用户名: 密码: 验证码:
室温离子液体在过渡金属及贵金属化学蒸气发生中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
室温离子液体(Room Temperature Ionic Liquids,RTILs)是一类新型的绿色溶剂,具有许多独特的性质,如液态温度范围宽且具有良好的物理和化学稳定性、不易挥发、对很多无机和有机物质都具有良好的溶解能力、极性可调、电化学稳定性高且具有较高的电导率和较宽的电化学窗口。因此,RTILs在化学和材料科学等诸多领域得到了广泛的应用。在分析化学领域,RTILs已成功地应用于色谱和毛细管电泳的分离介质、萃取溶剂、化学传感介质、基质辅助激光解吸质谱的辅助基质、电化学电解质、荧光光谱和拉曼光谱分析的溶剂。本论文旨在探讨RTILs对过渡金属和贵金属的化学蒸气发生(Chemica VaporGeneration,CVG)的增感作用及其机理,主要内容和创新点如下:
     (1)发现了RTILs对过渡金属和贵金属的CVG的增感效应,并采用流动注射(Flow Injection,FI)与原子荧光光谱(Atomic Fluorescence Spectrometry,AFS)联用技术对其增感效应进行了研究。结果表明N-丁基-吡啶四氟硼酸盐([C_4Py][BF_4])不仅使Cu、Ag和Au的CVG效率分别提高了4.8、2.7和3.6倍,而且在一定程度上降低了Zn~(2+)、Fe~(3+)、Co~(2+)、Ni~(2+)、Pb~(2)、Se~Ⅳ和As~Ⅲ对Cu、Ag和Au测定的干扰。据此,发展了以[C_4Py][BF_4]为增感剂的FI-CVG-AFS技术测定痕量Cu、Ag和Au的新方法。在进样量为0.5mL条件下,此方法测定Cu、Ag和Au的检出限分别为19、15和6.3μg L~(-1)。连续11次测定50μg L~(-1)的Cu、Ag和Au的相对标准偏差分别为4.4%、5.2%和4.7%。此方法已成功地应用于六种标准参考物中痕量Cu、Ag和Au含量的测定。
     (2)比较系统地研究了八种RTILs对Au的CVG的增感效应,并对其增感机理进行了探讨。这八种RTILs包括[C_4Py][BF_4]、N-丁基吡啶溴盐[C_4Py]Br、1-十六烷基-3-甲基咪唑氯盐[C_(16)mim]Cl、溴化四丁基季铵盐[N_(4444)]Br、1-丁基-3.甲基咪唑溴盐[C_4mim]Br、1-乙基-3-甲基咪唑溴盐[C_2mim]Br、1-痘?3-甲基咪唑四氟硼酸盐[C_4mim][BF_4]和四丁基季铵四氟硼酸盐[N_(4444)][BF_4]。所有这些RTILs均对Au的CVG-AFS检测有增感作用,增感倍数为3~24不等。RTILs的增感效果与其所含阴阳离子的本质有关。含有短链烷基的阳离子的RTILs的增感效果较好,而阳离子的烷基链较长或支链较多的RTILs增感效果不佳。对于含有相同阳离子的RTILs来说,阴离子为Br~-时增感效果最明显。我们认为RTILs的增感机理可能为:RTILs的阳离子与溶液中Au的阴离子通过静电作用形成离子对,而含Br~-的RTILs还会导致Br~-取代[AuCl_4]~-中的Cl~-,以上过程可能改变了参加CVG反应的Au的前驱体的形成,从而改善了Au参加CVG反应的效率;另一方面,RTILs改变了CVG反应环境的物理性质,反应中会产生很多细小均匀的气泡,可以将气态产物与其它物质隔离开而消除它们带来的干扰。结果表明在所研究的RTILs中,[C_4mim]Br的增感效果最佳。据此,发展了以[C_4mim]Br为增感剂的FI-CVG-AFS技术测定Au的新方法。在进样量为0.5 mL条件下,Au的检出限为1.9μg L~(-1)。连续11次测定50μg L~(-1) Au的相对标准偏差为3.1%。此方法已成功地应用于两种标准参考物中痕量Au含量的测定。
     (3)发现并详细研究了[C_4mim]Br和二乙基二硫代氨基甲酸钠(DDTC)对以硼氢酸盐为还原剂的Ni的CVG的协同增感效应。结果表明0.02%DDTC和25 mmol L~(-1)[C_4mim]Br共存使FI-CVG-AFS测定Ni的灵敏度提高2400倍。据此,发展了以0.02%DDTC和25 mmol L~(-1)[C_4mim]Br为协同增感剂的FI-CVG-AFS技术测定痕量Ni的新方法。与传统的羰基镍发生的方法相比,此方法不仅毒性低,而且更加有效。在进样量为0.5 mL条件下,Ni的检出限为0.65μg L~(-1)。样品通量为180 h~(-1),连续11次测定20μg L~(-1)Ni的相对标准偏差为3.4%。此方法已成功地应用于四种标准参考物中痕量Ni含量的测定。
Room-temperature ionic liquids(RTILs) have tremendous applications in various fields of chemistry due to their unique properties,such as negligible vapor pressure,good thermal stability,tunable viscosity,miscibility with water and organic solvents,and good extractability for various organic compounds and metal ions. Analytical applications of RTILs are also intriguing regarding the fact that they can be easily handled and used in wide variety of environments.There is a great deal of research on RTIL application as separation media for chromatography and capillary electrophoresis,solvents for extractions,sensing materials for chemosensing, matrices for MALDI-MS,electrolytes for electrochemistry and also as solvents for analytical spectroscopy,such as near infrared spectroscopy,fluorescence spectrometry and Raman spectroscopy.In this dissertation the exploitation of RTILs for the chemical vapor generation(CVG) of transition and noble metals,the mechanism of the enhancement effect of RTILs,and its application to flow injection-CVG-atomic fluorescence spectrometry(FI-CVG-AFS) for the determination of trace Au,Cu,Ag,and Ni are described.
     We report the first application of an RTIL in the CVG of transition and noble metals following reduction of acidified analyte solution with KBH_4.Copper,silver and gold were selected as model analytes,and N-butylpyridinium tetrafluoroborate ([C_4Py][BF_4]) was used as a model RTIL.The RTIL-enhanced CVG of copper,silver and gold was evaluated by FI-CVG-AFS.The addition of[C_4Py][BF_4]leads to a 4.8-, 2.7- and 3.6-times improvement in the CVG efficiencies for copper,silver and gold, respectively.Interference from Zn~(2+),Fe~(3+),Co~(2+),Ni~(2+),Pb~(2+),Se~Ⅳand As~Ⅲwas also reduced in the presence of[C_4Py][BF_4].The role of the RTIL was supposed to be inhibition of further coalescence of the metal nanoparticles which may constitute the volatile metal species leaving the solution and/or reaching the atomizer,and hence prevention of the loss of volatile metal species.With the consumption of a 0.5 mL sample solution,the detection limits(3σ) for Cu,Ag and Au are 19,15 and 6.3μg L~(-1), respectively.The precisions(RSD,n=11) for eleven replicate measurements of the standard solution containing 50μg L~(-1) Cu,Ag and Au were 4.4%,5.2%and 4.7%, respectively.The developed RTIL-enhanced FI-CVG-AFS method was successfully applied to determination of trace Cu,Ag and Au in several certified biological and geological reference materials.
     To get insight into the mechanism of the effect of RTILs on the CVG of noble metals,gold was taken as a model element,and eight RTILs were examined. FI-CVG-AFS was selected for detecting Au,and UV-vis spectrophotometry was used to elucidate the interactions of RTILs and the analyte.The RTILs involved include [C_4Py][BF_4],[C_4Py]Br,[C_(16)mim]Cl,[N_(4444)]Br,[C_4mim]Br,[C_2mim]Br,[C_4mim][BF_4] and[N_(4444)][BF_4].All the RTILs resulted in 3-24 times improvement in sensitivity for Au,depending on their nature.For the RTILs with identical anion,the RTILs with the cations of short chain exhibited better enhancement effect than those with long alkyl chain length or complex branch chain.For the RTILs with identical cation,the RTILs with Br~- gave the best enhancement effect.The formation of ion pairs between the cation of RTILs and the anion species of gold via electrostatic interaction,and/or the substitution of the Cl~- in the anion species of gold by the anion of RTILs likely enabled amore effective CVG reaction to occur.The RTILs also facilitated the generation of small bubbles and provided an electrostatic stabilization to protect the unstable volatile gold species and to help fast isolation of volatile gold species from the reaction mixture.[C_4mim]Br gave the best improvement in the sensitivity(24 times) among the RTILs studied,and also reduced the interferences from common transition and other noble metals.Based on the enhancement effect of[C_4mim]Br,a novel FI-CVG-AFS a detection limit(3σ) of 1.9μg L~(-1) and a precision of 3.1%(50μg L~(-1),RSD,n=11) was developed for the determination of trace gold in geological samples.
