用户名: 密码: 验证码:
植物纤维/ABS木塑复合材料的制备、结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木塑复合材料(Wood Plastic Composites---WPC)是近年来国际上兴起的一种新型环保材料,它是由木粉、竹粉、稻糠、秸秆等植物纤维与热塑性塑料配以特殊功能改性剂及其他助剂,经塑料成型加工工艺制成的性能优良的复合材料。木塑复合材料综合了植物纤维和高分子材料的诸多优点,能大量替代木材,可有效缓解我国森林资源贫乏、木材供应紧缺的现状,同时它也解决了塑料、木材行业废弃资源的再生利用问题,是一种极具发展前途的低碳、绿色、可循环、可再生的材料。近年来,国内外对于木塑复合材料的研究开发较多,但主要集中在聚氯乙烯、聚乙烯、聚丙烯基体的木塑复合材料,而对ABS基木塑复合材料的相关研究则较少。选用ABS树脂作为基体,制备新型性能优良的ABS基木塑复合材料,对于提高木塑复合材料的性能,拓宽木塑复合材料应用领域具有重要的实际意义。
     本论文首先研究了竹粉、桉木粉、柏木粉、松木粉和樟木粉五种植物纤维的基本物化性能,并采用薄层毛细渗透技术测定了五种植物纤维的表面接触角和表面自由能及其分量。在此基础上,选择表面自由能较低的竹粉作为研究对象,通过熔融共混法与ABS复合制备木塑复合材料,系统地研究了竹粉/ABS复合材料的结构与性能,探讨了竹粉用于制备木塑复合材料的改性方法。同时,将噁唑啉官能化的ABS(ABSm)作为界面改性剂用于改性ABS基木塑复合材料,并对其界面改性机理进行探讨。研究结果表明:
     五种植物纤维均含有大量羟基,亲水性强,但热稳定性较差。由薄层毛细渗透技术测得五种植物纤维中桉木粉的表面自由能及其非极性分量最高,竹粉表面自由能及其非极性分量较低;与ABS复合时,桉木粉有比其他几种植物纤维更好的界面相容性,由其制备的木塑复合材料的力学性能优于其它四种植物纤维/ABS复合材料的力学性能。
     含有大量极性羟基的竹粉与ABS树脂两相间相容性不佳,随着竹粉添加量的增大,竹粉/ABS复合材料的拉伸强度、弯曲强度和冲击强度降低,但其弯曲模量提高。同时,随着竹粉在ABS中用量的增加,复合材料的维卡软化温度逐渐提高,在一定程度上提高了复合材料的使用温度范围,但复合材料的热稳定性和加工性能有所降低,吸水率有所增加。在80目~180目的粒径范围内,除冲击强度外,竹粉/ABS复合材料的各项力学性能随着竹粉粒径的增大呈上升的趋势。但当竹粉粒径增至40目时,复合材料的力学性能反而有所降低。
     噁唑啉官能化的ABS(ABSm)对竹粉/ABS复合材料体系有良好的增容作用,可明显提高复合材料的力学性能,改善复合材料的界面相容性。腈基转化率在30%左右的ABSm2用量为7phr时,复合材料的拉伸强度和弯曲强度分别为52MPa和91.4MPa,相比未改性试样分别提高了17.6%和35.2%,已经达到甚至超过了纯ABS的拉伸强度(50MPa)和弯曲强度(82.5MPa)。三种市售的界面改性剂苯乙烯-马来酸酐共聚物(SMA)、聚苯乙烯接枝马来酸酐(PS-g-MAH)、乙烯-醋酸乙烯酯共聚物接枝马来酸酐(EVA-g-MAH)中SMA的界面改性效果较好,但均不如ABSm。
     研究了在常温和高温蒸煮条件下,碱液浓度和碱处理时间对竹粉的化学组成、结晶性能、热稳定性及形态结构的影响,得到常温碱处理的优化条件为4%NaOH溶液,处理时间为1h。经常温和高温蒸煮碱处理后可以除去竹粉表面的半纤维素、木质素和抽提物,提高竹粉的热稳定性。在两种条件下,当NaOH溶液浓度大于10%后,都会导致竹粉纤维素的晶型由纤维素Ⅰ向纤维素Ⅱ转变,使得竹粉的结晶度下降,热稳定性降低,纤维束状结构发生分离,纤维卷曲。
     本论文将经乙酰化处理、常温碱处理和高温蒸煮处理的三种竹粉用于制备ABS基木塑复合材料,研究结果表明,预处理后的竹粉对ABS基木塑复合材料的力学性能都有不同程度的提高,其中高温蒸煮处理对复合材料力学性能的提高幅度最大,常温碱处理次之,而乙酰化处理对复合材料力学性能的影响不明显。进一步的研究表明,两种碱处理和界面改性剂SMA并用对竹粉/ABS复合材料均存在协同效应,能较大幅度的提高复合材料的力学性能,而两种碱处理和ABSm并用以及乙酰化处理和SMA并用则无协同效应。
Wood-plastic composite (WPC) is a new type of environmental material, which ismanufactured from blends of thermoplastics and plant fibers with a special functionalmodified agent and other additives using plastic molding process. The plant fibers includewood flour, bamboo fiber, rice husk and straw. WPC synthesizes the advantages of plant fiberand polymers. It is a low carbon, green, renewable materials with a great developable future.Itcan substitute plenty of wood and efficiently mitigate the status of our country's poor forestresources and demand. It will solve the problems in the recycling of waste plastics and woodresources. In recent years, research and development of WPC have been very popular inliterature, most of which were carried out using PVC, PE, and PP as matrix, but ABS asmatrix is very rare. The preparation of the WPC with ABS matrix has important practicalsignificance for improving its properties and broadening its application area.
