Z, Fodor P. 2001. Speciation of Se(IV) and selenoamino acids by high-performance liquid chromatography-direct hydride generation atomic fluorescence spectrometry. [J]. Anal.Chim.Acta, 435: 367-375.
    [112] Boyukbayram AE, Volkan M. 2000. Cloud point preconcentration of germanium and determination by hydride generation atomic absorption spectrometry Spectrochim. Acta Part B, 55: 1073-1080.
    [113]韩华云,吴江峰,胥亚云等.2008.苯芴酮络合-MIBK萃取-涂钨石墨管电热原子吸收法测定食品中痕量锡[J]. 29: 579-582.
    [114] Zhang N, Fu N, Fang ZT, et al. 2011. Simultaneous multi-channel hydride generation atomic fluorescence spectrometry determination of arsenic, bismuth, tellurium and selenium in tea leaves[J].Food Chem., 124: 1185-1188.
    [115]杨莉丽,李娜,张德强等.2004.氢化物发生-原子吸收光谱法测定中药中砷(Ⅲ)和砷(Ⅴ)[J].分析科学学报, 20: 483-485.
    [116] Sun HW, Xiao FX, Suo R, et al. 2004. Simultaneous determination of trace arsenic(III), antimony(III), total arsenic and antimony in Chinese medicinal herbs by hydride generation-double channel atomic fluorescence spectrometry[J] Anal.Chim. Acta, 505: 255-261.
    [117] Chen HW, Yao W, Wu DX, et al.1996. Determination of tin in steels by non-dispersive atomic fluorescence spectrometry coupled with flow-injection hydride generation in the presence of L-cysteine[J]. Spectrochim.Acta Part B, 51: 1829-1836.
    [118] Sun HW, Suo R, Lu YK. 2002. Determination of zinc in food using atomic fluorescence spectrometry by hydride generation from organized media[J]. Anal. Chim. Acta, 457: 305-310.
    [119] Brockmann A, Nonn C, Golloch A. 1993. New concept for hydride generationtechnique: electrochemical hydride generation[J]. J. Anal.At.Spectrom., 8: 397-401.
    [120] Schickling C, Yang JF, Broekaert JAC, 1996. Optimization of electrochemical hydride generation coupled to microwave-induced plasma atomic emission spectrometry for the determination of arsenic and its use for the analysis of biological tissue samples[J]. J. Anal.At.Spectrom., 11:739–745.
    [121] Bings NH, Stefanka Z, Mallada SR. 2003.Flow injection electrochemical hydride generation inductively coupled plasma time-of-flight mass spectrometry for the simultaneous determination of hydride forming elements and its application to the analysis of fresh water samples[J]. Anal.Chim.Acta 479:203–214
    [122] Zhang WB, Gan WE, Lin XQ. 2005. Electrochemical hydride generation atomic fluorescence spectrometry for the simultaneous determination of arsenic and antimony in Chinese medicine samples[J] Anal.Chim. Acta. 539:335–340.
    [123] Zhang WB, Gan WE, Lin XQ. 2006.Development of a new electrochemical hydride generator with tungsten wire cathode for the determination of As and Sb by atomic fluorescence spectrometry[J]. Talanta. 68: 1316–1321.
    [124] Ding WW, Sturgeon RE.1996. Evaluation of electrochemical hydride generation for the determination of arsenic and selenium in sea water by graphite furnace atomic absorption with in situ concentration[J]. Spectrochim. Acta B, 51: 1325-1334.
    [125] Ding WW, Sturgeon RE. 1996.Evaluation of electrochemical hydride generation for the determination of total antimony in natural waters by electrothermal atomic absorption spectrometry with in situ concentration[J]. J. Anal.At.Spectrom., 11: 225-230.
    [126] Bings NH, Stefánka Z, Mallada SR. 2003.Flow injection electrochemical hydride generation inductively coupled plasma time-of-flight mass spectrometry for the simultaneous determination of hydride forming elements and its application to the analysis of fresh water samples[J]. Anal. Chim. Acta, 479: 203–214.
    [127] Bolea E, Laborda F, Castill JR. 2003. Flow injection electrochemical hydride generation of hydrogen selenide on lead cathode: Critical study of the influence of experimental parameters[J]. Anal.Sci., 19: 192-196.
    [128] Rychlovsky P, NetolickáJ, Síma J ea tal. 2007. Electrochemical generation ofmercury cold vapor and its in-situ trapping in gold-covered graphite tube atomizer [J]. Spectrochim. Acta Part B, 62: 317-323.