     RTIL in combination with sodium diethyldithiocarbamate(DDTC) were used to synergetically improve the CVG of nickel.Volatile species of nickel were effectively generated through reduction of acidified analyte solution with KBH_4 in the presence of 0.02%DDTC and 25 mmol L~(-1)[C_4mim]Br at room temperature.Thus,a new FI-CVG-AFS method was developed for determination of nickel.The combination of [C_4mim]Br with DDTC gave an enhancement factor of 2400.With consumption of 0.5 mL sample solution,a detection limit of 0.65μg L~(-1)(3σ) and a sampling frequency of 180 h~(-1) were obtained.The relative standard deviation for eleven replicate determinations of 20μg L~(-1) Ni was 3.4%.The developed FI-CVG-AFS method was successfully applied to determination of trace Ni in several certified biological reference materials.
引文
[1]Sturgeon,R.E.and Mester,Z.Analytical applications of volatile metal derivatives.Appl.Spectrosc.2002,56,202A-213A.
    [2]Brindle,I.D.Vapour-generation analytical chemistry:from Marsh to multimode sample-introduction system.Anal Bioanal.Chem.2007,388,735-741.
    [3]Gaspar,A.and Berndt,H.Beam injection flame furnace atomic absorption spectrometry:A New flame method.Anal.Chem.2000,72,240-246.
    [4]Sch(a|¨)ffer,U.and Krivan,V.A graphite furnace electrothermal vaporization system for inductively coupled plasma atomic emission spectrometry.Anal.Chem.1998,70,482-490.
    [5]Yang,L.;Sturgeon,R.E.;Mester,Z.Quantitation of trace metals in liquid samples by dried-droplet laser ablation inductively coupled plasma mass spectrometry.Anal.Chem.2005,77,2971-2977.
    [6]Donard,O.F.X.and Weber,J.H.Volatilization of tin as stannane in anoxic environments.Nature 1988,323,339-341.
    [7]Weber,J.H.Volatile hydride and methyl compounds of selected elements formed in the marine environment,Mar.Chem.1999,65,65-75.
    [8]Feldmann,J.Determination of Ni(CO)(4),Fe(CO)(5),Mo(CO)(6),and W(CO)(6) in sewage gas by using cryotrapping gas chromatography inductively coupled plasma mass spectrometry.J.Environ.Monit.1999,1,33-37.
    [9]Holleman,A.F.;Wiberg,E.Inorganic Chemistry,Academic Press:San Diego,2001
    [10]Holak,W.Gas-sampling technique for arsenic determination by atomic absorption spectrometry.Anal.Chem.1969,41,1712-1713.
    [11]Braman,R.S.;Justen,L.L.;Foreback,C.C.Direct volatilization-spectral emission type detection system for nanogram amounts of arsenic and antimony.Anal.Chem.1972,44,2195-2199.
    [12]Date,A.R.and Cheung,Y.Y.Studies in the determination of lead isotope ratios by inductively coupled plasma mass spectrometry.Analyst 1987,112,1531-1540.
    [13]Rapsomanikis,S.;Donard,O.F.X.;Weber,J.H.Speciation of lead and methyllead ions in water by chromatography/atomic absorption spectrometry after ethylation with sodium tetraethylborate. Anal. Chem. 1986, 58, 35-38.
    [14] Robbins, W. B.; Caruso, J. A. Development of hydride generation methods for atomic spectroscopic analysis. Anal. Chem.1979, 51, 889A-898A.
    [15] Pohl, P. Hydride generation-recent advances in atomic emission spectrometry. Trac-Trends Anal. Chem. 2004, 23, 87-101.
    [16] Laborda, F.; Bolea, E.; Baranguan, M. T.; Castillo, J. R. Hydride generation in analytical chemistry and nascent hydrogen: when is it going to be over? Spectrochim. Acta, Part B 2002, 57, 797-802.
    [17] Qiu, D. -R. Recent advances in fundamental studies of hydride generation. Trac-Trends Anal. Chem. 1995,14, 76-82.
    [18] D'Ulivo, A.; Baiocchi, C; Pitzalis, E.; Onor, M.; Zamboni, R. Chemical vapor generation for atomic spectrometry. A contribution to the comprehension of reaction mechanisms in the generation of volatile hydrides using borane complexes, Spectrochim. Acta, Part B 2004, 59, 471-486.
    [19] Pergantis, S. A.; Winnik, W.; Heithmar, E. M.; Cullen, W. R. Investigation of arsine generating reactions using deuterium-labeled reagents and mass spectrometry. Talanta 1997, 44, 1941-1947.
    [20] D'Ulivo A, Mester Z, Sturgeon R E. The mechanism of formation of volatile hydrides by tetrahydroborate(III) derivatization: A mass spectrometric study performed with deuterium labeled reagents. Spectrochim. Acta, Part B 2005, 60, 423-438.
    [21] D'Ulivo, A.; Mester, Z.; Meija, J.; et al. Mechanism of generation of volatile hydrides of trace elements by aqueous tetrahydroborate(III). Mass spectrometric studies on reaction products and intermediates. Anal. Chem. 2007, 79, 3008-3015.
    [22] Wang, R -T.; Jolly, W. L. Kinetic study of the intermediates in the hydrolysis of the hydroborate ion. Inorg. Chem. 1972,11, 1933-1941.
    [23] Kreevoy, M. M. and Hutchins, J. E. C. H_2BH_3 as an intermediate in tetrahydridoborate hydrolysis. J. Am. Chem. Soc. 1972, 94, 6371-6376.
    [24] D'Ulivo, A.; Loreti, V.; Onor, M.; Pitzalis, E.; Zamboni, R. Chemical vapor generation atomic spectrometry using amineboranes and cyanotrihydroborate (III) reagents. Anal. Chem. 2003, 75,2591-2600.
    [25] Narsito; Agterdenbos, J.; Santosa, S. J. Study of processes in the hydride generation atomic absorption spectrometry of antimony, arsenic and selenium Anal. Chim. Acta 1990, 237, 189-199.
    [26] Pitzalis, E.; Ajala, D.; Onor, M.; Zamboni, R.; D'Ulivo, A. Chemical vapor generation of arsane in the presence of L-cysteine. Mechanistic studies and their analytical feedback. Anal. Chem. 2007, 79, 6324-6333.
    [27] Pohl, P.; Prusisz, B. Chemical vapor generation of noble metals for analytical spectrometry. Anal. Bioanal. Chem. 2007, 388, 753-762.
    [28] Pohl, P. Recent advances in chemical vapour generation via reaction with sodium tetrahydroborate. Trac-Trends Anal. Chem. 2004, 23, 21-27.
    [29] Sturgeon, R. E.; Liu, J.; Boyko, V. J.; Luong, V. T. Determination of copper in environmental matrices following vapor generation. Anal. Chem. 1996, 68, 1883-1887.
    [30] Luna, A. S.; Sturgeon, R. E.; de Campos, R. C. Chemical vapor generation: atomic absorption by Ag, Au, Cu, and Zn following reduction of aquo ions with sodium tetrahydroborate(III). Anal. Chem. 2000, 72, 3523-3531.
    [31] Moor, C; Lam, J. W. H.; Sturgeon, R. E. A novel introduction system for hydride generation-inductively coupled plasma mass spectrometry: determination of selenium in biological materials. J. Anal. At. Spectrom. 2000, 15, 143-149.
    [32] Guo, X. -M.; Huang, B. -L.; Sun, Z. -H.; Ke, R. -Q.; Wang, Q. -Q.; Gong, Z. -B. Preliminary study on a vapor generation technique for nickel without using carbon monoxide by inductively coupled plasma atomic emission spectrometry. Spectrochim. Acta, Part B 2000, 55, 943-950.
    [33] Pohl, P. and Zyrnicki, W. On the transport of some metals into inductively coupled plasma during hydride generation process. Anal. Chim. Acta 2001, 429, 135-143.
    [34] Du, X. -G. and Xu, S. -K. Flow-injection chemical vapor-generating procedure for the determination of Au by atomic absorption spectrometry. Fresenius J. Anal. Chem. 2001, 370, 1065-1070.
    [35] Feng, Y. -L.; Lam, J. W.; Sturgeon, R. E. Expanding the scope of chemical vapor generation for noble and transition metals. Analyst 2001, 126, 1833-1837. [36] Pohl, P. and Zyrnicki, W. Study of chemical vapour generation of Au, Pd and Pt
    
    by inductively coupled plasma atomic emission spectrometry. J. Anal. At. Spectrom. 2001,16, 1442-1445.
    [37] Matousek, T.; Dedina, J.; Vobecky, M. Continuous flow chemical vapour generation of silver for atomic absorption spectrometry using tetrahydroborate(III) reduction-system performance and assessment of the efficiency using instrumental neutron activation analysis. J. Anal. At. Spectrom. 2002,77,52-56.