     The characteristics of five kinds of plant fibers were explored in this thesis firstly. Theywere bamboo fiber (BF), eucalypt fiber, cypress fiber, pine fiber and camphor fiber. Thecontact angle, surface free energy and its components of plant fibers were determined by theWashburn equation with the thin-layer wicking technique. Then the bamboo fiber wasselected for further investigation because of its lower surface free energy. BF/ABS compositeswere prepared by melt compounding. Then the structure and performance of the compositeswere systematically investigated. The modification methods of bamboo fiber that strengthenthe bonding between bamboo fiber and ABS matrix were also studied. Furthermore, ainterfacial modifier was synthesized from ABS. The influence of the interfacial modifier onthe performance of BF/ABS composites was investigated. The interfacial modificationmechanisms were also discussed.
     The five kinds of plant fibers all contain a large number of hydroxyl groups, but theirthermal stability is not pretty well. Based on Washburn equation and the thin-layer wickingtechnique, the surface free energies of the plant fibers were calculated. Results demonstratethat eucalypt fiber has the highest surface free energy and non polar part; while bamboo fiberhas the lowest. As combined with the same plastics, the interfacial adhesion between eucalyptfiber and matrix is better than that of the others, so the mechanical properties of eucalyptfiber/ABS composites outperforms the other four.
     The poor compatibility between bamboo fiber and ABS matrix limited the performanceof BF/ABS composites. The mechanical properties of BF/ABS composites, including tensilestrength, flexural strength and impact strength, decreased with the increasing bamboo fiber loading, but its flexural modulus increased. The Vicat temperature of BF/ABS compositesincreased with the increasing bamboo fiber loading, suggesting that the incorporation ofbamboo fiber could extend the operating temperature range of composites. Besides, theaddition of bamboo fiber had negative influence on the thermal stability, processingperformance and water absorptivity of BF/ABS composites. As the bamboo particle sizeswere between80and180meshes, the mechanical properties of the samples, besides impactstrength, exhibited a creasing tendency. However, the mechanical properties showed adecreasing tendency when the particle size was40meshes.
     Oxazoline modified ABS(ABSm) improved the interactions between bamboo fiber andABS matrix and promoted better mechanical properties of the composites. The tensilestrength and flexural strength of BF/ABS composites were52MPa and91.4MPa whenABSm2was added, about17.6%and35.2%up. The conversion of the nitrile groups intooxazoline of ABSm2is about30%, the optimum dosage was7phr. Among three commerciallyavailable interface modifiers(SMA, PS-g-MAH, EVA-g-MAH), SMA has the best interfacemodified effect, but none of them is better than ABSm.
     Alkali treated of bamboo fiber at room temperature and high temperature cooking werestudied. The effects of time and concentration of NaOH on the chemical composition,crystallizing structure, thermal characteristic and surface morphology of bamboo fiber werediscussed. And the optimum processing of alkali treatments at room temperature,concentration of NaOH4%,1h, were obtained. The alkali treatment of the bamboo fiberspromoted the partial removal of the hemicelluloses, extractives, and lignin which present onthe surface of the fiber, and improved its thermal stability. The crystalline structuretransformation of cellulose I into cellulose II was observed by X-ray diffraction for bamboofiber, when NaOH concentration exceeded10%. This would decrease the crystallinity andthermal stability of the bamboo fiber, while the fiber bundles partially break down and appearshrinkage.
     The bamboo fibers after acetylation, alkali treated and high temperature alkali cookingwas used to prepare BF/ABS composite. Experiment result showed that different treatmentincreased the dynamic property of the composite by different degree.The two kinds of alkalitreatment had better effect on the BF/ABS composites, while the effect of acetylationtreatment was insignificant. Further studies showed that two kinds of alkali treatment usedtogether with SMA had synergistic effect, while they used together with ABSm andacetylation treatment used together with SMA had no synergistic effect.
引文
[1] Chaharmahali M.; Mirbagheri J.; Tajvidi M., et al. Mechanical and physical propertiesof wood-plastic composite panels[J]. Journal of Reinforced Plastics and Composites,2010,29(2):310-319
    [2]陈日平.生物质纤维/聚丙烯复合材料结构与性能的研究[D].华南理工大学硕士学位论文,2010
    [3] Agnantopoulou E.; Tserki V.; Marras S., et al. Development of biodegradablecomposites based on wood waste flour and thermoplastic starch[J]. Journal of AppliedPolymer Science,2012,126(S1): E273-E281
