用户名: 密码: 验证码:
蔗髓改性制备重金属离子吸附材料及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重金属污染形势越来越严峻。据调查统计,目前我国五分之一的耕地面积不同程度上受到镉、砷、铅、铬等重金属的污染。有些重金属通过植物吸收富集,然后进入食物链,导致动物致残、致疾、致畸,甚至死亡,直接影响人类或其他动物的健康安全。目前,重金属的处理方法有很多,如膜分离法、化学沉淀法、离子交换法等,比较各种重金属处理方法,其中吸附法更方便有效,尤其是可再生的生物资源吸附材料有更大的发展前景。
     此外,甘蔗是我国主要的糖料作物之一,广西蔗糖产量占我国糖产量的60%以上。甘蔗渣已经成为广西制浆造纸工业的重要原料。然而,占甘蔗质量30%-35%的蔗髓,成为制糖、造纸工业的废弃物,且产生量巨大。目前,蔗髓的利用率极低,大多被焚烧掉。因此,蔗髓生物质资源的合理有效利用,可以大大提高制糖、造纸工业废弃物的附加值,使其具有更大的发展空间。
     本研究采用化学方法对蔗髓进行改性,制备重金属离子的吸附材料,从蔗髓的主要成分纤维素、木素两方面对蔗髓在改性过程中的化学反应机理进行探讨,并对改性蔗髓的吸附重金属离子的机理进行研究。主要研究内容和结果如下:
     经过环氧氯丙烷对碱预处理、高碘酸钠氧化处理的蔗髓进行交联醚化,然后利用二乙烯三胺、甲醛在碱性条件下胺化改性,并探讨了改性后蔗髓对重金属的吸附性能。利用傅立叶红外光谱仪、扫描电子显微镜对改性前后蔗髓进行表征分析。结果发现,蔗髓改性的最佳工艺为:环氧化改性的反应温度为30℃,环氧氯丙烷加入量为20mL,反应时间为3.5h。胺化改性反应时间为3h,反应温度为30℃,甲醛和二乙烯三胺的加入量为7ml和5ml。红外分析表明,改性后的蔗髓出现C-N、C-N、N-H的特征振动峰。SEM对改性前后的表面结构分析,发现改性后的纤维表面存在许多卷曲、碎片。利用改性后的蔗髓对重金属离子Cu(Ⅱ)、Pb(Ⅱ)进行吸附研究,在pH=6.5,离子浓度为150mg/L,吸附时间为60min,对Cu、Pb的吸附量分别可以达到62.75mg/g和46.32mg/g,高于改性前蔗髓对Cu、Pb的吸附量8.25mg/g和17.85mg/g。
     经过分离蔗髓中的纤维素、木素,探讨蔗髓纤维素、木素的改性工艺和吸附效果,并利用傅立叶红外分析仪、X射线衍射仪、扫描电子显微镜等分析手段,寻找蔗髓中纤维、木素在蔗髓改性及重金属吸附中的作用。实验结果表明,蔗髓纤维改性的环氧化和胺化最佳工艺与蔗髓改性的相近,说明蔗髓的改性与蔗髓中的纤维有很大的关系。木素环氧化改性和胺化改性,其最佳工艺与蔗髓改性的最优条件有所差异。改性后木素的傅立叶红外光谱分析表明,在改性过程中,木素中引入了环氧基、胺基和羰基。因此,说明蔗髓中木素参与蔗髓改性,但对蔗髓改性起到辅助作用。改性后的纤维、木素对Cu(Ⅱ)、Pb(Ⅱ)的吸附表明,蔗髓中纤维素的改性对Pb(Ⅱ)的吸附有很大的贡献,而蔗髓中的木素对Cu(Ⅱ)的吸附有贡献。
     此外,基于纤维素的氧化和降解反应,建立了高碘酸钠氧化纤维氧化降解动力学方程,并引入损失单位纤维产生的醛基量的参数R对氧化程度进行评价。其中高碘酸钠氧化纤维的醛基产生动力学方程为[DGlc]=Co(C1-exp(-α1K1t))-α3K3t,高碘酸钠氧化降解纤维的动力学方程为[L]=(a2K2+α3K3)t,其中K1、K2、K3均为动力学参数。引入参数R来评价氧化反应,其表达式为R=[DGlc]/[L]=MbmDGlc/MamL=MB/Aa·F/L·(1-L)。用建立的模型对实验结果进行拟合分析,结果表明,实验数据与动力学模型间有很好的拟合效果,因此利用其对高碘酸钠氧化纤维进行描述。分析表明高碘酸钠浓度的变化对纤维的降解速率影响较小,而升高温度在加快纤维上醛基的产生的同时,也加速了纤维的降解。
     运用量子化学理论,对纤维素、木素的结构单元进行计算,探讨其反应活性和在改性中反应历程。在DFT B3LYP/6-31G基组下,对环氧氯丙烷、纤维素的葡萄糖三糖单元、木素的结构单元进行量子化优化计算,分别对其电荷分布、电子能级轨道进行分析,并利用核磁共振对其结构进行分析推测。结果表明,纤维素的反应活性基团主要分布在分子链中的葡萄糖基单元上的C2、C3和C6位的羟基上。木素的结构单元的酚羟基具有很高的反应活性,容易受到亲核试剂进攻,且反应活性顺序为:紫丁香基苯丙烷的酚羟基>愈创木酚基丙烷酚羟基。对羟苯基丙烷和愈创木酚基丙烷的酚羟基邻位C上分布的电荷在-0.15eV和-0.16eV之间,对H的束缚较弱,因此,在甲醛的质子化作用下,使木素单元上活泼氢脱除。
     改性蔗髓吸附机理的研究,主要从吸附动力学模型的拟合、吸附控制模型的拟合及吸附前后傅立叶红外光谱分析三方面进行探讨。结果发现,准一级模型和准二级吸附模型都可以较好的描述对改性后的蔗髓、蔗髓纤维素和木素对重金属Cu(Ⅱ)、Pb(Ⅱ)吸附过程。Webber扩散控制模型可以分两个阶段描述吸附过程;粒子外扩散模型可以较好描述吸附初始阶段,粒子内扩散控制模型对实验结果的拟合效果较差。
     为了探讨改性蔗髓对重金属离子吸附的活性位点,实验对改性纤维和木素吸附重金属离子前后的红外光谱变化进行了分析,考察吸附重金属前后各官能团振动变化。实验结果表明:改性后的纤维中的NH2与0H或醚键中的C-0-C参与了重金属离子的吸附;改性木素中的酚羟基、胺基对重金属离子吸附也有一定的贡献。
Nowadays, heavy metal ions pollution is a serious problem in China. It was investigated that1/5of farmland were polluted by Cd, As, Pb and Cr, et. al. Some heavy metal moved into the food chain, which would lead the disease, disability and deformity, or even death of animals or human beings. There are several methods for heavy metal ions removal, such as membrane separation, chemical precipitation, ion-exchange and so on. However, adsorption is the most convenient and effective method. Especially, the biomass absorbents, as environment friendly and renewable resources, have great potential.