    [38] Sun, H.-W.; Suo, R.; Lu, Y.-K. Determination of zinc in food using atomic fluorescence spectrometry by hydride generation from organized media. Anal. Chim. Acta 2002, 457, 305-310.
    [39] Duan, X. -C; McLaughlin, R. L.; Brindle, I. D.; Conn, A. Investigations into the generation of Ag, Au, Cd, Co, Cu, Ni, Sn and Zn by vapour generation and their determination by inductively coupled plasma atomic emission spectrometry, together with a mass spectrometric study of volatile species. Determination of Ag, Au, Co, Cu, Ni and Zn in iron. J. Anal. At. Spectrom. 2002, 17, 227-231.
    [40] Marrero, J. and Smichowski, P. Evaluation of vapor generation for the determination of nickel by inductively coupled plasma-atomic emission spectrometry. Anal. Bioanal. Chem. 2002, 374, 196-202.
    [41] Luna, A. S.; Pereira, H. B.; Takase, I.; Goncalves, R. A.; Sturgeon, R. E.; de Campos, R. C. Chemical vapor generation-electrothermal atomic absorption spectrometry: new perspectives. Spectrochim. Acta, Part B 2002, 57, 2047-2056.
    [42] Pohl, P. and Zyrnicki, W. Study of the reaction of Ir, Os, Rh and Ru ions with NaBH_4 in the acid medium by the inductively coupled plasma atomic emission spectrometry. J. Anal. At. Spectrom. 2002,17, 746-749.
    [43] Ma, H. -B.; Fan, X. -F.; Zhou, H. -Y.; Xu, S. -K. Preliminary studies on flow-injection in situ trapping of volatile species of gold in graphite furnace and atomic absorption spectrometric determination. Spectrochim. Acta, Part B 2003,55,33-41.
    [44] Panichev, N. and Sturgeon, R. E. Atomic absorption by free atoms in solution following chemical reduction from the ionic state. Anal. Chem. 1998, 70, 1670-1676.
    [45] Pohl, P. and Zyrnicki, W. Analytical features of Au, Pd and Pt chemical vapour generation inductively coupled plasma atomic emission spectrometry. J. Anal. At. Spectrom. 2003,18, 798-801.
    [46] Matousek, T. and Sturgeon, R. E. Surfactant assisted chemical vapour generation of silver for AAS and ICP-OES: a mechanistic study. J. Anal. At. Spectrom. 2003,18, 487-494.
    [47] Feng, Y. -L.; Sturgeon, R. E.; Lam, J. W. Chemical vapor generation characteristics of transition and noble metals reacting with tetrahydroborate(III). J. Anal. At. Spectrom. 2003,18, 1435-1442.
    [48] Smichowski, P.; Farias, S.; Arisnabarreta, S. P. Chemical vapour generation of transition metal volatile species for analytical purposes: Determination of Zn by inductively coupled plasma-optical emission spectrometry. Analyst 2003, 128, 779-785.
    [49] Matousek, T.; Sturgeon, R. E. Chemical vapour generation of silver: reduced palladium as permanent reaction modifier for enhanced performance. J. Anal. At. Spectrom. 2004,19, 1014-1016.
    [50] Feng, Y. -L.; Lam, J. W.; Sturgeon, R. E. A novel approach to the estimation of aqueous solubility of some noble metal vapor species generated by reaction with tetrahydroborate (III). Spectrochim. Acta, Part B 2004, 57, 667-675.
    [51] Sun, H.-W. and Suo, R. Enhancement reagents for simultaneous vapor generation of zinc and cadmium with intermittent flow system coupled to atomic fluorescence spectrometry. Anal. Chim. Acta 2004, 509, 71-76.
    [52] Ertas, G and Ataman, O. Y. Electrothermal atomic absorption spectrometric determination of gold by vapor formation and in situ trapping in graphite tubes. Appl. Spectrosc. 2004, 58, 1243-1250.
    [53] Xu, S. -K. and Sturgeon, R. E. Flow injection chemical vapor generation of Au using a mixed reductant. Spectrochim. Acta, Part B 2005, 60, 101-107.
    [54] Feng, Y. -L.; Sturgeon, R. E.; Lam, J. W.; D'Ulivo, A. Insights into the mechanism of chemical vapor generation of transition and noble metals. J. Anal. At. Spedrom. 2005, 20, 255-265.
    [55] Xu, S. -K.; Sturgeon, R. E.; Guo, Y.; Zhang, W. -M.; Zhao, H. -F. Chemical vapor generation of Cu: optimization of generation media. Ann. Chim. 2005, 95, 491-499.
    [56] Cerutti, S.; Moyano, S.; Marrero, J.; Smichowski, P.; Martinez, L. D. On-line preconcentration of nickel on activated carbon prior to its determination by vapor generation associated to inductively coupled plasma optical emission spectrometry. J. Anal. At. Spedrom. 2005, 20, 559-561.
    [57] Li, Z. -X. Studies on the determination of trace amounts of gold by chemical vapour generation non-dispersive atomic fluorescence spectrometry. J. Anal. At. Spedrom. 2006, 21, 435-438.
    [58] Pena-Vazquez, E.; Villanueva-Alonso, J.; Bermejo-Barrera, P. Vapor generation for metal determination in steels using ICP-OES. Atom. Spedrosc. 2008, 29, 180-185.
    [59] He, L.; Zhu, X. -F.; Wu, L.; Hou, X. -D. Determination of trace copper in biological samples by on-line chemical vapor generation-atomic fluorescence spectrometry. Atom. Spedrosc. 2008, 29, 93-98.
    [60] Vtorushina, E. A.; Saprykin, A. I.; Knapp, G. Optimization of the conditions of oxidation vapor generation for determining chlorine, bromine, and iodine in aqueous solutions by inductively coupled plasma atomic-emission spectrometry. J. Anal. Chem. 2008, 63, 643-648.
    [61]Sun,H.-W.and Suo,R.Determination of ultra-trace amounts of nickel in environmental samples by atomic absorption spectrometry with in-situ trapping of volatile species in an iridium-palladium coated graphite furnace.Int.J.Environ.Anal Chem.2008,88,791-801.
    [62]Pena-Vazquez,E.;Villanueva-Alonso,J.;Bermejo-Barrera,P.Optimization of a vapour generation method for metal determination using ICP-OES.J.Anal At.Spectrom.2007,22,642-649.
    [63]Matousek,T.The efficiency of chemical vapour generation of transition and noble metals.Anal BioanaL Chem.2007,388,763-767.
    [64]Sanz-Medel,A.;Temprano,M.C.V.H.;Garcia,N.B.;de la Campa,M.R.F.Generation of cadmium atoms at room temperature using vesicles and its pplication to cadmium determination by cold vapor atomic spectrometry.Anal.Chem.1995,67,2216-2223.
    [65]Guo,X.-W.and Guo,X.-M.Studies on the reaction between cadmium and potassium tetrahydroborate in aqueous solution and its application in atomic fluorescence spectrometry.Anal.Chim.Aeta 1995,310,377-385.
    [66]Guo,X.-W.;Guo,X.-M.Determination of cadmium at ultratrace levels by cold vapour atomic absorption spectrometry.J.Anal.At.Spectrom.1995,10,987-991.
    [67]郭小伟、郭旭明。硼氢化钠与锌在水溶液中的反应的研究及其分析应用。分析化学 1998,26,674-678.
    [68]喻昕、廖振环、江祖成、陈建国、王松青。FI-HG-ICP-AES测定痕量镉的研究。武汉大学学报(自然科学版)1997,43,757-755.
    [69]周焕英、徐淑坤、方肇伦。流动注射蒸气发生原子吸收光谱测定痕量铜。光谱学与光谱分析 2000,20,525-528.
    [70]Weing(a|¨)rtner,H.Understanding ionic liquids at the molecular level:facts,problems,and controversies.Angew.Chem.Int.Ed.2008,47,654-670.
    [71]Forsyth,S.A.;Pringle,J.M.;MacFarlane,D.R.Ionic liquids-an overview.Aust.J.Chem.2004,57,113-119.
    [72] Earle M. J. and Seddon, K. R. Ionic liquids. Green solvents for the future. Pure Appl. Chem. 2000, 72, 1391-1398.
    [73] R.D. Rogers, K.R. Seddon (Eds.), Ionic Liquids: Industrial Applications for Green Chemistry, ACS Symposium Series 818, American Chemical Society, Washington, DC, 2002.
    [74] R.D. Rogers, K.R. Seddon (Eds.), Ionic Liquids as Green Solvents: Progress and Prospects, ACS Symposium Series 856, American Chemical Society, Washington, DC, 2003.
    [75] Seddon, K. R. Ionic liquids for clean technology. Chem. Biotechnol. 1997, 2, 351-356.