    [4] Kazemi-Najafi S.; Nikray S.J.; Ebrahimi G. A comparison study on creep behavior ofwood–plastic composite, solid wood, and polypropylene[J]. Journal of CompositeMaterials,2012,46(7):801-808
    [5] Kim J.K.; Pal K. Overview of Wood-Plastic Composites and Uses[J]. Recent Advancesin the Processing of Wood-Plastic Composites,2011,32(5):1-22
    [6] Ashori A. Wood–plastic composites as promising green-composites for automotiveindustries[J]. Bioresource technology,2008,99(11):4661-4667
    [7]杨淑慧.植物纤维化学[M].北京:中国轻工业出版社,2005:10-12
    [8]陈家楠.纤维素结构研究的进展[J].纤维素科学与技术,1993,1(4):1-10
    [9] Hult E.L.; Iversen T.; Sugiyama J. Characterization of the supermolecular structure ofcellulose in wood pulp fibres[J]. Cellulose,2003,10(2):103-110
    [10] Ioelovich M.; Leykin A. Accessibility and supermolecular structure of cellulose[J].Cellulose Chemistry&Technology,2009,43(9):379-385
    [11] Mussatto S.I.; Fernandes M.; Milagres A.M.F., et al. Effect of hemicellulose and ligninon enzymatic hydrolysis of cellulose from brewer's spent grain[J]. Enzyme andMicrobial Technology,2008,43(2):124-129
    [12] Wan J.Q.; Wang Y.; Xiao Q. Effects of hemicellulose removal on cellulose fiberstructure and recycling characteristics of eucalyptus pulp[J]. Bioresource technology,2010,101(12):4577-4583
    [13] Pejic B.M.; Kostic M.M.; Skundric P.D., et al. The effects of hemicelluloses and ligninremoval on water uptake behavior of hemp fibers[J]. Bioresource technology,2008,99(15):7152-7159
    [14]詹怀宇.纤维化学与物理[M].北京:科学技术出版社,2005:76-83
    [15] Hatakeyama H.; Hatakeyama T. Lignin Structure, Properties, and Applications[J].Advances in Polymer Science,2010,232(26):1-63
    [16] Ahn J.; Grün I.; Fernando L. Antioxidant properties of natural plant extracts containingpolyphenolic compounds in cooked ground beef[J]. Journal of Food Science,2006,67(4):1364-1369
    [17] K hk nen M.P.; Hopia A.I.; Vuorela H.J., et al. Antioxidant activity of plant extractscontaining phenolic compounds[J]. Journal of agricultural and food chemistry,1999,47(10):3954-3962
    [18] Rauha J.P.; Remes S.; Heinonen M., et al. Antimicrobial effects of Finnish plant extractscontaining flavonoids and other phenolic compounds[J]. International journal of foodmicrobiology,2000,56(1):3-12
    [19] Bledzki A.K.; Gassan J. Composites reinforced with cellulose based fibres[J]. Progressin polymer science,1999,24(2):221-274
    [20] J rdens C.; Wietzke S.; Scheller M., et al. Investigation of the water absorption inpolyamide and wood plastic composite by terahertz time-domain spectroscopy[J].Polymer Testing,2010,29(2):209-215
    [21] Paul A.; Joseph K.; Thomas S. Effect of surface treatments on the electrical properties oflow-density polyethylene composites reinforced with short sisal fibers[J]. CompositesScience and Technology,1997,57(1):67-79
    [22] Wallenberger F.T.; Weston N. Natural fibers, plastics and composites[M]. New York:Kluwer Academic Publishers,2004:90-95
    [23] Arcaya P.A.d.; Retegi A.; Arbelaiz A., et al. Mechanical properties of naturalfibers/polyamides composites[J]. Polymer Composites,2009,30(3):257-264
    [24] Threepopnatkul P.; Teppinta W.; Sombatsompop N. Effect of co-monomer ratio in ABSand wood content on processing and properties in wood/ABS composites[J]. Fibers andPolymers,2011,12(8):1007-1013
    [25]胡福增;陈国荣;杜永娟.材料表界面[M].北京:中国轻工业出版社,2001:128-136
    [26]王清文;王伟宏.木塑复合材料与制品[M].北京:化学工业出版社,2007:43-54
    [27]王正.木塑复合材料界面特性及其影响因子的研究[D].中国林业科学研究院博士学位论文,2001
    [28] Mishra S.; Naik J.; Patil Y. The compatibilising effect of maleic anhydride on swellingand mechanical properties of plant-fiber-reinforced novolac composites[J]. CompositesScience and Technology,2000,60(9):1729-1735
    [29] Gupta B.S.; Reiniati I.; Laborie M.P.G. Surface properties and adhesion of wood fiberreinforced thermoplastic composites[J]. Colloids and Surfaces A: Physicochemical andEngineering Aspects,2007,302(1):388-395
    [30] Mohanty S.; Nayak S.; Verma S., et al. Effect of MAPP as a coupling agent on theperformance of jute–PP composites[J]. Journal of Reinforced Plastics and Composites,2004,23(6):625-637
    [31] Nenkova S.; Dobrilova C.; Natov M., et al. Modification of wood flour with maleicanhydride for manufacture of wood-polymer composites[J]. Polymers&polymercomposites,2006,14(2):185-194
    [32] Herrera-Franco P.J.; Valadez-Gonzalez A. A study of the mechanical properties of shortnatural-fiber reinforced composites[J]. Composites Part B: Engineering,2005,36(8):597-608
    [33] Kazayawoko M.; Balatinecz J.; Matuana L. Surface modification and adhesionmechanisms in woodfiber-polypropylene composites[J]. Journal of materials science,1999,34(24):6189-6199
    [34] Lu J.Z.; Wu Q.; Negulescu I.I. The influence of maleation on polymer adsorption andfixation, wood surface wettability, and interfacial bonding strength in wood-PVCcomposites[J]. Wood and fiber science,2002,34(3):434-459
    [35] Moghadamzadeh H.; Rahimi H.; Asadollahzadeh M., et al. Surface treatment of woodpolymer composites for adhesive bonding[J]. International Journal of Adhesion andAdhesives,2011,31(8):816-821