     Sugar cane is one of the main sugar crops,60%of sucrose output in China was produced from sugar cane in Guangxi. Thus, bagasse is the most abundant raw material for pulping and papermaking industry in Guangxi. However,30%-35%(w/w) of bagasse is pith, which is the main waste with high-volume from papermaking and sugaring industry. Therefore, the reasonable and effective utilization of pith, improving its added value, would have more development.
     The study is on the preparation of absorbent by chemical modifing bagasse pith and its adsorption property for heavy metal ions removal from aqueous solution. The mechanism of the reaction was discussed based on the main components of pith, cellulose and lignin. The adsorption dynamics models were also used to description the heavy metal adsorption process. The main contents and results were shown as followings.
     The bagasse pith, after being pretreated by alkali and periodate, was reacted with epoxy chloropropane, and then with diethylenetriamine and formaldehyde. The products were used to remove the heavy metal ions from aqueous sigle metal solution. Fourier transform infrared spectroscopy (FTIR) and scanning electronic microscope (SEM) were used to characterize the modified pith. The optimal conditions were30℃, epoxy chloropropane20ml, reaction time3.5h for epoxyl modification and30℃, formaldehyde7ml, diethylenetriamine5ml, reaction time3h for aminated modification. FTIR spectra showed that the stretching peaks of C=N、 C-N、N-H exist in the modified bagasse pith, and some curled fragments adhered on the surface of modified pith charactorized by SEM. The adsorption capbility of metal ions Cu(II) and Pb(Ⅱ) was62.75mg/g and46.32mg/g for modified pith, respectively, compared to8.25mg/g and17.85mg/g for pith, at the pH6.5, ion concentration150mg/L and contact60min.
     To study the actions of bagasse pith in the processes of modification and adsorption, the main components, cellulose and lignin, were seperated. They were modified by the method for pith modification, and their adsorption properties were investigated, by FTIR, X-ray and SEM were the main analysis approaches for their characterization. As the results shown, the cellulose in pith played an important role in modification of pith under the similar optimal coditions. However, the lignin in the pith may play a supporting role, as the differences existed in the optimal factors for modification, though the epoxy group, amido group and carbonyl group were introduced. The study on their heavy metal adsorption capbility suggested that the cellulose and lignin made some contribution to adsorption of Pb(II) and Cu(II) for modified pith.
     Furthermore, based on the generation of aldehyde generation and cellulose degradation in periodate oxidizing cellulose, the selectly oxidation kinetics model was constructed, and a variable factor R (the ratio of aldehyde content to the degradation of cellulose fiber) was introduced to evalue the oxidation levels. The kinetics model was as [DGic]=C0(C1-exp(-a,K,t)-a3K3t for oxidation and [L]=(a2K2+asK3)t for degradation. In the equations, K1, K2and K3were the parameters. The equation for evaluation index R was as R=[DGlc]/[L]=MbmDGlc/MamL=Mb/Ma·F/L·(1-L).The experimental data were fitted by the models, and the results shown that there was a better correlation between the dynamic model and the experimental data. Thus, the oxidation degree of bagasse fiber oxidized by periodate can be quantitative evaluated based on this model. The interpretation of results suggested that the yield and aldehyde content of the2,3-dialdehyde cellulose fiber could be controled by the reaction time and temperature at the same concentration level of periodate.
     In order to study the modification mechanism of pith, the quantized structures of cellulose unit and lignin unit were calculate by quantum chemistry software based on DFT B3LYP/6-31G, and the nuclear magnetic resonance (13C-NMR) of possible structures were discussed. The results showed that the hydroxyl groups on C2, C3and C6of cellulose unit were the sites with high reaction activity. Lignin could be attacked by nucleophile, and the syringyl lignin unit is easier than guajacyl lignin unit. The charges on the hydroxy-ortho carbon of hydroxy-phenyl lignin unit and guajacyl lignin unit were between-0.15eV and-0.16eV, which meant weak chemical bonding between hydrogens and carbons. Therefore, the active hydrogen would be easly removed under the protonation of formaldehyde.
     The adsorption dynamics models and control models were also used to describe the heavy metal adsorption process, and FTIR spectroscopy was used to study the active sites for heavy-metal adsorption. The results showed that the Pb(Ⅱ) and Cu(Ⅱ) ions adsorption can be well described by both Pseudo-first-order model and Pseudo-second-order model. Webber model could describe the adsoption process by two stages, and diffusion was found to be the rate-limiting step atinitial stage, but the approach equilibrium point the diffusion model could not fitted well.
     Aimed to discusse the active site, the FTIR spectroscopy of lignin and cellulose before and after adsorption. The results suggested that the sites for adsorption were related to hydroxyl and amido groups.
引文
[1]. 徐良将,张明礼,杨浩,土壤重金属镉污染的生物修复技术研究进展[J].南京师大学报:自然科学版,2011-05-30,2011,34(1),pp 102-106.
    [2]. 陈守莉,王平祖,秦明周,等.太湖流域典型湖泊沉积物中重金属污染的分布特征[J].江苏农业学报,2007,(02),pp 124-130.
    [3]. 唐将.三峡库区镉等重金属元素迁移富集及转化规律[D].博士,成都理工大学2005.
    [4]. 李佳宣,施泽明,郑林,等.沱江流域水系沉积物重金属的潜在生态风险评价[J].地球与环境,2010,(04),pp 481-487.
    [5]. 宋昊,施泽明,倪师军,等.四川省绵远河水系重金属物源探讨及环境质量评价[J].地球与环境,2011,(04),pp 543-550.
    [6]. 丁振华,贾洪武,刘彩娥,等.黄浦江沉积物重金属的污染及评价[J].环境科学与技术,2006,(02),pp 64-66+119.
    [7]. 夏福兴,吴欣然,陈邦林,等.黄浦江上游沉积物中重金属污染研究[J].华东师范大学学报(自然科学版),1988,(01),pp 80-86.
    [8]. 雷凯.渭河西安段水体及水系沉积物重金属环境地球化学研究[D].硕士,陕西师范大学2008.
    [9]. 韩托,王兰,颜涛,等.沁河流域溪蟹生态调查及其对重金属的积累[A],中国海洋湖沼学会第九次全国会员代表大会暨学术研讨会[C],中国上海,2007;p 97.
    [10].程凤鸣.南四湖水环境污染特征及其重金属离子去除机理研究[D].博士,山东大学2010.