    [76] Holbery, J. D. and Seddon, K. R. The phase behavior of 1-alkyl-3-methylimidazolium tetrafluoroborates: ionic liquids and ionic liquid crystals. J. Chem. Soc, Dalton Trans. 1999,13, 2133-2139.
    [77] Walden, P. Molecular weights and electrical conductivity of several fused salts. Bull. Acad. Imper. Sci. (St. Petersburg) 1914, 405-422.
    [78] Hurley, H. F. and Wier, T. P. Electrodeposition of metals from fused quaternary ammonium salts. J. Electrochem. Soc. 1951, 98, 203-208.
    [79] Chum, H. L.; Koch, V. R.; Miller, L. L.; Osteryoung, R. A. Electrochemical scrutiny of organometallic iron complexes and hexamethylbenzene in a room temperature molten salt. J. Am. Chem. Soc. 1975, 97, 3264-3265.
    [80] Wilkes, J. S.; Levisky, J. A.; Wilson, R. A.; Hussey, C. L. Dialkylimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy, and synthesis. Inorg. Chem. 1982, 21, 1263-1264.
    [81] Hussey, C. L. Room temperature haloaluminate ionic liquids-novel solvents for transition metal solution chemistry. Pure Appl. Chem. 1988, 60, 1763-1772.
    [82] Wilkes, J. S. and Zaworotko, M. J. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J. Chem. Soc, Chem. Commun. 1992, 965-966.
    [83] Bonhote, P.; Dias. A. P.; Papageorgiou, N.; Kalyanasundaram, K.; Gratzel, M. Hydrophobic,highly conductive ambient-temperature molten salts,Inorg.Chem.1996,35,1168-1178.
    [84]杨雅立、王晓化、寇元、闵恩泽。不断壮大的离子液体家族。化学进展 2003,15,471-476。
    [85]Cole,A.C.;Jensen,J.L.;Ntai,I.;Tran,K.L.T.;Weaver,K.J.;Forbes,D.C.;Davis,J.H.Novel bronsted acidic ionic liquids and their use as dual solvent-catalysts.J.Am.Chem.Soe.2002,124,5962-5963.
    [86]Bao,W.-L.;Wang,Z.-M.;Li,Y.-X.Synthesis of chiral ionic liquids from natural amino acids.J.Org.Chem.2003,68,591-593.
    [87]Zhao,D.-B.;Fei,Z.-F.;Geldbach,T.J.;Scopelliti,R.;Dyson,P.J.Nitrile-functionalized pyridinium ionic liquids:synthesis,characterization,and their application in carbon-carbon coupling reactions.J.Am.Chem.Soc.2004,126,15876-15882.
    [88]Leone,A.M.;Weatherly,S.C.;Williams,M.E.;Thorp,H.H.;Murray,R.W.An ionic liquid form of DNA:redox-active molten salts of nucleic acids.J.Am.Chem.Soc.2001,123,218-222.
    [89]Huang,J.;Jiang,T.;Gao,H.-X.;Han,B.-X.;Liu,Z.-M.;Wu,W.-Z.;Chang,Y.-H.;Zhao,G -Y.Pd nanoparticles immobilized on molecular sieves by ionic liquids:heterogeneous catalysts for solvent-free hydrogenation.Angew.Chem.Int.Ed.2004,43,1397-1399.
    [90]Dai,L.-Y.;Yu,S.-Y.;Shan,Y.-K.;He,M.-Y.Novel room temperature inorganic ionic liquids.Eur.J.Inorg.Chem.2004,237-241.
    [91]Smiglak,M.;Metlen,A.;Rogers,R.D.The second evolution of ionic liquids:from solvents and separations to advanced materials-energetic examples from the ionic liquid cookbook.Acc.Chem.Res.2007,40,1182-1192.
    [92]Berthod,A.;Ruiz-Angel,M.J.;Carda-Broch,S.Ionic liquids in separation techniques.J.Chromatogr.A 2008,1184,6-18.
    [93]Zhang,S.-J.;Sun,N.;Zhang,X.-P.;Lu,X.-M.Periodicity and map for discovery of new ionic liquids.Sci.China Set.B-Chem.2006,49,103-115.
    [94]Miao,W.-S.;Chan,T.-H.Ionic-liquid-supported synthesis:a novel liquid-phase strategy for organic synthesis.Acc.Chem.Res.2006,39,897-908.
    [95]Olivier-Bourbigou,H.;Magna,L.Ionic liquids:perspectives for organic and catalytic reactions.J.Mol.Catal.A-Chem.2002,182,419-437.
    [96]Dupont,J.;de Souza,R.F.;Suarez,P.A.Z.Ionic liquid(molten salt) phase organometallic catalysis.Chem.Rev.2002,102,3667-3692.
    [97]Mehnert,C.P.Supported ionic liquid phases.Chem.Eur.J.2005,11,50-56.
    [98]Leitner,W.Catalysis-A greener solution.Nature 2003,423,930-931.
    [99]Gao,Y.-N.;Voigt,A.;Zhou,M.;Sundmacher,K.Synthesis of single-crystal gold nano- and microprisms using a solvent-reductant-template ionic liquid.Eur.J.Inorg.Chem.2008,3769-3775.
    [100]Choi,E.H.;Hong,S.I.;Moon,D.J.Preparation of thermally stable mesostructured nano-sized TiO_2 particles by modified sol-gel method using ionic liquid.Catal.Lett.2008,123,84-89.
    [101]Zhang,A.-J.;Zhang,G.-R.;Du,Y.-F.;Lin,M.-Y.;Lu,J.-X.Preparation and property study of nano-TiO_(2/3)-methylthiophene composite film in ionic liquid.Acta Chim.Sin.2008,66,200-204.
    [102]Mu,X.-D.;Meng,J.-Q.;Li,Z.-C.;Kou,Y.Rhodium nanoparticles stabilized by ionic copolymers in ionic liquids:long lifetime nanocluster catalysts for benzene hydrogenation.J.Am.Chem.Soc.2005,127,9694-9695.
    [103]Sun,W.;Jiang,Q.;Wang,Y.;Jiao,K.Electrochemical behaviors of metol on hydrophilic ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate-modified electrode.Sens.Actuator B-Chem.2009,136,419-424.
    [104]Vorotyntsev,M.A.;Zinovyeva,V.A.;Konev,D.V.;Picquet,M.;Gaillon,L.;Rizzi,C.Electrochemical and spectral properties of ferrocene(Fc) in ionic liquid:1-butyl-3-methylimidazolium triflimide,[BMIM][NTf2].Concentration effects.J.Phys.Chem.B 2009,113,1085-1099.
    [105]Itoh,N.Electrochemical light-emitting gel made by using an ionic liquid as the electrolyte.J.Electrochem.Soc.2009,156,J37-J40.
    [106]Rogers,E.I.;Sljukic,B.;Hardacre,C.;Compton,R.G.Electrochemical determination of manganese solubility in mercury via amalgamation and stripping in the room temperature ionic liquid n-hexyltriethylammonium bis(trifluoromethanesulfonyl)imide,[N-6,N-2,N-2,N-2][NTf2].Electroanalysis 2008,20,2603-2607.
    [107]Ghilane,J.;Fontaine,O.;Martin,P.;Lacroix,J.C.;Randriamahazaka,H.Formation of negative oxidation states of platinum and gold in redox ionic liquid:Electrochemical evidence.Electrochem.Commun.2008,10,1205-1209.
    [108]Zhao,H.;Xia,S.-Q.;Ma,P.-S.Use of ionic liquids as 'green' solvents for extractions.J.Chem.TechnoL Biotechnol.2005,80,1089-1096.
    [109]Yao,C.and Anderson,J.L.Retention characteristics of organic compounds on molten salt and ionic liquid-based gas chromatography stationary phases.J.Chromatogr.A 2009,1216,1658-1712.
    [110]Li,J.;Huang,M.-H.;Liu,X.-Q.;Wei,H.;Xu,Y.-H.;Xu,G.-B.;Wang,E.-K.Enhanced electrochemiluminescence sensor from tris(2,2 '-bipyridyl)ruthenium(Ⅱ) incorporated into MCM-41 and an ionic liquid-based carbon paste electrode.Analyst 2007,132,687-691.
    [111]Armstrong,D.W.;Zhang,L.-K.;He,L.-F.;Gross,M.L.Ionic liquids as matrixes for matrix-assisted laser desorption/ionization mass spectrometry.Anal.Chem.,2001,73,3679-3686.
    [112]孙伟、高瑞芳、焦奎。离子液体在分析化学中应用研究进展。分析化学 2007,35,1813-1819.
    [113]Anderson,J.L.;Armstrong,D.W.;Wei,G.-T.Ionic liquids in analytical chemistry.Anal.Chem.2006,78,2892-2902.
    [114]Liu,J.-F.;J(o|¨)nsson,J.A.;Jiang,G.-13.Application of ionic liquids in analytical chemistry.Trac-Trends Anal Chem.2005,24,20-27.