    [36] Singh S.; Mohanty A.K.; Misra M. Hybrid bio-composite from talc, wood fiber andbioplastic: Fabrication and characterization[J]. Composites Part A: Applied Science andManufacturing,2010,41(2):304-312
    [37] Wei S.; Shi J.; Gu J., et al. Dynamic wettability of wood surface modified by acidicdyestuff and fixing agent[J]. Applied Surface Science,2012,258(6):1995-1999
    [38] Belgacem M.; Bataille P.; Sapieha S. Effect of corona modification on the mechanicalproperties of polypropylene/cellulose composites[J]. Journal of Applied PolymerScience,1994,53(4):379-385
    [39] Hristov V.; Vasileva S.; Krumova M., et al. Deformation mechanisms and mechanicalproperties of modified polypropylene/wood fiber composites[J]. Polymer Composites,2004,25(5):521-526
    [40] Mahlberg R.; Paajanen L.; Nurmi A., et al. Effect of chemical modification of wood onthe mechanical and adhesion properties of wood fiber/polypropylene fiber andpolypropylene/veneer composites[J]. European Journal of Wood and Wood Products,2001,59(5):319-326
    [41] Bledzki A.; Reihmane S.; Gassan J. Properties and modification methods for vegetablefibers for natural fiber composites[J]. Journal of Applied Polymer Science,1996,59(8):1329-1336
    [42] Dong S.; Sapieha S.; Schreiber H. Mechanical properties of corona-modifiedcellulose/polyethylene composites[J]. Polymer Engineering&Science,2004,33(6):343-346
    [43] Foo K.; Hameed B. Microwave-assisted preparation of oil palm fiber activated carbonfor methylene blue adsorption[J]. Chemical Engineering Journal,2011,166(2):792-795
    [44] Hasegawa M.; Takata M.; Matsumura J., et al. Effect of wood properties on within-treevariation in ultrasonic wave velocity in softwood[J]. Ultrasonics,2011,51(3):296-302
    [45] Kim B.S.; Chun B.H.; Lee W.I., et al. Effect of plasma treatment on the wood flour forwood flour/PP composites[J]. Journal of Thermoplastic Composite Materials,2009,22(1):21-28
    [46] Ragoubi M.; George B.; Molina S., et al. Effect of corona discharge treatment onmechanical and thermal properties of composites based on miscanthus fibres andpolylactic acid or polypropylene matrix[J]. Composites Part A: Applied Science andManufacturing,2012,43(4):675-685
    [47] Vladkova T.; Dineff P.; Gospodinova D. Wood flour: A new filler for the rubberprocessing industry. II. Cure characteristics and mechanical properties of NBRcompounds filled with corona-treated wood flour[J]. Journal of Applied PolymerScience,2004,91(2):883-889
    [48] Das M.; Chakraborty D. The effect of alkalization and fiber loading on the mechanicalproperties of bamboo fiber composites, Part1:-Polyester resin matrix[J]. Journal ofApplied Polymer Science,2009,112(1):489-495
    [49] Gwon J.G.; Lee S.Y.; Chun S.J., et al. Effects of chemical treatments of hybrid fillers onthe physical and thermal properties of wood plastic composites[J]. Composites Part A:Applied Science and Manufacturing,2010,41(10):1491-1497
    [50] Gwon J.G.; Lee S.Y.; Doh G.H., et al. Characterization of chemically modified woodfibers using FTIR spectroscopy for biocomposites[J]. Journal of Applied PolymerScience,2010,116(6):3212-3219
    [51] J hn A.; Schr der M.; Füting M., et al. Characterization of alkali treated flax fibres bymeans of FT Raman spectroscopy and environmental scanning electron microscopy[J].Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2002,58(10):2271-2279
    [52] López R.; Poblano V.M.; Claveríe A.L., et al. Alkaline surface modification of sugarcane bagasse[J]. Advanced Composite Materials,2000,9(2):99-108
    [53] Shahzad A. Effects of alkalization on tensile, impact, and fatigue properties of hempfiber composites[J]. Polymer Composites,2012,33(7):1129-1140
    [54] Wong K.; Yousif B.; Low K. The effects of alkali treatment on the interfacial adhesionof bamboo fibres[J]. Proceedings of the Institution of Mechanical Engineers, Part L:Journal of Materials Design and Applications,2010,224(3):139-148
    [55] Jacob M.; Thomas S.; Varughese K. Mechanical properties of sisal/oil palm hybrid fiberreinforced natural rubber composites[J]. Composites Science and Technology,2004,64(7):955-965
    [56] Mishra S.; Mohanty A.K.; Drzal L.T., et al. Studies on mechanical performance ofbiofibre/glass reinforced polyester hybrid composites[J]. Composite Science andTechnolgy,2003,63(10):1377-1385
    [57] Chotirat L.; Chaochanchaikul K.; Sombatsompop N. On adhesion mechanisms andinterfacial strength in acrylonitrile-butadiene-styrene/wood sawdust composites[J].International Journal of Adhesion and Adhesives,2007,27(8):669-678
    [58] Love K.T.; Nicholson B.K.; Lloyd J.A., et al. Modification of Kraft wood pulp fibrewith silica for surface functionalisation[J]. Composites Part A: Applied Science andManufacturing,2008,39(12):1815-1821
    [59] Valadez-Gonzalez A.; Cervantes-Uc J.; Olayo R., et al. Effect of fiber surface treatmenton the fiber-matrix bond strength of natural fiber reinforced composites[J]. CompositesPart B: Engineering,1999,30(3):309-320