    [11].罗斌,刘玲,张金良,等.淮河干流沉积物中重金属含量及分布特征[J].环境与健康杂志,2010,(12),pp 1122-1127.
    [12]. 陈孝杨.淮河流域安徽段水系沉积物中重金属的污染特征研究[D].硕士,安徽理工大学2007.
    [13]. 闵育顺,祁士华,张干,珠江广州河段重金属元素的高分辨沉积记录[J].科学通报,2000,(S1),pp 2802-2805.
    [14]. 李小晖,钟嶷,刘世强,等.珠江广州河段底泥中重金属污染状况分析[J].热带医学杂志,2009,(07),pp 833-834+828.
    [15]. 李振平,张秦安,桂林水系沉积物中重金属的生物有效性研究[J].生态环境,2007,(03),pp 744-747.
    [16]. 陈志强,张海生,刘小涯,三亚湾和榆林湾海水溶解态Cu、Pb、Zn、Cd、Cr的分布[J].海洋环境科学,1999,(02),pp 31-37.
    [17]. 马前,张小龙,国内外重金属废水处理新技术的研究进展[J].环境工程学报,2007,(07),pp 10-14.
    [18].鲁栋梁,夏璐,重金属废水处理方法与进展[J].化工技术与开发,2008,(12),pp32-36.
    [19]. Houle, P. C, REVERSE OSMOSIS FOR THE REMOVAL OF HEAVY METALS FROM WASTE WATER:PRELIMINARY RESULTS[J].1973, pp 159-177.
    [20]. Guha, A. K.,Yun, C. H.,Basu, R., etc., Heavy metal removal and recovery by contained liquid membrane permeator[J]. AIChE Journal,1994,40 (7),pp 1223-1237.
    [21]. Murthy, Z. V. P.,Chaudhari, L. B., Separation of binary heavy metals from aqueous solutions by nanofiltration and characterization of the membrane using Spiegler-Kedem model[J]. Chemical Engineering Journal,2009,150 (1),pp 181-187.
    [22].钱军,郭素娟,电渗析法净化处理含铬电镀废水的研究[J].环境科学,1981,(02),pp16-21.
    [23].潘海伦,俞德金,新型的反渗透膜处理电镀废水[J].电镀与环保,1985,(04),pp58-59.
    [24]. 杨兴涛,王志,樊智锋,等.纳滤处理模拟电镀废水[J].膜科学与技术,2007,(04),pp74-79.
    [25].周绍箕,化学吸附纤维制备、性能及应用研究进展[J].离子交换与吸附,2004,(03),pp 278-288.
    [26].李红艳,李亚新,李尚明,离子交换技术在重金属工业废水处理中的应用[J].水处理技术,2008,(02),pp 12-15+20.
    [27].杨永峰,张志,刘子凤,离子交换法处理重金属矿山地下水的试验研究[J].工程建设与设计,2004,(08),pp 56-58.
    [28].杨磊,刘生利,宋康丽,等.江蓠藻渣及其膳食纤维对Pb~(2+)和Cd~(2+)吸附研究[J].渔业现代化,2011,(03),pp 1-5+69.
    [29].张亚楠.绿色巴夫藻的重金属胁迫效应及吸附能力的研究[D].硕士,暨南大学2003.
    [30]. 李昊翔.螺旋藻对重金属的耐受性和吸附研究[D].硕士,浙江大学2005.
    [31].邓莉萍.藻体对水环境中N、P及重金属Cu~(2+)、Pb~(2+)、Cd~(2+)Cr~(6+)的吸附特征研究[D].博士,中国科学院研究生院(海洋研究所)2008.
    [32]. Chen, S.,Shen, W.,Yu, F., etc., Preparation of amidoximated bacterial cellulose and its adsorption mechanism for Cu2+ and Pb2+[J]. Journal of Applied Polymer Science, 2010,117 (1),pp 8-15.
    [33]. Burba, P.,Schaefer, W., Atomic-absorption determination (flame AAS) of heavy metals in bacterial leach liquors (Jarosite) after their analytical separation on cellulose[J]. Erzmetall:Journal for Exploration, Mining and Metallurgy,1981,34 (11),pp 582-587.
    [34]. Zhu, H.,Jia, S.,Wan, T., etc., Biosynthesis of spherical Fe3O4/bacterial cellulose nanocomposites as adsorbents for heavy metal ions[J]. Carbohydrate Polymers,2011, 86 (4),pp 1558-1564.
    [35].林雁冰.金属矿区及污水灌溉区抗重金属放线菌的筛选及吸附机理研究[D].博士,西北农林科技大学2010.
    [36].胡西城,何增耀,生物浓缩的机理与模型[J].环境科学丛刊,1989,(04),pp 14-23.
    [37]. Levin, R. L.,Cravalho, E. G.,Huggins, C. E., Concetration polarization of solutes within biological cells[J]. American Society of Mechanical Engineers (Paper),1976, (76/WA-Bio-4).
    [38]. Blumenfeld, L. A., Parametric resonance model for the action of biologically active substances in extra-low concentrations at cell and sub-cell levels[J]. Biofizika,1993, 38(1),pp 129-129.
    [39]. Wang, J.,Chen, C., Biosorption of heavy metals by Saccharomyces cerevisiae:A review[J]. Biotechnology Advances,2006,24 (5),pp 427-451.
    [40].黄君涛,熊帆,谢伟立,等.吸附法处理重金属废水研究进展[J].水处理技术,2006,(02),pp 9-12.
    [41]. 陈毅华,穆伊舟,温慧娜,PAA-硅胶净水剂对重金属的吸附性能研究[J].北京工业大学学报,2006,(01),pp 67-71.
    [42]. Song, J.,Oh, H.,Kong, H., etc., Polyrhodanine modified anodic aluminum oxide membrane for heavy metal ions removal[J]. Journal of Hazardous Materials,2011,187 (1-3),pp 311-317.
    [43]. Kula, I.,Ugurlu, M.,Karaoglu, H., etc., Adsorption of Cd(Ⅱ) ions from aqueous solutions using activated carbon prepared from olive stone by ZnCl2 activation[J]. Bioresource Technology,2008,99 (3),pp 492-501.
    [44]. Anoop Krishnan, K.,Anirudhan, T. S., Removal of mercury(Ⅱ) from aqueous solutions and chlor-alkali industry effluent by steam activated and sulphurised activated carbons prepared from bagasse pith:kinetics and equilibrium studies[J]. Journal of Hazardous Materials,2002,92 (2),pp 161-183.
    [45]. Amin, N. K., Removal of reactive dye from aqueous solutions by adsorption onto activated carbons prepared from sugarcane bagasse pith[J]. Desalination,2008,223 (Compendex),pp 152-161.