    [129] Arbad-Zavar MH, Rounaghi GH, Chamsaz M, et al. 2003.Determination of mercury(Ⅱ) ion by electrochemical cold vapor generation atomic absorption Spectrometry[J]. Anal.Sci., 19: 743-746.
    [130] Li X, Wang ZH. 2007.Determination of mercury by intermittent flow electrochemical cold vapor generation coupled to atomic fluorescence spectrometry[J]. Anal.Chim Acta, 588: 179-183.
    [131] Zhang WB, Gan WE, Su QD, et al. 2005.The determination of Ge by atomic fluoresecence spectrometry with electrochemical hydride generation[J]. Chinese J. Anal. Chem., 33:1449-1451.
    [132] Arbab-Zavar MH, Chamsaz M, Youssefi A, et al. 2005. Electrochemical hydride generation atomic absorption spectrometry for the determination of cadmium[J]. Anal.Chim.Acta., 546: 126-132.
    [133] Chiba M,Masironi R.1992. Toxic and trace-elements in tobacco and tobacco smoke[J]. Bullentin of The World Heath Organization,70: 269-275.
    [134]石玮玮,淦五二,苏庆德. 2005.冷蒸气发生原子吸收法测定烟草中镉和汞[J].光谱学与光谱分析, 25:1135-1138.
    [135]朱芳,刘翅,杨中艺.2005.微波消解-原子荧光光谱法测定番茄不同部位中微量汞[J].分析测试学报, 24: 89-92.
    [136]吴玉萍,夏振远,雷丽萍. 2007.烟草中痕量汞的检测及烟株中汞的分布[J].分析试验室,26: 85-87.
    [137]秦德萍,黄志勇,邓志兰等. 2010.土壤及蔬菜中微量汞的同位素稀释电感耦合等离子体质谱测定[J].分析测试学报, 29: 142-146.
    [138] Swami K, Judd CD, Orsini J. 2009. Trace metals analysis of legal and counterfeit cigarette tobacco samples using inductively coupled plasma mass spectrometry and cold vapor atomic absorption spectrometry[J]. Spectrosc.Lett, 42: 479-490.
    [139]吴宏,金焰,田野等. 2007.流动注射微柱在线富集技术在原子光谱分析中的最新应用[J].分析测试学报, 26: 592-597.
    [140] Erxleben H, RuzickaJ. 2005.Atomic absorption spectroscopy for mercury, automated by sequential injection and miniaturized in lab-on-valve system [J]. Anal Chem., 77: 5124-5128.
    [141] Lu ZM, Dai MH, Xu KM, et al. 2008, A high precision, fast response, and lowpower consumption in situ optical fiber chemical pCO2 sensor[J]. Talanta, 76: 353-359.
    [142] Dasgupta PK,Zhang GF,Poruthoor SK,et al. 1998, High-sensitivity gas sensors based on gas-permeable liquid core waveguides and long-path absorbance detection[J]. Anal. Chem, 70: 4661-4669.
    [143] Li JZ, Dasgupta PK, Zhang GF. 1999. Transversely illuminated liquid core waveguide based fluorescence detection : Fluorometric flow injection determination of aqueous ammonium/ammonia[J]. Talanta, 50: 617-623.
    [144] Tao SQ, Gong SF, Xu L, et al. 2004.Mercury atomic absorption by mercury atoms in water observed with a liquid core waveguide as a long path absorption cell [J]. Analyst, 129: 342-346.
    [145] Pinnau I, Toy LG.1996.Gas and vapor transport properties of amorphous perfluorinated copolymer membranes based on2,2-bistrifluoromethyl-4,5- difluoro-1,3-dioxolet/tetrafluoroethylene [J]. J.Membrane. Sci.,109:125-133.
    [146] Siahpush M, McNeill A, Hammond D, et al.2006. Socioeconomic and country variations in knowledge of health risks of tobacco smoking and toxic constituents of smoke: results from the 2002 International tobacco Control (ITC) Four Country Survey[J]. Tobacco Control 15:65-70.
    [147] Muhammad BA, Tasneem GK, Jameel AB, et al. 2009. Respiratory effects in people exposed to arsenic via the drinking water and tobacco smoking in southern part of Pakistan[J].Sci.Total.Environ.407: 5524-5530.
    [148] Ng JC. 2005. Environmental contamination of arsenic and its toxicological impact on humans[J] Environ. Chem.2: 146–160.
    [149] Mahimairaja S, Bolan NS, Adriano DC, et al.2005.Arsenic contamination and its risk management in complex environmental settings[J].Adv.Agron.86:1–82.