    [60] Agrawal R.; Saxena N.; Sharma K., et al. Activation energy and crystallization kineticsof untreated and treated oil palm fibre reinforced phenol formaldehyde composites[J].Materials Science and Engineering: A,2000,277(1):77-82
    [61] Qin T.; Huang L.; Li G. Effect of chemical modification on the properties ofwood/polypropylene composites[J]. Journal of Forestry Research,2005,16(3):241-244
    [62]李凯夫;戴东花;谢雪甜,等.偶联剂对木塑复合材料界面相容性的影响[J].林产工业,2005,32(3):24-26
    [63] Rowell R.M.; Tillman A.M.; Simonson R. A simplified procedure for the acetylation ofhardwood and softwood flaxes for flakeboard production[J]. Journal of wood chemistryand technology,1986,6(3):427-448
    [64] Tserki V.; Zafeiropoulos N.; Simon F., et al. A study of the effect of acetylation andpropionylation surface treatments on natural fibres[J]. Composites Part A: AppliedScience and Manufacturing,2005,36(8):1110-1118
    [65] Zafeiropoulos N.E.; Williams D.; Baillie C., et al. Engineering and characterisation ofthe interface in flax fibre/polypropylene composite materials. Part I. Development andinvestigation of surface treatments[J]. Composites Part A: Applied Science andManufacturing,2002,33(8):1083-1093
    [66] Nair K.C.M.; Thomas S.; Groeninckx G. Thermal and dynamic mechanical analysis ofpolystyrene composites reinforced with short sisal fibres[J]. Composites Science andTechnology,2001,61(16):2519-2529
    [67] Abdul Khalila H.P.S.; Ismail H. Effect of acetylation and coupling agent treatmentsupon biological degradation of plant fibre reinforced polyester composites[J]. PolymerTesting,2000,20(1):65-75
    [68] Bakar A.A.; Baharulrazi N. Mechanical properties of benzoylated oil palm empty fruitbunch short fiber reinforced poly (vinyl chloride) composites[J]. Polymer-PlasticsTechnology and Engineering,2008,47(10):1072-1079
    [69] Gwon J.G.; Lee S.Y.; Chun S.J., et al. Effect of chemical treatments of wood fibers onthe physical strength of polypropylene based composites[J]. Korean Journal of ChemicalEngineering,2010,27(2):651-657
    [70] Kaith B.S.; Kalia S. Preparation of microwave radiation induced graft copolymers andtheir applications as reinforcing material in phenolic composites[J]. PolymerComposites,2008,29(7):791-797
    [71] Kushwaha P.K.; Kumar R. Influence of chemical treatments on the mechanical andwater absorption properties of bamboo fiber composites[J]. Journal of ReinforcedPlastics and Composites,2011,30(1):73-85
    [72] Sreekala M.S.; Kumaran M.G.; Joseph S., et al. Oil palm fibre reinforced phenolformaldehyde composites: influence of fibre surface modifications on the mechanicalperformance[J]. Applied Composite Materials,2000,7(5):295-329
    [73] Sreekala M.S.; Kumaran M.G.; Thomas S. Water sorption in oil palm fiber reinforcedphenol formaldehyde composites[J]. Composites Part A: Applied Science andManufacturing,2002,33(6):763-777
    [74] Li X.; Tabil L.G.; Oguocha I.N., et al. Thermal diffusivity, thermal conductivity, andspecific heat of flax fiber-HDPE biocomposites at processing temperatures[J].Composites Science and Technology,2008,68(7):1753-1758
    [75] Mohanty A.K.; Misra M.; Drzal L.T. Surface modifications of natural fibers andperformance of the resulting biocomposites: an overview[J]. Composite Interfaces,2001,8(5):313-343
    [76] Mishra S.; Misra M.; Tripathy S., et al. Graft copolymerization of acrylonitrile onchemically modified sisal fibers[J]. Macromolecular Materials and Engineering,2001,286(2):107-113
    [77] Joseph P.V.; Joseph K.; Thomas S. Effect of processing variables on the mechanicalproperties of sisal-fiber-reinforced polypropylene composites[J]. Composites Scienceand Technology,1999,59(11):1625-1640
    [78] Rosa M.F.; Chiou B.; Medeiros E.S., et al. Effect of fiber treatments on tensile andthermal properties of starch/ethylene vinyl alcohol copolymers/coir biocomposites[J].Bioresource technology,2009,100(21):5196-5202
    [79] George J.; Janardhan R.; Anand J., et al. Melt rheological behaviour of short pineapplefibre reinforced low density polyethylene composites[J]. Polymer,1996,37(24):5421-5431
    [80] Misra S.; Misra M.; Tripathy S., et al. The influence of chemical surface modification onthe performance of sisal-polyester biocomposites[J]. Polymer Composites,2004,23(2):164-170
    [81] Bledzki A.K.; Reihmane S.; Gassan J. Properties and modification methods forvegetable fibers for natural fiber composites[J]. Journal of Applied Polymer Science,1996,59(8):1329-1336
    [82] Colom X.; Carrasco F.; Pages P., et al. Effects of different treatments on the interface ofHDPE/lignocellulosic fiber composites[J]. Composites Science and Technology,2003,63(2):161-169
    [83] Yeh S.K.; Agarwal S.; Gupta R.K. Wood-plastic composites formulated with virgin andrecycled ABS[J]. Composites Science and Technology,2009,69(13):2225-2230
    [84] Wu J.; Yu D.; Chan C.M., et al. Effect of fiber pretreatment condition on the interfacialstrength and mechanical properties of wood fiber/PP composites[J]. Journal of AppliedPolymer Science,2000,76(7):1000-1010