    [46]. Zhang, Y.,Zhou, C.,Wang, X., etc., Characterization of amino functionalized HMS mesoporous molecular sieve and its adsorption performance of heavy metal ions[J]. Shiyou Xuebao, Shiyou Jiagong/Acta Petrolei Sinica (Petroleum Processing Section), 2010,26 (3),pp 376-381.
    [47]. Mercier, L.,Pinnavaia, T. J., Heavy metal ion adsorbents formed by the grafting of a thiol functionality to mesoporous silica molecular sieves:Factors affecting Hg(Ⅱ) uptake[J]. Environmental Science and Technology,1998,32 (18),pp 2749-2754.
    [48].郑刘春.玉米秸秆及其纤维素的改性和吸附水体镉离子的机理研究[D].博士,华南理工大学2011.
    [49]. Sciban, M.,Klasnja, M., Study of the adsorption of copper(Ⅱ) ions from water onto wood sawdust, pulp and lignin[J]. Adsorption Science and Technology,2004,22 (3),pp 195-206.
    [50]. Argun, M. E.,Dursun, S.,Ozdemir, C., etc., Heavy metal adsorption by modified oak sawdust:Thermodynamics and kinetics[J]. Journal of Hazardous Materials,2007,141 (1),pp 77-85.
    [51]. Adhikari, C. R.,Parajuli, D.,Inoue, K., etc., Pre-concentration and separation of heavy metal ions by chemically modified waste paper gel[J]. Chemosphere,2008,72 (2),pp 182-188.
    [52]. Hsu, F.-L.,Peng, Y.-C.,Lee, H.-L., Removal of heavy metal ions from aqueous solutions by bamboo wastes[J]. Taiwan Journal of Forest Science,2009,24 (3),pp 159-168.
    [53]. Pino, G. H.,De Mesquita, L. M. S.,Torem, M. L., etc., Biosorption of heavy metals by powder of green coconut shell[J]. Separation Science and Technology,2006,41 (14),pp 3141-3153.
    [54]. de Sousa, D. A.,de Oliveira, E.,da Costa Nogueira, M., etc., Development of a heavy metal sorption system through the P=S functionalization of coconut (Cocos nucifera) fibers[J]. Bioresource Technology,2010,101(1),pp 138-143.
    [55]. Anirudhan, T. S.,Unnithan, M. R.,Divya, L., etc., Synthesis and characterization of polyacrylamide-grafted coconut coir pith having carboxylate functional group and adsorption ability for heavy metal ions[J]. Journal of Applied Polymer Science,2007, 104 (6),pp 3670-3681.
    [56]. Lopez, E.,Soto, B.,Arias, M., etc., Adsorbent properties of red mud and its use for wastewater treatment[J]. Water Research,1998,32 (4),pp 1314-1322.
    [57]. Kilic, M.,Keskin, M. E.,Mazlum, S., etc., Hg(Ⅱ) and Pb(Ⅱ) adsorption on activated sludge biomass:Effective biosorption mechanism[J]. International Journal of Mineral Processing,2008,87 (1-2),pp 1-8.
    [58]. Lopez-Delgado, A.,Perez, C.,Lopez, F. A., Sorption of heavy metals on blast furnace sludge[J]. Water Research,1998,32 (4),pp 989-996.
    [59]. Dimitrova, S. V.,Mehandgiev, D. R., Lead removal from aqueous solutions by granulated blast-furnace slag[J]. Water Research,1998,32 (11),pp 3289-3292.
    [60]. Abia, A. A.,Asuquo, E. D., Kinetics of Cd2+ and Cr3* Sorption from Aqueous Solutions Using Mercaptoacetic Acid Modified and Unmodified Oil Palm Fruit Fibre(Elaeis guineensis) Adsorbents[J]. Tsinghua Science and Technology,2007,12 (4),pp 485-492.
    [61]. Albadarin, A. B.,Al-Muhtaseb, A. a. H.,Walker, G. M., etc., Retention of toxic chromium from aqueous phase by H3PO4- activated lignin:Effect of salts and desorption studies[J]. Desalination,2011,274 (1-3),pp 64-73.
    [62]. Ucer, A.,Uyanik, A.,Cay, S., etc., Immobilisation of tannic acid onto activated carbon to improve Fe(III) adsorption[J]. Separation and Purification Technology,2005,44 (1),PP 11-17.
    [63]. Wang, L.,Liu, X.,Zhu, H., etc. Study on the effect of carboxyl bagasse hemicellulose on heavy metal adsorption[A], In 2nd International Conference on Advances in Materials and Manufacturing Processes, ICAMMP 2011, December 16,2011 December 18,2011[C], Guilin, China,2012; pp 1630-1636.
    [64]. Wang, L.,Liu, X.,Weng, M., etc. Study on the effect of amphoteric bagasse hemicellulose on heavy metal adsorption[A], In 2011 International Conference on Chemical, Material and Metallurgical Engineering, ICCMME 2011, December 23, 2011-December 25,2011[C], Beihai, China,2012; pp 1282-1288.
    [65]. Hu, G.,Huang, S.,Chen, H., etc., Binding of four heavy metals to hemicelluloses from rice bran[J]. Food Research International,2010,43 (1),pp 203-206.
    [66]. O'Connell, D. W.,Birkinshaw, C.,O'Dwyer, T. F., Heavy metal adsorbents prepared from the modification of cellulose:A review[J]. Bioresource Technology,2008,99 (15),pp 6709-6724.
    [67]. Wan Ngah, W. S.,Hanafiah, M. A. K. M., Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents:A review[J]. Bioresource Technology,2008,99 (10),pp 3935-3948.
    [68]. 胡福增,陈国荣,杜永娟,材料表界面[M].华东理工大学出版社:2001.
    [69].沈钟,王果庭,胶体与表面化学[M].化学工业出版社:1991.
    [70]. 莫岚,陈洁,宋静,等.海藻酸纤维对铜离子的吸附性能[J].合成纤维,2009,(02),pp34-36.
    [71]. 成芳芳.海藻酸纤维对重金属离子的吸附性能研究[D].硕士,青岛大学2010.
    [72]. 陈静.纤维堆囊菌胞外多糖的改性及对重金属离子吸附的研究[D].硕士,南京理工大学2006.
    [73].覃勇荣,陈燕师,刘旭辉,等.土壤重金属污染背景下的任豆修复试验[J].农业环境科学学报,2010,(02),pp282-287.
    [74].陈俊,王敦球,张学洪,等.李氏禾修复重金属(Cr Cu Ni)污染水体的潜力研究[J].农业环境科学学报,2008,(04),pp1514-1518.
    [75]. Demirbas, A., Heavy metal adsorption onto agro-based waste materials:A review[J]. Journal of Hazardous Materials,2008,157 (2-3),pp 220-229.