    [115]Baker,G.A.;Baker,S.N.;Pandey,S.;Bright,F.V.An analytical view of ionic liquids.Analyst 2005,130,800-808.
    [116]Toh,S.L.I.;McFarlane,J.;Tsouris,C.;DePaoli,D.W.;Luo,H.;Dai,S. Room-temperature ionic liquids in liquid-liquid extraction: Effects of solubility in aqueous solutions on surface properties. Solvent Extr. Ion Exch. 2006, 24, 33-56.
    [117] Liu, J. -F.; Chi, Y. -G; Jiang, G. -B. Screening the extractability of some typical environmental pollutants by ionic liquids in liquid-phase microextraction. J. Sep. Sci. 2005,25,87-91.
    [118] Zhao, R; Ponnaiyan, T. K.; Graham, C. M.; Schall, C. A.; Varanasi, S.; Anderson, J. L. Determination of ethanol in ionic liquids using headspace solid-phase micro extraction-gas chromatography. Anal. Bioanal. Chem. 2008, 392, 1271-1275.
    [119] Seki, T.; Grunwaldt, J. D.; Baiker, A. In situ attenuated total reflection infrared spectroscopy of imidazolium-based room-temperature ionic liquids under "supercritical" CO_2. J. Phys. Chem. B 2009,113, 114-122.
    [120] Khachatryan, K. S.; Smirnova, S. V.; Torocheshnikova, I. I.; Shvedene, N. V.; Formanovsky, A. A.; Pletnev, I. V. Solvent extraction and extraction-voltammetric determination of phenols using room temperature ionic liquid. Anal. Bioanal. Chem. 2005, 381, 464-470.
    [121] Scurto, A. M.; Aki, S. N. V. K.; Brennecke, J. R CO_2 as a separation switch for ionic liquid/organic mixtures. J. Am. Chem. Soc. 2002,124,10276-10277.
    [122] Solinas, M.; Pfaltz, A.; Cozzi, P. G; Leitner, W. Enantioselective hydrogenation of imines in ionic liquid/carbon dioxide media. J. Am. Chem. Soc. 2004, 126, 16142-16147.
    [123] Brennecke, J. R; Blanchard, L. A.; Anthony, J. L.; Gu, Z. -Y.; Zarraga, I.; Leighton, D. T. Separation of species from ionic liquids. Clean solvents -alternative media for chemical reactions and processing. ACS Symposium Series 819, American Chemical Society, Washington, DC, 2002.
    [124] Armstrong, D. W.; He, L. -R; Liu, Y. -S. Examination of ionic liquids and their interaction with molecules, when used as stationary phases in gas chromatography. Anal. Chem. 1999, 71, 3873-3876.
    [125] Berthod, A.; He, L. -R; Armstrong, D. W. Ionic liquids as stationary phase solvents for methylated cyclodextrins in gas chromatography.Chromatographia 2001,53,63-68.
    [126]Polyakova,Y.and Row,K.H.Retention-eluent composition relationships of some polar compounds with imidazolium ionic liquid modifiers in RP-HPLC.J.Liq.Chromatogr.Relat.Technol.2007,30,3007-3028.
    [127]Wang,Q.;Baker,G.A.;Baker,S.N.;Colon,L.A.Surface confined ionic liquid as a stationary phase for HPLC.Analyst 2006,131,1000-1005.
    [128]Yanes,E.G.;Gratz,S.R.;Baldwin,M.J.;Robison,S.E.;Stalcup,A.M.Capillary electrophoretic application of 1-alkyl-3-methylimidazolium-based ionic liquids.Anal.Chem.2001,73,3838-3844.
    [129]Jiang,T.-F.;Gu,Y.-L.;Liang,B.;Li,J.-B.;Shi,Y.-P.;Ou,Q.-Y.Dynamically coating the capillary with 1-alkyl-3-methylimidazolium-based ionic liquids for separation of basic proteins by capillary electrophoresis.Anal.Chim.Acta 2003,479,249-254.
    [130]Mofaddel,N.;Krajian,H.;Villemin,D.;Desbene,P.L.New ionic liquid for inorganic cations analysis by capillary electrophoresis:2-hydroxy-N,N,N-trimethyl-1-phenylethanaminium bis(trifluoromethylsulfonyl)imide(phenylcholine NTf2).Anal.Bioanal.Chem.2009,393,1545-1554.
    [131]Macfarlane,D.R.;Forsyth,M.;Howlett,P.C.;Pringle,J.M.;Sun,J.-Z.;Annat,G.;Neil,W.;Izgorodina,E.I.Ionic liquids in electrochemical devices and processes:managing interfacial electrochemistry.Acc.Chem.Res.2007,40,1165-1173.
    [132]Buzzeo,M.C.;Evans,R.G.;Compton,R.G.Non-haloaluminate room-temperature ionic liquids in electrochemistry - A review.ChemPhysChem 2004,5,1106-1120.
    [133]Tu,W.-W.;Lei,J.-P.;Ju,H.-X.Functionalization of carbon nanotubes with water-insoluble porphyrin in ionic liquid:direct electrochemistry and highly sensitive amperometric biosensing for trichloroacetic acid.Chem.-Eur.J.2009,15,779-784.
    [134]Sun,W.;Zhai,Z.-Q.;Wang,D.-D.;Liu,S.-F.;Jiao,K.Electrochemistry of hemoglobin entrapped in a Nafion/nano-ZnO film on carbon ionic liquid electrode.Bioelectrochemistry 2009,74,295-300.
    [135]Zhuang,D.-X.;Deng,M.-J.;Chen P.-Y.;Sun,I.-W.Electrochemistry of manganese in the hydrophilic N-butyl-N-methylpyrrolidinium dicyanamide room-temperature ionic liquid.J.Electrochem.Soc.2008,155,D575-D579.
    [136]Armstrong,D.W.;Zhang,L.-K.;He,L.-F.;Gross,M.L.Ionic liquids as matrixes for matrix-assisted laser desorption/ionization mass spectrometry.Anal.Chem.2001,73,3679-3686.
    [137]Whitehead,J.A.;Lawrance,G.A.;McCluskey,A.Analysis of gold in solutions containing ionic liquids by inductively coupled plasma atomic emission spectrometry.Aust.J.Chem.2004,57,151-155.
    [138]Kavan,L.and Dunsch,L.Ionic liquid for in situ Vis/NIR and Raman spectroelectrochemistry:Doping of carbon nanostructures.ChemPhysChem 2003,4,944-950.
    [1] R.D. Rogers, K.R. Seddon (Eds.), Ionic Liquids: Industrial Applications for Green Chemistry, ACS Symposium Series 818, American Chemical Society, Washington, DC, 2002.
    
    [2] R.D. Rogers, K.R. Seddon (Eds.), Ionic Liquids as Green Solvents: Progress and Prospects, ACS Symposium Series 856, American Chemical Society, Washington, DC, 2003.
    [3] Endres, F. and EI Abedin S. Z. Air and water stable ionic liquids in physical chemistry. Phys. Chem. Chem. Phys., 2006, 8, 2101-2116.
    [4] Anderson, J. L.; Armstrong, D. W.; Wei, G. -T. Ionic liquids in analytical chemistry. Anal. Chem. 2006, 78, 2892-2902.
    [5] Pandey S. Analytical applications of room-temperature ionic liquids: A review of recent efforts. Anal. Chim. Acta 2006, 556, 38-45.
    [6] Liu, J. -F.; Jonsson, J. A.; Jiang, G. -B. Application of ionic liquids in analytical chemistry. Trac-Trends Anal. Chem. 2005, 24, 20-27.
    [7] Li, Z. -J.; Chang, J.; Shan, H. -X.; Pan, J. -M. Advance of room temperature ionic liquid as solvent for extraction and separation. Rev. Anal. Chem. 2007, 26, 109-153.
    [8] Baker, G. A.; Baker, S. N.; Pandey, S.; Bright, F. V. An analytical view of ionic liquids. Analyst 2005, 130, 800-808.
    [9] Shams, S. A.; Danielson, N. D. Utility of ionic liquids in analytical separations. J. Sep. Sci. 2007, 30, 1729-1750.
    [10] Tran, C. D. Ionic Liquids for and by Analytical Spectroscopy. Anal. Lett. 2007, 40, 2447-2464.
    
    [11] Pohl, P. Recent advances in chemical vapour generation via reaction with sodium tetrahydroborate. Trac-Trends Anal. Chem. 2004, 23, 21-27.
    
    [12] Feng, Y. -L.; Sturgeon, R. E.; Lam, J. W. Chemical vapor generation characteristics of transition and noble metals reacting with tetrahydroborate(III). J. Anal. At. Spectrom. 2003, 18, 1435-1442.
    
    [13] Sturgeon, R. E.; Liu, J.; Boyko, V. J.; Luong, V. T. Determination of copper in environmental matrices following vapor generation.Anal.Chem.1996,68,1883-1887.