    [85]刘涛;何慧;洪浩群,等.废旧高密度聚乙烯/木粉复合材料的改姓研究[J].塑料科技,2008,36(2):36~40
    [86]徐焕翔;何慧;洪浩群,等.多单体固相接枝共聚物对废聚丙烯/稻糠复合体系结构与性能的影响[J].塑料工业,2005,33(5):49~52
    [87] Araújo J.R.; Waldman W.R.; De Paoli M.A. Thermal properties of high densitypolyethylene composites with natural fibres: Coupling agent effect[J]. PolymerDegradation and Stability,2008,93(10):1770-1775
    [88] Han G.; Lei Y.; Wu Q., et al. Bamboo fiber filled high density polyethylene composites:effect of coupling treatment and nanoclay[J]. Journal of Polymers and the Environment,2008,16(2):123-130
    [89] Cui J.; Mei C.; Jia C., et al. Acrylamide-formaldehyde-urea copolymer as a novelcompatibilizer for high density polyethylene/plant fiber composite[J]. Polymer bulletin,2011,67(3):375-382
    [90] Tan H.; Yu Y.; Zhang J. Effect of interface improving on morphology and properties ofcoir fiber/LLDPE bio-composites[J]. Advanced Materials Research,2011,217(5):1245-1248
    [91] Hristov V.; Vlachopoulos J. Thermoplastic silicone elastomer lubricant in extrusion ofpolypropylene wood flour composites[J]. Advances in Polymer Technology,2007,26(2):100-108
    [92] Dányádi L.; Renner K.; Szabo Z., et al. Wood flour filled PP composites: adhesion,deformation, failure[J]. Polymers for advanced technologies,2006,17(11-12):967-974
    [93] Kokta B.V.; Michalkova D.; Fortelny I., et al. Poly (propylene)/aspen/liquidpolybutadiene composites: maximization of impact strength, tensile and modulus bystatistical experimental design[J]. Polymers for advanced technologies,2007,18(2):106-111
    [94] Bhavesh L.S.; Laurent M.M.; Patricia A. Novel Coupling Agents for PVC/Wood-FlourComposites[J]. Journal of Vinyl&Additive Technology,2005,11(4):160-165
    [95] Guffey V.O.; Sabbagh A.B. PVC/wood-flour composites compatibilized withchlorinated polyethylene[J]. Journal of Vinyl and Additive Technology,2002,8(4):259-263
    [96] Afrifah K.A.; Hickok R.A.; Matuana L.M. Polybutene as a matrix for wood plasticcomposites[J]. Composites Science and Technology,2010,70(1):167-172
    [97] Corradini E.; Ito E.N.; Marconcini J.M., et al. Interfacial behavior of composites ofrecycled poly (ethyelene terephthalate) and sugarcane bagasse fiber[J]. Polymer Testing,2009,28(2):183-187
    [98] Bledzki A.K.; Jaszkiewicz A. Mechanical performance of biocomposites based on PLAand PHBV reinforced with natural fibres-a comparative study to PP[J]. CompositesScience and Technology,2010,70(12):1687-1696
    [99] Lei Y.; Wu Q. Wood plastic composites based on microfibrillar blends of high densitypolyethylene/poly (ethylene terephthalate)[J]. Bioresource technology,2010,101(10):3665-3671
    [100]Liu H.; Wu Q.; Zhang Q. Preparation and properties of banana fiber-reinforcedcomposites based on high density polyethylene (HDPE)/Nylon-6blends[J]. Bioresourcetechnology,2009,100(23):6088-6097
    [101]Khan R.A.; Zaman H.U.; Khan M.A., et al. Effect of the incorporation of PVC on themechanical properties of the jute-reinforced LLDPE composite[J]. Polymer-PlasticsTechnology and Engineering,2010,49(7):707-712
    [102]宋永明;王清文.木塑复合材料流变行为研究进展[J].林业科学,2012,48(8):143-149
    [103]Li T.Q.; Wolcott M.P. Rheology of wood plastics melt. Part1. Capillary rheometry ofHDPE filled with maple[J]. Polymer Engineering&Science,2005,45(4):549-559
    [104]Li T.Q.; Wolcott M.P. Rheology of HDPE–wood composites. I. Steady state shear andextensional flow[J]. Composites Part A: Applied Science and Manufacturing,2004,35(3):303-311
    [105]Hristov V.; Takacs E.; Vlachopoulos J. Surface tearing and wall slip phenomena inextrusion of highly filled HDPE/wood flour composites[J]. Polymer Engineering&Science,2006,46(9):1204-1214
    [106]Hristov V.; Vlachopoulos J. A study of viscoelasticity and extrudate distortions of woodpolymer composites[J]. Rheologica acta,2007,46(5):773-783
    [107]Li T.Q.; Wolcott M.P. Rheology of wood plastics melt, part2: Effects of lubricatingsystems in HDPE/maple composites[J]. Polymer Engineering&Science,2006,46(4):464-473
    [108]Li T.Q.; Wolcott M.P. Rheology of wood plastics melt, part3: Nonlinear nature of theflow[J]. Polymer Engineering&Science,2006,46(1):114-121
    [109]赵国玺.表面活性剂物理化学[M].北京:北京大学出版社,1991:62-67
    [110]蒋子铎;邝生鲁;杨诗兰.动态法测定粉末-液体体系的接触角[J].化学通报,1987,50(7):31-33
    [111]艾德生;李庆丰;戴遐明,等.用透过高度法测定粉体的润湿接触角[J].理化检验-物理分册,2001,37(3):110-112
    [112]姜洪丽;李斌;张昌军.木粉表面自由能和表面极性对木塑复合材料界面的影响[J].高分子材料科学与工程,2009,25(7):83-86
    [113] Giese R.F.; Costanzo P.M.; Van Oss C.J. The surface free energies of talc andpyrophyllite[J]. Physics and Chemistry of Minerals,1991,17(7):611-616
    [114] Van Oss C.J.; Giese R.F.; Li Z., et al. Determination of contact angles and pore sizes ofporous media by column and thin layer wicking[J]. Journal of adhesion science andtechnology,1992,6(4):413-428
    [115]储鸿;崔正刚.薄板毛细渗透法测定粉体接触角和表面能成分[J].江南大学学报(自然科学版),2005,4(3):302-305
    [116]储鸿;崔正刚.粉体接触角的测定方法[J].化工时刊,2004,18(10):44-47