    [76]. Kapoor, A.,Viraraghavan, T., Heavy metal biosorption sites in Aspergillus niger[J]. Bioresource Technology,1997,61 (3),pp 221-227.
    [77]. Esposito, A.,Pagnanelli, F.,Lodi, A., etc., Biosorption of heavy metals by Sphaerotilus natans:An equilibrium study at different pH and biomass concentrations[J]. Hydrometallurgy,2001,60 (2),pp 129-141.
    [78]. Terry, P. A.,Stone, W., Biosorption of cadmium and copper contaminated water by Scenedesmus abundans[J]. Chemosphere,2002,47 (3),pp 249-255.
    [79]. Areco, M. M.,Dos Santos Afonso, M., Copper, zinc, cadmium and lead biosorption by Gymnogongrus torulosus. Thermodynamics and kinetics studies[J]. Colloids and Surfaces B:Biointerfaces,2010,81 (2),pp 620-628.
    [80]. Mata, Y. N.,Blazquez, M. L.,Ballester, A., etc., Characterization of the biosorption of cadmium, lead and copper with the brown alga Fucus vesiculosus[J]. Journal of Hazardous Materials,2008,158 (2-3),pp 316-323.
    [81]. Kang, D. W.,Choi, H. R.,Kweon, D. K., Stability constants of amidoximated chitosan-g-poly(acrylonitrile) copolymer for heavy metal ions[J]. Journal of Applied Polymer Science,1999,73 (4),pp 469-476.
    [82]. Cao, J.,Tan, Y.,Che, Y., etc., Novel complex gel beads composed of hydrolyzed polyacrylamide and chitosan:An effective adsorbent for the removal of heavy metal from aqueous solution[J]. Bioresource Technology,2010,101 (7),pp 2558-2561.
    [83].罗道成,易平贵,刘俊峰,等.改性壳聚糖对电镀废水中重金属离子的吸附[J].材料保护,2002,(01),pp11-12.
    [84].汪玉庭,程格,朱海,等.交联壳聚糖对重金属离子的吸附性能研究[J].环境污染与防治,1998,(01),pp1-3.
    [85]. Lianzhi;, F. W. L. B. C. H. Z. W. L. S. C., Fibrous adsorbent containing amidoxime and carboxyl groups and adsorption of uranium [J]. Acta Oceanologica Sinica,1988, (01),pp 74-81.
    [86]. Kiani, G. R.,Sheikhloie, H.,Arsalani, N., Heavy metal ion removal from aqueous solutions by functionalized polyacrylonitrile[J]. Desalination,2011,269 (1-3),pp 266-270.
    [87].马年方.含胺基螯合纤维的制备及其对重金属离子的吸附[D].博士,中山大学2010.
    [88].董永春,武金娜,孙苏婷,等.偕胺肟改性聚丙烯腈纤维与不同金属离子之间的配位反应性能[J].四川大学学报(工程科学版),2011,(01),pp173-178.
    [89]. Neghlani, P. K.,Rafizadeh, M.,Taromi, F. A., Preparation of aminated-polyacrylonitrile nanofiber membranes for the adsorption of metal ions: Comparison with microfibers[J]. Journal of Hazardous Materials,2011,186 (1),pp 182-189.
    [90].刘细莲,林日嘉,陈水挟蔗渣基阴离子交换纤维的制备及其对糖液的脱色应用研究[A],In中国湖南长沙,2010.
    [91]. 陈远芳,杨联敏,何敏,等.含氮_硫蔗渣纤维素吸附剂的制备及其吸附性能[J].化工技术与开发,2006,2006,9(35)pp 1-4.
    [92].杨淑蕙,植物纤维化学(第三版)[M].中国轻工业出版社:2005.
    [93]. Demirbas, A., Adsorption of lead and cadmium ions in aqueous solutions onto modified lignin from alkali glycerol delignication[J]. Journal of Hazardous Materials, 2004,109 (1),pp 221-226.
    [94]. Srivastava, S. K.,Singh, A. K.,Sharma, A., Studies on the uptake of lead and zinc by lignin obtained from black liquor-a paper industry waste material [J]. Environmental Technology,1994/04/01,1994,15 (4),pp 353-361.
    [95]. Malhas, A. N.,Abuknesha, R. A.,Price, R. G., Removal of detergents from protein extracts using activated charcoal prior to immunological analysis[J]. Journal of Immunological Methods,2002,264 (1-2),pp 37-43.
    [96]. Crist, R. H.,Martin, J. R.,Crist, D. R., Heavy metal uptake by lignin:Comparison of biotic ligand models with an ion-exchange process[J]. Environmental Science and Technology,2002,36 (7),pp 1485-1490.
    [97]. Crist, D. R.,Crist, R. H.,Martin, J. R. A new process for toxic metal uptake by a kraft lignin[A], In 2003; pp 199-202.
    [98]. Dizhbite, T.,Zakis, G.,Kizima, A., etc., Lignin — a useful bioresource for the production of sorption-active materials[J]. Bioresource Technology,1999,67 (3),pp 221-228.
    [99]. Mohan, S. V.,Karthikeyan, J., Removal of lignin and tannin colour from aqueous solution by adsorption onto activated charcoal[J]. Environmental Pollution,1997,97 (1-2),pp 183-187.
    [100]. Basso, M. C.,Cerrella, E. G.,Cukierman, A. L., Cadmium Uptake by Lignocellulosic Materials:Effect of Lignin Content[J]. Separation Science and Technology,2004,39 (5),pp 1163-1175.
    [101]. Bailey, S. E.,Olin, T. J.,Bricka, R. M., etc., A review of potentially low-cost sorbents for heavy metals[J]. Water Research,1999,33 (11),pp 2469-2479.
    [102]. Lalvani, S. B.Jiubner, A.,Wiltowski, T. S., Chromium adsorption by lignin[J]. Energy Sources,2000,22 (1),pp 45-56.
    [103]. Lavarack, B. P., Chemically activated carbons from sugar cane bagasse fractions[J]. Hungarian Journal of Industrial Chemistry,1997,25 (Compendex),pp 157-160.
    [104]. Namasivayam, C.,Kadirvelu, K., Uptake of mercury (Ⅱ) from wastewater by activated carbon from an unwanted agricultural solid by-product:Coirpith[J]. Carbon,1999,37 (1),pp 79-84.
    [105]. Krishnan, K. A.,Anirudhan, T. S., Uptake of heavy metals in batch systems by sulfurized steam activated carbon prepared from sugarcane bagasse pith[J]. Industrial and Engineering Chemistry Research,2002,41 (Compendex),pp 5085-5093.
    [106]. Krishnan, K. A.,Anirudhan, T. S., Removal of cadmium(II) from aqueous solutions by steam-activated sulphurised carbon prepared from sugar-cane bagasse pith:Kinetics and equilibrium studies[J]. Water SA,2003,29 (Compendex),pp 147-156.