    [14]Luna,A.S.;Sturgeon,R.E.;de Campos,R.C.Chemical vapor generation:atomic absorption by Ag,Au,Cu,and Zn following reduction of aquo ions with sodium tetrahydroborate(Ⅲ).Anal.Chem.2000,72,3523-3531.
    [15]Feng,Y.-L.;Lam,J.W.;Sturgeon,R.E.Expanding the scope of chemical vapor generation for noble and transition metals.Analyst 2001,126,1833-1837.
    [16]Pohl,P.;Prusisz,B.Chemical vapor generation of noble metals for analytical spectrometry.Anal.Bioanal.Chem.2007,388,753-762.
    [17]Matousek,T.;Dedina.J.;Vobecky,M.Continuous flow chemical vapour generation of silver for atomic absorption spectrometry using tetrahydroborate(Ⅲ) reduction-system performance and assessment of the efficiency using instrumental neutron activation analysis.J.Anal.At.Spectrom.2002,17,52-56.
    [18]Xu,S.-K.and Sturgeon,R.E.Flow injection chemical vapor generation of Au using a mixed reductant.Spectrochim.Acta,Part B 2005,60,101-107.
    [19]Matousek,T.;Sturgeon,R.E.Surfactant assisted chemical vapour generation of silver for AAS and ICP-OES:a mechanistic study,J.Anal At.Spectrom.2003,18,487-494.
    [20]Sun,H.-W.;Suo,R.;Lu,Y.-K.Determination of zinc in food using atomic fluorescence spectrometry by hydride generation from organized media.Anal.Chim.Acta 2002,457,305-310.
    [21]周焕英、徐淑坤、方肇伦。流动注射蒸气发生原子吸收光谱测定痕量铜。光谱学与光谱分析 2000,20,525-528.
    [22]Sun,H.-W.;Suo,R.Enhancement reagents for simultaneous vapor generation of zinc and cadmium with intermittent flow system coupled to atomic fluorescence spectrometry.Anal Chim.Acta 2004,509,71-76.
    [23]Guo,X.-W.;Guo,X.-M.Studies on the reaction between cadmium and potassium tetrahydroborate in aqueous solution and its application in atomic fluorescence spectrometry. Anal. Chim. Acta 1995, 310, 377-385.
    [24] Lu, Y.-K.; Sun, H.-W.; Yuan, C.-G.; Yan, X.-P. Simultaneous determination of trace cadmium and arsenic in biological samples by hydride generation-double channel atomic fluorescence spectrometry. Anal. Chem. 2002, 74, 1525-1529.
    [25] Feng, Y. -L.; Sturgeon, R. E.; Lam, J. W.; D'Ulivo, A. Insights into the mechanism of chemical vapor generation of transition and noble metals. J. Anal. At. Spectrom. 2005, 20, 255-265.
    [26] Li, Z. -X. Studies on the determination of trace amounts of gold by chemical vapour generation non-dispersive atomic fluorescence spectrometry. J. Anal. At. Spectrom. 2006, 21, 435-438.
    [27] Ma, H. -B.; Fan, X. -F.; Zhou, H. -Y.; Xu, S. -K. Preliminary studies on flow-injection in situ trapping of volatile species of gold in graphite furnace and atomic absorption spectrometric determination. Spectrochim. Acta, Part 5 2003,55,33-41.
    [28] Dupont, J.; Fonseca, G. S.; Umpierre, A. P.; Fichtner, P. F. P.; Teixeira, S. R. Transition-metal nanoparticles in imidazolium ionic liquids: recycable catalysts for biphasic hydrogenation reactions. J. Am. Chem. Soc. 2002, 124, 4228-4229.
    [29] Fonseca, G. S.; Umpierre, A. P.; Fichtner, P. F. P.; Teixeira, S. R; Dupont, J. The use of imidazolium ionic liquids for the formation and stabilization of Ir~0 and Rh~0 nanoparticles: efficient catalysts for the hydrogenation of arenes. Chem. Eur. J. 2003, 9, 3263-3269.
    [30] Huang, J.; Jiang, T.; Han, B. X.; Gao, H. X.; Chang, Y. H.; Zhao, G. Y.; Wu, W. Z. Hydrogenation of olefins using ligand-stabilized palladium nanoparticles in an ionic liquid. Chem. Commun. 2003, 1654-1655.
    [31] Jiang, J.; Yu, S. -H.; Yao, W. -T.; Ge, H.; Zhang, G. -Z. Morphogenesis and crystallization of Bi_2S_3 nanostructures by an ionic liquid-assisted templating route: synthesis, formation mechanism, and properties. Chem. Mater. 2005, 17, 6094-6100.
    [32]Matousek,T.The efficiency of chemical vapour generation of transition and noble metals.Anal.Bioanal.Chem.2007,388,763-767.
    [1]Dedina,J.;Tsalev,D.L.Hydride Generation Atomic Absorption Spectrometry,John Wiley & Sons:New York,1995.
    [2]Sturgeon,R.E.and Mester,Z.Analytical applications of volatile metal derivatives.Appl.Spectrosc.2002,56,202A-213A.
    [3]He,Y.-H.;Hou,X.-D.;Zheng,C.-B.;Sturgeon,R.E.Critical evaluation of the application of photochemical vapor generation in analytical atomic spectrometry.Anal.Bioanal.Chem.2007,388,769-774.
    [4]Sturgeon,R.E.;Liu,J.;Boyko,V.J.;Luong,V.T.Determination of copper in environmental matrices following vapor generation.Anal.Chem.1996,68,1883-1887.
    [5]Luna,A.S.;Sturgeon,R.E.;de Campos,R.C.Chemical vapor generation:atomic absorption by Ag,Au,Cu,and Zn following reduction of aquo ions with sodium tetrahydroborate(Ⅲ).Anal.Chem.2000,72,3523-3531.
    [6]Feng,Y.L.;Lam,J.W.;Sturgeon,R.E.Expanding the scope of chemical vapor generation for noble and transition metals.Analyst 2001,126,1833-1837.
    [7]Pohl,P.and Prusisz,B.Chemical vapor generation of noble metals for analytical spectrometry.Anal.Bioanal.Chem.2007,388,753-762.
    [8]Guo,X.-M.;Huang,B.-L.;Sun,Z.-H.;Ke,R.-Q.;Wang,Q.-Q.;Gong,Z.-B.Preliminary study on a vapor generation technique for nickel without using carbon monoxide by inductively coupled plasma atomic emission spectrometry.Spectrochim.Acta,Part B 2000,55,943-950.
    [9]Feng,Y.-L.;Sturgeon,R.E.;Lam,J.W.Chemical vapor generation characteristics of transition and noble metals reacting with tetrahydroborate(Ⅲ).J.Anal.At.Spectrom.2003,18,1435-1442.
    [10]Duan,X.-C.;McLaughlin,R.L.;Brindle,I.D.;Conn,A.Investigations into the generation of Ag,Au,Cd,Co,Cu,Ni,Sn and Zn by vapour generation and their determination by inductively coupled plasma atomic emission spectrometry,together with a mass spectrometric study of volatile species.Determination of Ag,Au,Co,Cu,Ni and Zn in iron.J.Anal.At.Spectrom.2002,17,227-231.
    [11]Ma,H.-B.;Fan,X.-F.;Zhou,H.-Y.;Xu,S.-K.Preliminary studies on flow-injection in situ trapping of volatile species of gold in graphite furnace and atomic absorption spectrometric determination.Spectroehim.Acta,Part B 2003,58,33-41.
    [12]Xu,S.-K.and Sturgeon,R.E.Flow injection chemical vapor generation of Au using a mixed reductant.Spectrochim.Acta,Part B 2005,60,101-107.
    [13]Xu,S.-K.;Sturgeon,R.E.;Guo,Y.;Zhang,W.-M.;Zhao,H.-F.Chemical vapor generation of Cu:optimization of generation media.Ann.Chim.2005,95,491-499.
    [14]Du,X.-G.and Xu,S.-K.Flow-injection chemical vapor-generating procedure for the determination of Au by atomic absorption spectrometry.Fresenius J.Anal.Chem.2001,370,1065-1070.
    [15]周焕英、徐淑坤、方肇伦。流动注射蒸气发生原子吸收光谱测定痕量铜。光学学与光学分析 2000,20,525-528.
    [16]Sun,H.-W.and Suo,R.Enhancement reagents for simultaneous vapor generation of zinc and cadmium with intermittent flow system coupled to atomic fluorescence spectrometry.Anal.Chim.Acta 2004,509,71-76.
    [17]Lu,Y.-K.;Sun,H.-W.;Yuan,C.-G.;Yan,X.-P.Simultaneous determination of trace cadmium and arsenic in biological samples by hydride generation-double channel atomic fluorescence spectrometry.Anal.Chem.2002,74,1525-1529.