    [117]崔正刚; Binks B.P.; Clint J.H.薄层毛细渗透技术测定多孔性固体颗粒的表面能成分[J].日用化学工业,2004,34(4):207-210
    [118]杜美娜;罗运军. RDX表面能及其分量的测定[J].火炸药学报,2007,30(1):36-39
    [119]陈勤芹;刘代俊.微波辐射对硫酸钙粉末表面能影响的研究[J].高校化学工程学报,2009,23(1):178-181
    [120]Focher B.; Palma M.T.; Canetti M., et al. Structural differences between non-wood plantcelluloses: evidence from solid state NMR, vibrational spectroscopy and X-raydiffractometry[J]. Industrial Crops and Products,2001,13(3):193-208
    [121]储鸿.薄板毛细渗透技术表征表面改性导致的粉体表面能及其各成分的变化[D].江南大学硕士学位论文,2005
    [122]Klyosov A.A. Wood-plastic composites[M]. Wiley-Interscience,2007:83-85
    [123]Viksne A.; Berzina R.; Andersone I., et al. Study of plastic compounds containingpolypropylene and wood derived fillers from waste of different origin[J]. Journal ofApplied Polymer Science,2010,117(1):368-377
    [124]李坚.木材波谱学[M].北京:科学出版社,2003:23-27
    [125] ikalo.; Wilhelm H.D.; Roisman I.V., et al. Dynamic contact angle of spreadingdroplets: Experiments and simulations[J]. Physics of Fluids,2005,17(6):101-113
    [126]Chen J.D. Experiments on a spreading drop and its contact angle on a solid[J]. Journalof colloid and interface science,1988,122(1):60-72
    [127]Li D.; Neumann A.W. Contact angles on hydrophobic solid surfaces and theirinterpretation[J]. Journal of colloid and interface science,1992,148(1):190-200
    [128]Li Z.; Kobayashi M. Plantation future of bamboo in China[J]. Journal of ForestryResearch,2004,15(3):233-242
    [129]Wang Y.; Tao J.; Zhong Z. Factors influencing the distribution and growth of dwarfbamboo, Fargesia nitida, in a subalpine forest in Wolong Nature Reserve, southwestChina[J]. Ecological research,2009,24(5):1013-1021
    [130]Zeng X.; Wang X.; Wang J. Bamboo Wastes as Fuel in Industrial Boiler in China[J].Advanced Materials Research,2011,204(10):1213-1216
    [131]Zhou B.; Li Z.; Wang X., et al. Impact of the2008ice storm on moso bambooplantations in southeast China[J]. Journal of Geophysical Research,2011,116(10):1-10
    [132]王玮;倪忠斌;张红武. ABS/木粉复合材料的力学性能研究[J].中国塑料,2005,19(1):31-33
    [133]肖亚航;傅敏士.木粉/ABS复合材料的热压成型工艺研究[J].塑料工业,2004,32(12):58-60
    [134]杨俊;高磊;焦雷,等.生物质纤维填充聚合物复合材料的界面行为[J].高分子材料科学与工程,2011,27(9):56-59
    [135]陈寒娴;杨文斌.竹粉/ABS塑料复合材料的性能研究[J].制浆造纸工艺,2010,40(5):13-17
    [136]Bouafif H.; Koubaa A.; Perré P., et al. Effects of fiber characteristics on the physical andmechanical properties of wood plastic composites[J]. Composites Part A: AppliedScience and Manufacturing,2009,40(12):1975-1981
    [137]杨俊.植物纤维填充的聚合物基木塑复合材料的研究[D].华东理工大学硕士学位论文,2010
    [138]张丽;冯绍华;夏琳,等. PP/竹粉复合材料的研究[J].合成树脂及塑料,2007,24(1):55-58
    [139]Wang W.; Morrell J.J. Water sorption characteristics of two wood-plastic composites[J].2004,54(12):209~212
    [140]Eberhardt T.L.; Min S.H. Biosorbents prepared from wood particles treated with anionicpolymer and iron salt: Effect of particle size on phosphate adsorption[J]. Bioresourcetechnology,2008,99(3):626-630
    [141]Ashori A.; Nourbakhsh A. Reinforced polypropylene composites: Effects of chemicalcompositions and particle size[J]. Bioresource technology,2010,101(7):2515-2519
    [142]Hietala M.; Niinim ki J.; Oksman K. Processing of wood chip-plastic composites: effecton wood particle size, microstructure and mechanical properties[J]. Plastics, Rubber andComposites,2011,40(2):49-56
    [143]Bouza R.; Marco C.; Naffakh M., et al. Effect of particle size and a processing aid onthe crystallization and melting behavior of iPP/red pine wood flour composites[J].Composites Part A: Applied Science and Manufacturing,2011,42(8):935-949
    [144]Nourbakhsh A.; Karegarfard A.; Ashori A. Effects of particle size and coupling agentconcentration on mechanical properties of particulate-filled polymer composites[J].Journal of Thermoplastic Composite Materials,2010,23(2):169-174
    [145]Yue X.; Chen F.; Zhou X. Synthesis of lignin-g-MMA and the utilization of thecopolymer in PVC/Wood composites[J]. Journal of Macromolecular Science, Part B:Physics,2012,51(2):242-254
    [146]Frump J.A. Oxazolines. Their preparation, reactions, and applications[J]. ChemicalReviews,1971,71(5):483-505
    [147]Theophil E.; Siegfrid H.;李润涛等译.杂环化学:结构、反应、合成和应用[M].北京:化学工业出版社,2006:132-135
    [148]Liu X.; Mantia F.L.; Scaffaro R. Oxazoline-containing compatibilizers forpolyamide/SAN and polyamide/ABS blends[J]. Journal of Applied Polymer Science,2002,86(2):449-455
    [149]Fahrl nder M.; Bruch M.; Menke T., et al. Rheological behavior of PS-melts containingsurface modified PMMA-particles[J]. Rheologica acta,2001,40(1):1-9
    [150]Lee S.; Park O.O. Preparation of poly (butylene terephthalate)/oxazoline containingpolystyrene graft copolymer through melt-blending and their application as acompatibilizer in polycarbonate/polystyrene blend[J]. Polymer,2001,42(15):6661-6668
    [151]Sundararaj U.; Macosko C.W. Drop breakup and coalescence in polymer blends: theeffects of concentration and compatibilization[J]. Macromolecules,1995,28(8):2647-2657