    [107]. Mohanty, K.,Jha, M.,Meikap, B. C., etc., Removal of chromium (VI) from dilute aqueous solutions by activated carbon developed from Terminalia arjuna nuts activated with zinc chloride[J]. Chemical Engineering Science,2005,60 (11),pp 3049-3059.
    [108].何尧军,单胜道,张仁桥,循环型农业建设[M].研究出版社:2007.
    [109].刘传富,张爱萍,孙润仓,等.农林废弃物用作重金属离子吸附剂的研究进展[J].林产工业,2007,(05),pp 6-9.
    [110]. Kumar, U.,Bandyopadhyay, M., Sorption of cadmium from aqueous solution using pretreated rice husk[J]. Bioresource Technology,2006,97 (1),pp 104-109.
    [111]. Wong, K. K.,Lee, C. K.,Low, K. S., etc., Removal of Cu and Pb from electroplating wastewater using tartaric acid modified rice husk[J]. Process Biochemistry,2003,39 (4),pp 437-445.
    [112]. Memon, S. Q.,Memon, N.,Shah, S. W., etc., Sawdust-A green and economical sorbent for the removal of cadmium (Ⅱ) ions[J]. Journal of Hazardous Materials,2007,139 (1),pp 116-121.
    [113]. Baral, S. S.,Das, S. N.,Rath, P., Hexavalent chromium removal from aqueous solution by adsorption on treated sawdust[J]. Biochemical Engineering Journal,2006,31 (3),pp 216-222.
    [114]. Acar, F. N.,Eren, Z., Removal of Cu(Ⅱ) ions by activated poplar sawdust (Samsun Clone) from aqueous solutions[J]. Journal of Hazardous Materials,2006,137 (2),pp 909-914.
    [115]. ciban, M.,Klanja, M.,krbic, B., Modified softwood sawdust as adsorbent of heavy metal ions from water[J]. Journal of Hazardous Materials,2006,136 (2),pp 266-271.
    [116]. Taty-Costodes, V. C.,Fauduet, H.,Porte, C., etc., Removal of Cd(Ⅱ) and Pb(Ⅱ) ions, from aqueous solutions, by adsorption onto sawdust of Pinus sylvestris[J]. Journal of Hazardous Materials,2003,105 (1-3),pp 121-142.
    [117]. Shukla, S. R.,Pai, R. S., Adsorption of Cu(Ⅱ), Ni(Ⅱ) and Zn(Ⅱ) on dye loaded groundnut shells and sawdust[J]. Separation and Purification Technology,2005,43 (1),pp 1-8.
    [118]. Li, Q.,Zhai, J.,Zhang, W., etc., Kinetic studies of adsorption of Pb(Ⅱ), Cr(Ⅲ) and Cu(Ⅱ) from aqueous solution by sawdust and modified peanut husk[J]. Journal of Hazardous Materials,2007,141 (1),pp 163-167.
    [119]. Dubey, S. P.,Gopal, K., Adsorption of chromium(VI) on low cost adsorbents derived from agricultural waste material:A comparative study[J]. Journal of Hazardous Materials,2007,145 (3),pp 465-470.
    [120]. Horsfall Jr, M.,Abia, A. A.,Spiff, A. I., Kinetic studies on the adsorption of Cd2+, Cu2+ and Zn2+ions from aqueous solutions by cassava (Manihot sculenta Cranz) tuber bark waste[J]. Bioresource Technology,2006,97 (2),pp 283-291.
    [121]. Ozer, A.,Ozer, D.,Ozer, A., The adsorption of copper(Ⅱ) ions on to dehydrated wheat bran (DWB):Determination of the equilibrium and thermodynamic parameters[J]. Process Biochemistry,2004,39 (12),pp 2183-2191.
    [122]. Ozer, A.,Pirincci, H. B., The adsorption of Cd(II) ions on sulphuric acid-treated wheat bran[J]. Journal of Hazardous Materials,2006,137 (2),pp 849-855.
    [123]. Reddy, B. R.,Mirghaffari, N.,Gaballah, I., Removal and recycling of copper from aqueous solutions using treated Indian barks[J]. Resources, Conservation and Recycling,1997,21 (4),pp 227-245.
    [124]. Low, K. S.,Lee, C. K.,Leo, A. C., Removal of metals from electroplating wastes using banana pith[J]. Bioresource Technology,1995,51 (2-3),pp 227-227.
    [125]. Noeline, B. F.,Manohar, D. M.,Anirudhan, T. S., Kinetic and equilibrium modelling of lead(II) sorption from water and wastewater by polymerized banana stem in a batch reactor[J]. Separation and Purification Technology,2005,45 (2),pp 131-140.
    [126]. Chubar, N.,Carvalho, J. R.,Correia, M. J. N., Heavy metals biosorption on cork biomass:Effect of the pre-treatment[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2004,238 (1-3),pp 51-58.
    [127]. Leyva-Ramos, R.,Bernal-Jacome, L. A.,Acosta-Rodriguez, I., Adsorption of cadmium(II) from aqueous solution on natural and oxidized corncob[J]. Separation and Purification Technology,2005,45 (1),pp 41-49.
    [128]. Pehlivan, E.,Cetin, S.,Yanik, B. H., Equilibrium studies for the sorption of zinc and copper from aqueous solutions using sugar beet pulp and fly ash[J]. Journal of Hazardous Materials,2006,135(1-3),pp 193-199.
    [129]. Gupta, V. K.,AIi, I., Removal of lead and chromium from wastewater using bagasse fly ash—a sugar industry waste[J]. Journal of Colloid and Interface Science,2004,271 (2),pp 321-328.
    [130]. Wankasi, D.,Horsfall Jr, M.,Spiff, A. I., Sorption kinetics of Pb2+ and Cu2+ ions from aqueous solution by Nipah palm (Nypa fruticans Wurmb) shoot biomass[J]. Electronic Journal of Biotechnology,2006,9 (5),pp 587-592.
    [131]. Namasivayam, C.,Kadirvelu, K., Agricultural solid wastes for the removal of heavy metals:Adsorption of Cu(Ⅱ) by coirpith carbon[J]. Chemosphere,1997,34 (Compendex),pp 377-377.
    [132]. Wang, J.,Chen, C., Biosorbents for heavy metals removal and their future[J]. Biotechnology Advances,2009,27 (2),pp 195-226.
    [133]. Volesky, B., Biosorption and me[J]. Water Research,2007,41(18),pp 4017-4029.
    [134]. Volesky, B. Biosorption process simulation tools[A], In Biohydrometallurgy: Fundamentals, Technology and Suistainable, September 16,2001-September 19, 2001 [C], Ouro Preto, Brazil,2003; pp 179-190.