    [150] Mierzwa J, Adeloju SB, Dhindsa HS. 1997.Slurry sampling for hydride generation atomic absorption spectrometric determination of arsenic in cigarette tobaccos[J] Analyst 122:539-542.
    [151] Sardans J, Montes F, Penuelas J 2010.Determination of As, Cd, Cu, Hg and Pb in biological samples by modern electrothermal atomic absorption spectrometry[J] Spectrochim. Acta Part B 65: 97-112.
    [152] Jung MC, Thornton I, Chon HT, 1998.Arsenic, Cadmium, Copper, Lead, andZinc Concentrations in Cigarettes Produced in Korea and the United Kingdom[J].Environ. Technol.19: 237-241.
    [153] Liu C, Hu J, McAdam KG, 2009. A feasibility study on oxidation state of arsenic in cut tobacco,mainstream cigarette smoke and cigarette ash by X-ray absorption spectroscopy[J]. Spectrochim. Acta Part B 64: 1294-1301.
    [154] Torrence KM, McDaniel RL, Self DA. 2002.Slurry sampling for the determinationof arsenic, cadmium and lead in mainstream cigarette smoke condensate by graphite furnace atomic absorption spectrometry and inductively coupled plasma–mass spectrometry[J] Anal.Bioanal.Chem. 372: 723–731.
    [155] Chen B, Krachler M, Gonzalez ZI,et al.2005. Improved determination of arsenic in environmental and geological specimens using HG-AFS[J]. J. Anal. At. Spectrom.20: 95–102.
    [156] Chen R, Smith BW, Winefordner JD, 2004.Arsenic speciation in chinese brake fern by ion-pair high-performance liquid chromatography-inductively coupled plasma mass spectrometry[J] Anal. Chim. Acta 504: 199–207.
    [157] Hirata S, ToshimitsuH, Aihara M. 2006.Determination of arsenic species in marine samples by HPLC-ICP-MS[J]. Anal. Sci. 22:39–43.
    [158] Chajduk E, Dybczynski RS. 2010.Highly accurate radiochemical neutron activation analysis of arsenic in biological materials involving selective isolation of arsenic by hybrid and conventional ion exchange[J]. Microchim.Acta 168:37-44.
    [159] Landsberger S, Wu D. 1995.The impact of heavy metals from environmental tobacco smoke on indoor air quality as determined by Compton suppression neutron activation analysis[J]. Sci. Total Environ.173: 323-337.
    [160] Sanllorente-Mendez S, Dominguez-Renedo O, Arcos-Martinez MJ.2009. Determination of Arsenic(Ⅲ) using platinum nanoparticle-modified screen-printed carbon-based electrodes[J].Electroanalysis 21:635-639.
    [161] Zhang XW, Zhang ZX, Song Q. et al.2006, Simultaneous determination of trace As and Sb in tobacco samples by opposite spray hydride generation atomic fluorescence spectrometry[J]. Chinese J. Anal. Chem. 34: 1448-1450.
    [162] Wu H, Wang XC, Liu B, et al.2011.Simultaneous speciation of inorganic arsenic and antimony in water samples by hydride generation-double channel atomic fluorescence spectrometry with on-line solid-phase extraction using single-walled carbon nanotubes micro-column[J]. Spectrochim. Acta Part B 66:74-80.
    [163] Takenaka H,Torikai E, Kawami Y,et a1.1982.Solid polymer electrolyte water Electrolysis[J], Int.J. Hydrogen Energy. 7: 397—403.
    [164] Dhar HP.1993.A unitized approach to regenerative solid polymer electrolyte fuel cells, J. Appl.Electrochem. 23: 32-37.
    [165] Kordali V, Kyriacou G, Lambrou Ch. 2000. Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell[J] Chem. Commun. 17:1673–1674.
    [166] Hasnat MA, Karim MR, Machida M.2009. Electrocatalytic ammonia synthesis: Role of cathode materials and reactor configuration[J]. Catal. Commun. 10 : 1975–1979.
    [167] Heyl A, J?rissen J.2006. Electrochemical detoxification of waste water without additives using solid polymer electrolyte (SPE) technology[J] J.Appl. Electrochem. 36 : 1281–1290.
    [168] An WD, Hong JK, Pintauro PN, et al.1998. The electrochemical hydrogenation of edible oils in a solid polymer electrolyte reactor. I. Reactor design and operation[J].J.Am.Oil.Soc.75: 9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700