    [18]Matousek,T.and Sturgeon,R.E.Surfactant assisted chemical vapour generation of silver for AAS and ICP-OES:a mechanistic study.J.Anal.At. Spectrom. 2003,18, 487-494.
    [19] Sun, H. -W.; Suo, R.; Lu, Y. -K. Determination of zinc in food using atomic fluorescence spectrometry by hydride generation from organized media. Anal. Chim. Acta 2002, 457, 305-310.
    [20] Anderson, J. L.; Armstrong, D. W.; Wei, G. -T. Ionic liquids in analytical chemistry. Anal. Chem. 2006, 78, 2892-2902.
    [21] Pandey S. Analytical applications of room-temperature ionic liquids: A review of recent efforts. Anal. Chim. Acta 2006, 556, 38-45.
    [22] Liu, J. -F.; Jonsson, J. A.; Jiang, G. -B. Application of ionic liquids in analytical chemistry. Trac-Trends Anal. Chem. 2005, 24, 20-27.
    [23] Li, Z. -J.; Chang, J.; Shan, H. -X.; Pan, J. -M. Advance of room temperature ionic liquid as solvent for extraction and separation. Rev. Anal. Chem. 2007, 26, 109-153.
    [24] Baker, G. A.; Baker, S. N.; Pandey, S.; Bright, F. V. An analytical view of ionic liquids. Analyst 2005, 130, 800-808.
    [25] Shamsi, S. A. and Danielson, N. D. Utility of ionic liquids in analytical separations. J. Sep. Sci. 2007, 30, 1729-1750.
    [26] Tran, C.D. Ionic Liquids for and by Analytical Spectroscopy. Anal. Lett. 2007, 40, 2447-2464.
    [27] Zhang, C; Li, Y.; Cui, X.-Y.; Jiang, Y.; Yan, X.-P. Room temperature ionic liquids enhanced chemical vapor generation of copper, silver and gold following reduction in acidified aqueous solution with KBH_4 for atomic fluorescence spectrometry. J. Anal. At. Spectrom. 2008, 23, 1372-1377.
    [28] Malham, I. B.; Letellier, P.; Turmine, M. Evidence of a phase transition in water 1-butyl-3-methylimidazolium tetrafluoroborate and water 1-butyl-2,3-dimethylimidazolium tetrafluoroborate mixtures at 298 K: determination of the surface thermal coefficient, b_(T,P). J. Phys. Chem. B 2006, 110,14212-14214.
    [29] Bonhote, P.; Dias, A. P.; Papageorgiou, N.; Kalyanasundaram, K.; Gratzel, M. Hydrophobic, highly conductive ambient-temperature molten salts. Inorg. Chem.1996,35,1168-1178.
    [30]Xu,D.-Q.;Liu,B.-Y.;Luo,S.-P.;Xu,Z.-Y.;Shen,Y.-C.A novel and eco-friendly method for the preparation of ionic liquids.Synthesis 2003,17,2626-2628.
    [31]Kryshtal,G.V.;Zhdankina,G.M.;Zlotin,S.G.Tetraalkylammonium and 1,3-dialkylimidazolium salts with fluorinated anions as recoverable phase-transfer catalysts in solid base-promoted cross-aldol condensations.Eur.J.Org.Chem.2005,2822-2827.
    [32]Feng,Y.-L.;Sturgeon,R.E.;Lam,J.W.;D'Ulivo,A.Insights into the mechanism of chemical vapor generation of transition and noble metals.J.Anal.At.Spectrom.2005,20,255-265.
    [33]Zhang,S.-J.;Li,X.;Chen,H.-P.;Wang,J.-F.;Zhang,J.-M.;Zhang,M.-L.Insights into the mechanism of chemical vapor generation of transition and noble metals.J.Chem.Eng.Data 2004,49,760-764.
    [34]Zafarani-Moattar,M.T.;Shekaari H.Apparent molar volume and isentropic compressibility of ionic liquid 1-butyl-3-methylimidazolium bromide in water,methanol,and ethanol at T=(298.15 to 318.15) K.J.Chem.Thermodynamics 2005,37,1029-1035.
    [35]Rebelo,L.P.N.;Najdanovic-Visak,V.;Visak,Z.P.;da Ponte,M.N.;Szydlowski,J.;Cerdeirina,C.A.;Troncoso,J.;Romani,L.;Esperanca,J.M.S.S.;Guedes,H.J.R.;de Sousa,H.C.A detailed thermodynamic analysis of[C_4mim][BF_4]+ water as a case study to model ionic liquid aqueous solutions.Green Chem.2004,6,369-381.
    [36]Liu,W.-W.;Zhao,T.-Y.;Zhang,Y.-M.;Wang,H.-P.;Yu,M.-F.The physical properties of aqueous solutions of the ionic liquid[BMIM][BF_4].J.Solut.Chem.2006,35,1337-1346.
    [37]Panichev,N.and Sturgeon,R.E.Atomic absorption by free atoms in solution following chemical reduction from the ionic state.Anal.Chem.1998,70,1670-1676.
    [38]Molloy,J.L.and Holcombe,J.A.Detection of palladium by cold atom solution atomic absorption. Anal. Chem. 2006, 78, 6634-6639.
    [39] Scheeren, C. W.; Machado, G.; Dupont, J.; Fichtner, P. F. P.; Texeira S. R. Nanoscale Pt(0) particles prepared in imidazolium room temperature ionic liquids: synthesis from an organometallic precursor, characterization, and catalytic properties in hydrogenation reactions. Inorg. Chem. 2003, 42, 4738-4742.
    [40] Mu, X. -D.; Meng, J. -Q.; Li, Z. -C; Kou, Y. Rhodium nanoparticles stabilized by ionic copolymers in ionic liquids: long lifetime nanocluster catalysts for benzene hydrogenation. J. Am. Chem. Soc. 2005, 127, 9694-9695.
    [41] Huang, J.; Jiang, T.; Han, B. -X.; Gao, H. -X.; Chang, Y. -H.; Zhao, G. -Y.; Wu, W. -Z. Hydrogenation of olefins using ligand-stabilized palladium nanoparticles in an ionic liquid. Chem.Commun. 2003, 1654-1655.
    [42] Fonseca, G. S.; Umpierre, A. P.; Fichtner, P. F. P.; Teixeira, S. R; Dupont, J. The use of imidazolium ionic liquids for the formation and stabilization of Ir0 and Rh0 nanoparticles: efficient catalysts for the hydrogenation of arenes. Chem. Eur. J. 2003, 9, 3263-3269.
    [43] Silveira, E. T.; Umpierre, A. P.; Rossi, L. M.; Machado, G.; Morais, J.; Soares, G. V.; Baumvol, I. J. R.; Teixeira, S. R; Fichtner, P. F. P.; Dupont, J. The partial hydrogenation of benzene to cyclohexene by nanoscale ruthenium catalysts in imidazolium ionic liquids. Chem. Eur. J. 2004, 10, 3734-3740.
    [44] Aiken, J. D. and Finke, R. G. A review of modern transition-metal nanoclusters: their synthesis, characterization, and applications in catalysis. J. Mol. Catal. A-Chem. 1999,145, 1-44.
    [45] Cotton, F. A.; Wilkinson, G. Advanced Inorganic Chemistry, Wiley, New York, 5th edn., 1988, ch. 6.
    [46] Hasan, M.; Kozhevnikov, I. V.; Siddiqui, M. R. H.; Steiner, A.; Winterton, N. Gold compounds as ionic liquids. Synthesis, structures, and thermal properties of N,N'-dialkylimidazolium tetrachloroaurate salts. Inorg. Chem. 1999,38,5637-5641.
    [47] Sitze, M. S.; Schreiter, E. R.; Patterson, E. V.; Freeman, R. G. Ionic liquids based on FeCl_3 and FeCl_2- Raman scattering and ab initio calculations. Inorg. Chem. 2001, 40, 2298-2304.
    [48] Hitchcock, P. B.; Seddon, K. R.; Welton, T. Hydrogen-bond acceptor abilities of tetrachlorometalate(II) complexes in ionic liquids. J. Chem. Soc.-Dalton Trans. 1993,17, 2639-2643.
    [49] Deetlefs, M.; Raubenheimer, H. G.; Esterhuysen, M. W. Stoichiometric and catalytic reactions of gold utilizing ionic liquids. Catal. Today 2002, 72, 29-41.
    [50] Zhao, Y.; Gao, S. -J.; Wang, J. -J.; Tang, J. -M. Aggregation of ionic liquids [C_nmim]Br (n = 4, 6, 8, 10, 12) in D_2O: a NMR study. J. Phys. Chem. B 2008,772,2031-2039.
    [1]Sturgeon,R.E.and Mester,Z.Analytical applications of volatile metal derivatives.Appl.Spectrosc.2002,56,202A-213A.
    [2]Sturgeon,R.E.;Liu,J.;Boyko,V.J.;Luong,V.T.Determination of copper in environmental matrices following vapor generation.Anal.Chem.1996,68,1883-1887.