    [135]. Ho, Y.,McKay, G., Kinetic models for the sorption of dye from aqueous solution by wood[J]. Trans. IChemE,1998,76 pp 183-191.
    [136]. Lagergren, S., About the theory of so-called adsorption of soluble substances[J]. Kungliga Svenska Vetenskapsakademiens Handlingar,1898,24 (4),pp 1-39.
    [137]. Ho, Y. S., Review of second-order models for adsorption systems[J]. Journal of Hazardous Materials,2006,136 (3),pp 681-689.
    [138]. Clayton, W.,Chien, S., Application of Elovich equation to the kinetics of phosphate release and sorption in soils[J]. Soil Science Society of America Journal,1980,44 (2),pp 265-268.
    [139]. Cheung, C. W.,Porter, J. F.,McKay, G., Sorption kinetic analysis for the removal of cadmium ions from effluents using bone char[J]. Water Research,2001,35 (3),pp 605-612.
    [140]. Kratochvil, D.,Volesky, B., Advances in the biosorption of heavy metals[J]. Trends in Biotechnology,1998,16 (7),pp 291-300.
    [141].马静.天然植物材料作为吸附剂处理低浓度重金属废水的研究[D].硕士,湖南大学2007.
    [142]. Kelesoglu, S. Comparative adsorption studies of heavy metal ions on chitian and chitosan biopolymers[D]. School of Engineering and Science of izmir Institute of Technology 2007.
    [143].连红芳.乙二胺螯合棉纤维的制备及吸附性能研究[D].硕士,成都理工大学2004.
    [144].杨汝明,胡如乔,许信苗,陈嘉翔,窦正远,甘蔗渣湿法除髓工艺的研究[J].广东造纸,1994,(02),pp 1-6.
    [145].曹玉华,王关斌,崔淑芬,等.蔗髓水解生产木糖工艺研究[J].山东化工,2012,(03),pp 28-29+35.
    [146].陈军,王元春,蔗髓制备木糖、L-阿拉伯糖的工艺优化[J].食品科技,2011,(11),pp237-240+245.
    [147].李娜,刘秋娟,江超,选择性水解工艺提取蔗髓L-阿拉伯糖的研究[J].造纸科学与技术,2012,(01),pp 30-33.
    [148].吴思敏,林荣基,利用蔗髓制取糠醛与葡萄糖[J].厦门大学学报(自然科学版),1959,(01),pp 41-47.
    [149].吴茂昶,蔗髓模压新型包装材料的制备和性能研究[J].包装工程,2009,(04),pp34-36.
    [150].颜昌轩,蔗髓酶解糖生产饲料酵母研制成功[J].西南农业学报,1991,(03),p 114.
    [151].王西俜,鲁新洁,蔗髓酶水解液培养饲料酵母[J].微生物学通报,1983,(04),pp155-157.
    [152].石淑兰,何福望,制浆造纸分析与检测.In石淑兰,何福望,Ed.中国轻工业出版社:2003.
    [153].张莹,张教强,亢新梅,等.一种多胺型纤维素吸附剂的制备[J].材料开发与应用,2011,(02),pp 56-59.
    [154].覃程荣,王双飞,宋海农,等.甘蔗渣生产全降解农用地膜的研究[J].现代化工,2002,(11),pp 24-28.
    [155]. Lee, S. C.,Mariatti, M., The effect of bagasse fibers obtained (from rind and pith component) on the properties of unsaturated polyester composites[J]. Materials Letters, 2008,62 (15),pp 2253-2256.
    [156].陈中兰,曾艳,多胺型稻草纤维素球的制备及其对水体中Zn~(2+)的吸附性能[J].应用化学,2006,(10),pp 1116-1119.
    [157]. Zuguang, L. I. U.,Shixian, L. V.,Xiaoxue, Y. A. N., etc., Adsorption of Lead Ions in Effluent onto Lignin Amines Adsorbents from Modified Kraft Lignin[J]. Transaction of China Pulp and Paper,2011,2011,26 (2),pp 53-57.
    [158].范娟.多功能球形木质素基吸附材料的制备及其性能研究[D].博士,华南理工大学2005.
    [159]. Liu, Q.,Yang, S.,Li, J., etc., Modification of Oxygen Alkaline Wheat Straw Lignin and Its Application in Polyurethane Synthesis[J]. Transaction of China Pulp and Paper, 2003,2003,18 (1),pp 11-14.
    [160]. Schwanninger, M.,Rodrigues, J. C.,Pereira, H., etc., Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose[JJ. Vibrational Spectroscopy,2004,36(1),pp 23-40.
    [161]. Jiang, Y.,Pang, H.,Liao, B., Removal of copper(II) ions from aqueous solution by modified bagasse[J]. Journal of Hazardous Materials,2009,164 (1),pp 1-9.
    [162]. Banerjee, S. S.,Chen, D. H., Fast removal of copper ions by gum arabic modified magnetic nano-adsorbent[J]. Journal of Hazardous Materials,2007,147 (3),pp 792-799.
    [163], Navarro, R.,Guzman, J.,Saucedo, I., etc., Recovery of Metal Ions by Chitosan: Sorption Mechanisms and Influence of Metal Speciation[J]. Macromolecular Bioscience,2003,3 (10),pp 552-561.
    [164].杨之礼,化学研究学者,纤维素醚基础与应用[M].华南理工大学出版社:1990.
    [165]. Han, S.,Lee, M.,Kim, B. K., Crosslinking reactions of oxidized cellulose fiber. I. reactions between dialdehyde cellulose and multifunctional amines on lyocell fabric[J]. Journal of Applied Polymer Science,2010,117 (2),pp 682-690.
    [166].梁东梅,杨征月,徐博杰,等.甘蔗渣MSS-AQ与AS-AQ的制浆比较[J].广西大学学报(自然科学版),1998,(04),pp 101-104.
    [167]. Liu, X.,Wang, L.,Song, X., etc., A kinetic model for oxidative degradation of bagasse pulp fiber by sodium periodate[J]. Carbohydrate Polymers,2012,90 (1),pp 218-223.
    [168].纸和纸板铜含量试验方法[P].美国国家标准学会:ANSI/ASTMD919-1992.
    [169].中国制浆造纸工业研究所,纸浆铜价的测定[P].国家质检总局:GB/T 5400-1998.
    [170].徐伟.天然竹纤维的提取及其结构和化学性能的研究[D].硕士,苏州大学2006.
    [171].何建新,章伟,王善元,竹纤维的结构分析[J].纺织学报,2008,(02),pp 20-24.
    [172]. Sirvio, J.,Hyvakko, U.,Liimatainen, H., etc., Periodate oxidation of cellulose at elevated temperatures using metal salts as cellulose activators[J]. Carbohydrate Polymers, Jan 30,2011,83 (3),pp 1293-1297.