    [152]Sundararaj U.; Macosko C.W.; Shih C.K. Evidence for inversion of phase continuityduring morphology development in polymer blending[J]. Polymer Engineering&Science,2004,36(13):1769-1781
    [153]Becker H.G.; Schmidt-Naake G. Compatibilization of polymer blends frompoly(butadiene-g-poly(styrene-co-acrylonitrile)) and polycarbonate throughoxazoline-and benzoxazole-modification of ABS[J]. Chemical engineering&technology,2004,27(8):909-913
    [154]Scaffaro R.; Carianni G.; La Mantia F.P., et al. On the modification of the nitrile groupsof acrylonitrile/butadiene/styrene into oxazoline in the melt[J]. Journal of PolymerScience Part A: Polymer Chemistry,2000,38(10):1795-1802
    [155]过梅丽.高聚物与复合材料的动态力学热分析[M].北京:化学工业出版社,2002:54-58
    [156]Ismail H.; Abdullah A.H.; Bakar A.A. Influence of acetylation on the tensile properties,water absorption, and thermal stability of (High-density polyethylene)/(soyapowder)/(kenaf core) composites[J]. Journal of Vinyl and Additive Technology,2011,17(2):132-137
    [157]Cantero G.; Arbelaiz A.; Mugika F., et al. Mechanical behavior of wood/polypropylenecomposites: Effects of fibre treatments and ageing processes[J]. Journal of ReinforcedPlastics and Composites,2003,22(1):37-50
    [158]Gassan J.; Bledzki A.K. Possibilities for improving the mechanical properties ofjute/epoxy composites by alkali treatment of fibres[J]. Composites Science andTechnology,1999,59(9):1303-1309
    [159]Qin Z.; Wu Y.; Li X., et al. Effects of fiber mass fraction and alkali concentration onmechanical properties of biodegradable composites[J]. Advanced Materials Research,2011,152(10):1677-1682
    [160]Gümüskaya E.; Usta M.; Kirci H. The effects of various pulping conditions oncrystalline structure of cellulose in cotton linters[J]. Polymer Degradation and Stability,2003,81(3):559-564
    [161]Kalia S.; Kaith B.S.; Kaur I. Cellulose fibers: Bio-and nano-polymer composites: greenchemistry and technology[M]. London: Springer,2011:38-42
    [162]Feng X.; Chen J.; Zhang H. Effect of high temperature alkali cooking on theconstituents, structure and thermal degradation of hemp fiber[J]. Journal of AppliedPolymer Science,2008,108(6):4058-4064
    [163]江泽慧;于文吉;余养伦.竹材化学成分分析和表面性能表征[J].东北林业大学学报,2006,34(4):1-3
    [164]张晓燕;赵广杰.蒸汽爆破预处理桉木的形态结构与主化学成分变化[J].北京林业大学学报,2008,30(3):101-106
    [165]Oh S.Y.; Yoo D.I.; Shin Y., et al. Crystalline structure analysis of cellulose treated withsodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIRspectroscopy[J]. Carbohydrate Research,2005,340(15):2376-2391
    [166]Dinand E.; Vignon M.; Chanzy H., et al. Mercerization of primary wall cellulose and itsimplication for the conversion of cellulose I→cellulose II[J]. Cellulose,2002,9(1):7-18
    [167]Kroon-Batenburg L.M.J.; Kroon J. The crystal and molecular structures of cellulose Iand II[J]. Glycoconjugate journal,1997,14(5):677-690
    [168]Okano T.; Sarko A. Mercerization of cellulose. II. Alkali–cellulose intermediates and apossible mercerization mechanism[J]. Journal of Applied Polymer Science,1985,30(1):325-332
    [169]王德骥.苎麻纤维素化学与工艺学[M].北京:科学出版社,2001:42-45
    [170]Ouajai S.; Shanks R.A. Composition, structure and thermal degradation of hempcellulose after chemical treatments[J]. Polymer Degradation and Stability,2005,89(2):327-335
    [171]Dorris G.M.; Gray D.G. The surface analysis of paper and wood fibers by Esca-electronspectroscopy for chemical analysis-I. Applications to cellulose and lignin[J]. Cellulosechemistry and technology,1978,12(1):9-23
    [172]Gellerstedt F.; Gatenholm P. Surface properties of lignocellulosic fibers bearingcarboxylic groups[J]. Cellulose,1999,6(2):103-121
    [173]Johansson L.S.; Campbell J.M.; Koljonen K., et al. Evaluation of surface lignin oncellulose fibers with XPS[J]. Applied Surface Science,1999,144(1):92-95
    [174]Laine J.; Stenius P.; Carlsson G., et al. Surface characterization of unbleached kraft pulpsby means of ESCA[J]. Cellulose,1994,1(2):145-160
    [175]刘福娟;黄莉茜.竹纤维素的结构表征[J].纤维素科学与技术,2007,15(4):43-48
    [176]陈明凤.纤维素的去结晶[D].华南理工大学硕士学位论文,2011
    [177]俞春华;乔鹏娟;陈勤伟,等.蒸煮温度与碱用量对大麻纤维晶体结构与热性能的影响[J].印染助剂,2010,27(11):28~31
    [178]Ouajai S.; Shanks R.A. Morphology and structure of hemp fibre after bioscouring[J].Macromolecular bioscience,2005,5(2):124-134
    [179]Swatloski R.P.; Spear S.K.; Holbrey J.D., et al. Dissolution of cellose with ionicliquids[J]. Journal of the American Chemical Society,2002,124(18):4974-4975
    [180]孙居娟;田俊莹;顾振亚.竹原纤维与竹浆纤维结构和热性能的比较[J].天津工业大学学报,2006,25(6):37-40
    [181]王志玲;王正;阎昊鹏.麦秆表面自由能及其分量研究[J].高分子材料科学与工程,2007,23(3):207-210
    [182]Sawpan M.A.; Pickering K.L.; Fernyhough A. Effect of various chemical treatments onthe fibre structure and tensile properties of industrial hemp fibres[J]. Composites Part A:Applied Science and Manufacturing,2011,42(8):888-895
    [183]Sgriccia N.; Hawley M.C.; Misra M. Characterization of natural fiber surfaces andnatural fiber composites[J]. Composites Part A: Applied Science and Manufacturing,2008,39(10):1632-1637

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700