    [3]Luna,A.S.;Sturgeon,R.E.;de Campos,R.C.Chemical vapor generation:atomic absorption by Ag,Au,Cu,and Zn following reduction of aquo ions with sodium tetrahydroborate(Ⅲ).Anal.Chem.2000,72,3523-3531.
    [4]Du,X.-G and Xu,S.-K.Flow-injection chemical vapor-generating procedure for the determination of Au by atomic absorption spectrometry.Fresenius J.Anal.Chem.2001,370,1065-1070.
    [5]Feng,Y.-L.;Lam,J.W.;Sturgeon,R.E.Expanding the scope of chemical vapor generation for noble and transition metals.Analyst 2001,126,1833-1837.
    [6]Pohl,P.and Zymicki,W.Study of chemical vapour generation of Au,Pd and Pt by inductively coupled plasma atomic emission spectrometry.J.Anal.At.Spectrom.2001,16,1442-1445.
    [7]Duan,X.-C.;McLaughlin,R.L.;Brindle,I.D.;Conn,A.Investigations into the generation of Ag,Au,Cd,Co,Cu,Ni,Sn and Zn by vapour generation and their determination by inductively coupled plasma atomic emission spectrometry,together with a mass spectrometric study of volatile species.Determination of Ag,Au,Co,Cu,Ni and Zn in iron.J.Anal At.Spectrom.2002,17,227-231.
    [8]Sun,H.-W.;Suo,R.;Lu,Y.-K.Determination of zinc in food using atomic fluorescence spectrometry by hydride generation from organized media.Anal.Chim.Acta 2002,457,305-310.
    [9]Sun,H.-W.and Suo,R.Enhancement reagents for simultaneous vapor generation of zinc and cadmium with intermittent flow system coupled to atomic fluorescence spectrometry.Anal.Chim.Acta 2004,509,71-76.
    [10] Moor, C; Lam, J. W. H.; Sturgeon, R. E. A novel introduction system for hydride generation-inductively coupled plasma mass spectrometry: determination of selenium in biological materials. J. Anal. At. Spectrom. 2000, 15, 143-149.
    [11] Ma, H. -B.; Fan, X. -E; Zhou, H. -Y.; Xu, S. -K. Preliminary studies on flow-injection in situ trapping of volatile species of gold in graphite furnace and atomic absorption spectrometric determination. Spectrochim. Acta, Part B 2003,55,33-41.
    [12] Matousek, T.; Dedina, J.; Vobecky, M. Continuous flow chemical vapour generation of silver for atomic absorption spectrometry using tetrahydroborate(III) reduction-system performance and assessment of the efficiency using instrumental neutron activation analysis. J. Anal. At. Spectrom. 2002,17,52-56.
    [13] Luna, A. S.; Pereira, H. B.; Takase, I.; Goncalves, R. A.; Sturgeon, R. E.; de Campos, R. C. Chemical vapor generation-electrothermal atomic absorption spectrometry: new perspectives. Spectrochim. Acta, Part B 2002, 57, 2047-2056.
    [14] Feng, Y. -L.; Sturgeon, R. E.; Lam, J. W. Chemical vapor generation characteristics of transition and noble metals reacting with tetrahydroborate(III). J. Anal. At. Spectrom. 2003,18, 1435-1442.
    [15] Feng, Y. -L.; Sturgeon, R. E.; Lam, J. W.; D'Ulivo A. Insights into the mechanism of chemical vapor generation of transition and noble metals. J. Anal. At. Spectrom. 2005, 20, 255-265.
    [16] Pohl, P. and Prusisz, B. Chemical vapor generation of noble metals for analytical spectrometry. Anal. Bioanal. Chem. 2007, 388, 753-762.
    [17] Pohl, P. Recent advances in chemical vapour generation via reaction with sodium tetrahydroborate. Trac-Trends Anal. Chem. 2004, 23, 21-27.
    [18] Vijan, P. N. Feasibility of determining ultratrace amounts of nickel by carbonyl generation and atomic absorption spectrometry. Atom. Spectrom. 1980, 1, 143-144.
    [19]Lee,D.S.Determination of nickel in seawater by carbonyl generation.Anal.Chem.1982,54,1182-1184.
    [20]Sturgeon,R.E.;Willie,S.N.;Berman,S.S.Graphite furnace atomic absorption spectrometric determination of nickel at sub-ng g~(-1) levels in marine samples by carbonyl generation with in situ pre-concentration.J.Anal At.Spectrom.1989,4,443-446.
    [21]Johansson,M.;Hansson,R.;Snell,J.;Frech,W.Determination of nickel using electrochemical reduction and carbonyl generation with in situ trapping electrothermal atomic absorption spectrometry.Analyst 1998,123,1223-1228.
    [22]Park,C.J.and Yim,S.A.Determination of nickel in water samples by isotope dilution inductively coupled plasma mass spectrometry with sample introduction by carbonyl vapor generation.J.Anal At.Spectrom.1999,14,1061-1065.
    [23]Docekal,B.;Marek,P.;Vobecky,M.Radiotracer investigation of nickel tetracarbonyl generation and in situ nickel deposition within a graphite furnace.J.Anal At.Spectrom.2000,15,131-135.
    [24]Guo,X.-M;Huang,B.-L;Sun,Z.-H;Ke,R.-Q.;Wang,Q.-Q.;Gong,Z.-B.Preliminary study on a vapor generation technique for nickel without using carbon monoxide by inductively coupled plasma atomic emission spectrometry.Spectrochim.Acta,Part B 2000,55,943-950.
    [25]Marrero,J.and Smichowski,P.Evaluation of vapor generation for the determination of nickel by inductively coupled plasma-atomic emission spectrometry.Anal Bioanal.Chem.2002,374,196-202.
    [26]Cerutti,S.;Moyano,S.;Marrero,J.;Smichowski,P.;Martinez,L.D.On-line preconcentration of nickel on activated carbon prior to its determination by vapor generation associated to inductively coupled plasma optical emission spectrometry.J.Anal At.Spectrom.2005,20,559-561.
    [27]Sun,H.-W.and Suo,R.Determination of ultra-trace amounts of nickel in environmental samples by atomic absorption spectrometry with in-situ trapping of volatile species in an iridium-palladium coated graphite furnace.Int.J. Environ.Anal Chem.2008,88,791-801.
    [28]Xu,S.-K.and Sturgeon,R.E.Flow injection chemical vapor generation of Au using a mixed reductant.Spectrochim.Acta,Part B 2005,60,101-107.
    [29]Li,Z.-X.Studies on the determination of trace amounts of gold by chemical vapour generation non-dispersive atomic fluorescence spectrometry.J.Anal At.Spectrom.2006,21,435-438.
    [30]Matousek,T.and Sturgeon,R.E.Surfactant assisted chemical vapour generation of silver for AAS and ICP-OES:a mechanistic study.J.Anal.At.Speetrom.2003,18,487-494..
    [31]周焕英、徐淑坤、方肇伦。流动注射蒸气发生原子吸收光谱测定痕量铜。光谱学与光谱分析2000,20,525-528.
    [32]Guo,X.-W.and Guo,X.-M.Studies on the reaction between cadmium and potassium rahydroborate in aqueous solution and its application in atomic fluorescence spectrometry.Anal Chim.Acta 1995,310,377-385.
    [33]Lu,Y.-K.;Sun,H.-W.;Yuan,C.-G.;Yan,X.-P.Simultaneous determination of trace cadmium and arsenic in biological samples by hydride generation-double channel atomic fluorescence spectrometry.Anal Chem.2002,74,1525-1529.
    [34]Zhang,C.;Li,Y.;Cui,X.-Y.;Jiang,Y.;Yan,X.-P.Room temperature ionic liquids enhanced chemical vapor generation of copper,silver and gold following reduction in acidified aqueous solution with KBH_4 for atomic fluorescence spectrometry.J.Anal At.Spectrom.2008,23,1372-1377.
    [35]Zhang,C.;Li,Y.;Wu,P.;Jiang,Y.;Liu,Q.;Yan,X.-P.Effects of Room-temperature ionic liquids on the chemical vapor generation of gold:mechanism and analytical application.Anal.Chim.Acta 2009,doi:10.1016/j.aca.2009.02.028.
    [36]D'Ulivo,A.Chemical vapor generation by tetrahydroborate(Ⅲ) and other borane complexes in aqueous media A critical discussion of fundamental processes and mechanisms involved in reagent decomposition and hydride formation.Spectrochim Acta,Part B 2004,59,793-825.
    [37]D'Ulivo,A.;Baiocchi,C.;Pitzalis,E.;Onor,M.;Zamboni,R.Chemical vapor generation for atomic spectrometry.A contribution to the comprehension of reaction mechanisms in the generation of volatile hydrides using borane complexes.Spectrochim.Acta,Part B 2004,59,471-486.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700