    [173]. Kennedy, C. J.,Cameron, G. J.,Sturcova, A., etc., Microfibril diameter in celery collenchyma cellulose:X-ray scattering and NMR evidence[J]. Cellulose, Jun,2007, 14 (3),pp 235-246.
    [174]. LI, N.,BAI, R., Copper adsorption on chitosan-cellulose hydrogel beads:behaviors and mechanisms[M]. Kidlington, ROYAUME-UNI:Elsevier:2005; p11.
    [175].王宝庆,陈亚雄,宁平,活性炭水处理技术应用[J].云南环境科学,2000,(03),pp46-49.
    [176].魏兰.以木质素为原料合成环氧树脂的研究[D].天津科技大学2004.
    [177].胡春平,方桂珍,王献玲,等.麦草碱木质素基环氧树脂的合成[J].东北林业大学学报,2007,(04),pp 53-55.
    [178].魏兰,刘忠,木素基环氧树脂的合成[J].中华纸业,2004,(01),pp 44-46.
    [179].马英梅.碱木质素胺的合成及对重金属离子的吸附性能[D].硕士,东北林业大学2010.
    [180].张万烽,林青,林建,木质素的TETA胺化改性[J].精细与专用化学品,2006,(13),pp10-13.
    [181]. Nadji, H.,Bedard, Y.,Benaboura, A., etc., Value-Added Derivatives of Soda Lignin from Alfa Grass (Stipa tenacissima). I. Modification and Characterization[J]. Journal of Applied Polymer Science, Feb 5,2010,115 (3),pp 1546-1554.
    [182].吴志高,李世荣,卢军彩,环氧值测定方法的改进[J].武汉化工学院学报,2006,(01),pp 5-7.
    [183].魏兰,刘忠,以本素衍生物为原料制备环氧树脂[J].纸和造纸,2003,(06),pp 85-87.
    [184].刘祖广,陈朝晖,王迪珍,二乙烯三胺/甲醛改性木质素胺的制备及应用性能[J].中国造纸学报,2005,(02),pp 75-79.
    [185].刘祖广,陈朝晖,王迪珍,木质素的Mannich反应研究进展[J].中国造纸学报,2007,(01),pp 104-108.
    [186].徐耀良.环氧化物阳离子开环聚合的量子化学研究[D].硕士,浙江大学2007.
    [187].赵增霞.几类含氮小分子、自由基的理论研究[D].博士,吉林大学2008.
    [188].周敏娜.维生素类清除白由基机理的密度泛函理论计算[D].硕士,河南师范大学2011.
    [189]. Kim, U. J.,Kuga, S.,Wada, M., etc., Periodate oxidation of crystalline cellulose[J]. Biomacromolecules,2000,2000,1 (3),pp 488-92.
    [190]. Varma, A. J.,Kulkarni, M. P., Oxidation of cellulose under controlled conditions[J]. Polymer Degradation and Stability,2002,2002,77 (1),pp 25-27.
    [191]. Maguire, R. J., Kinetics of the hydrolysis of cellulose by beta-1,4-glucan cellobiohydrolase of Trichoderma viride[J]. Canadian journal of biochemistry, 1977-Jun,1977,55 (6),pp 644-50.
    [192]. Sasaki, M.,Kabyemela, B.,Malaluan, R., etc., Cellulose hydrolysis in subcritical and supercritical water[J]. Journal of Supercritical Fluids,1998,13 (1-3),pp 261-268.
    [193]. Singh, M.,Ray, A. R.,Vasudevan, P., Biodegradation studies on periodate oxidized cellulose[J]. Biomaterials,1982-Jan,1982,3 (1),pp 16-20.
    [194]. Calvini, P.,Conio, G.,Princi, E., etc., Viscometric determination of dialdehyde content in periodate oxycellulose Part II. Topochemistry of oxidation[J]. Cellulose,2006,13 (5),pp 571-579.
    [195]. Wickholm, K.,Larsson, P. T.,Iversen, T., Assignment of non-crystalline forms in cellulose I by CP/MAS 13C NMR spectroscopy[J]. Carbohydrate Research,1998,312 (3),pp 123-129.
    [196]. Kono, H.,Yunoki, S.,Shikano, T., etc., CP/MAS 13C NMR study of cellulose and cellulose derivatives.1. Complete assignment of the CP/MAS 13C NMR spectrum of the native cellulose[J]. Journal of the American Chemical Society,2002,124 (25),pp 7506-7511.
    [197]. Bardet, M.,Gerbaud, G.,Tran, Q.-K., etc., Study of interactions between polyethylene glycol and archaeological wood components by 13C high-resolution solid-state CP-MAS NMR[J]. Journal of Archaeological Science,2007,34 (10),pp 1670-1676.
    [198].张美珍,柳百坚,谷晓昱,聚合物研究方法[M].中国轻工业出版社:2000.
    [199]. Bu, L.,Tang, Y.,Gao, Y., etc., Comparative characterization of milled wood lignin from furfural residues and corncob[J]. Chemical Engineering Journal,2011,175 (0),pp 176-184.
    [200].张萍,仲英,郑万金,染料木素的门尼希碱衍生物的合成[J].食品与药品,2009,(05),pp 24-27.
    [201]. Freitas, J. C. C.,Bonagamba, T. J.,Emmerich, F. G., Investigation of biomass-and polymer-based carbon materials using 13C high-resolution solid-state NMR[J]. Carbon,2001,39 (4),pp 535-545.
    [202]. Ho, Y. S.,McKay, G., Pseudo-second order model for sorption processes[J]. Process Biochemistry,1999,34 (5),pp 451-465.
    [203]. Ofomaja, A. E.,Naidoo, E. B.,Modise, S. J., Kinetic and Pseudo-Second-Order Modeling of Lead Biosorption onto Pine Cone Powder [J]. Industrial & Engineering Chemistry Research, Mar 17,2010,49 (6),pp 2562-2572.
    [204]. Karthikeyan, T.,Rajgopal, S.,Miranda, L. R., Chromium(Ⅵ) adsorption from aqueous solution by Hevea Brasilinesis sawdust activated carbon[J]. Journal of Hazardous Materials,2005,124 (1-3),pp 192-199.
    [205].Albadarin, A. B.,A1-Muhtaseb, A. a. H.,Al-laqtah, N. A., etc., Biosorption of toxic chromium from aqueous phase by lignin:mechanism, effect of other metal ions and salts[J]. Chemical Engineering Journal, May 1,2011,169 (1-3),pp 20-30.
    [206]. Billing, D. E., The infrared spectra of some cobalt, nickel and copper complexes of heteroaromatic amines[J]. Journal of Inorganic and Nuclear Chemistry,1969,31 (1),pp 137-143.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700