用户名: 密码: 验证码:
电沉积Ni-W-B系复合镀层的工艺及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文阐述了目前国内外Ni-B、Ni-W、Ni-W-B等复合镀层研究现状,在此基础上,作者提出了一种利用脉冲电沉积来制取RE-Ni-W-B复合镀层的新方法。此外,通过在RE-Ni-W-B体系中添加PTFE、BN、MoS_2、SiC、B_4C、Al_2O_3固体颗粒,以降低该复合镀层的内应力,消除复合镀层的表面裂纹,并提高复合镀层的硬度及耐磨性等性能。
     阐述了合金共沉积、复合电沉积理论及脉冲电沉积RE-Ni-W-B系工艺的沉积机理,并借助于W-H_2O系电位-pH图、B-H_2O系电位-pH图、Ni-B-H_2O系电位-pH图,从热力学角度探讨了电沉积RE-Ni-W-B系复合镀层的可能性以及难易程度。
     采用正交实验方法研究了直流电沉积RE-Ni-W-B工艺,通过对复合镀层硬度及沉积速度的分析,筛选出了最佳的工艺条件。但由于镀层脆性较大,复合镀层表面裂纹众多。
     在确定出直流电沉积最佳工艺条件的基础上,又采用脉冲电沉积的方法来制取RE-Ni-W-B多元复合镀层,降低了复合镀层的内应力,减少了镀层的表面裂纹,同时提高了复合镀层的硬度及耐磨性,得出了脉冲复合电沉积RE-Ni-W-B的最佳脉冲频率及占空比,但该复合镀层的表面裂纹仍很明显。
     研究了SiC、B_4C、Al_2O_3等硬质耐磨固体颗粒及PTFE、BN、MoS_2等减摩微粒对脉冲电沉积RE-Ni-W-B复合镀层性能的影响。实验表明,在这些颗粒共沉积的同时,降低了其它品粒的尺寸,而且镀液中这些颗粒含量越多,沉积的晶粒尺寸就越小。因此,这些颗粒的使用,彻底消除了复合镀层的表面裂纹,提高了镀层表面的光滑度。
     通过成份分析表明,与直流电沉积相比,采用脉冲电沉积的方法能提高RE-Ni-W-B多元复合镀层中W和B的含量。镀液中所添加的SiC、B_4C、Al_2O_3、PTFE、BN、MoS_2颗粒在镀层中均有不同程度的沉积,但又会对镀层中W和B的含量产生影响。
     对RE-Ni-W-B-MoS_4-B_4C和RE-Ni-W-B-PTFE-B_4C两种复合镀层的相结构进行了分析,结果表明,RE-Ni-W-B-MoS_2-B_4C复合镀层镀态下以非晶态为主,部分已晶化;当经500℃热处理后,镀层已晶化;经800℃热处理后,CeO_2和B_4C仍以化合物的形式存在。而RE-Ni-W-B-PTFE-B_4C复合镀层在镀态下介于非晶与微晶之间;200℃热处理后,镀层状态
    
    绍毋Z梦/又一贷硬子一学夕z甘丈
    卿岁
    变为微晶;400℃热处理后,PTFE的特征峰线强度变弱;600℃热处理后复合镀层完全品
    化,合金的原子排列规则,PTFE完全分解;经800℃热处理后,CeOZ和B汇仍以化合物的
    少侈式存在。
     通过对复合镀层硬度、磨损率及高温抗氧化性的比较分析,研究了SIC、氏C、A12认
    三种不同的硬质颗粒对RE一Ni一W一B一PFTE、RE一Ni一W一B一BN及RE一Ni一W一B一MOS,复合镀层性能
    的影响。含有SIC、B不、A12O:、的RE一Ni一w一B复合镀层性能优异,硬度明显高于不加含固
    体颗粒时RE一Ni一W一B复合镀层,磨损率也显著低于RE一Ni一W一B复合镀层。并得出在脉冲
    电沉积获得的RE一Ni一w一多元复合镀层中,在添加PTFE、BN、MoSZ三种物质中,自润滑
    性能最好的是PTFE。
The current research status of Ni-B, Ni-W, Ni-W-B composite coatings at home and in abroad is discussed in this thesis, and the author puts forward a new method to obtain RE-Ni-W-B multifunctional composite coatings by means of pulse electrodeposition. Furthermore, some grains of PTFE, BN, MoS2, SiC, B4C, and A12O3 are added into the RE-Ni-W-B system to reduce its internal stress, eliminate its surface cracks and enhance its hardness, wear-resistance and the resistance to oxidation at high temperature.
    The theories of alloy co-deposition and composite electrodeposition and the mechanism of pulse electrodeposition of RE-Ni-W-B coatings are expounded. By use of E-pH patterns of W-H2O, B-H2O and Ni-B-H2O, the possibility of electrodeposition of RE-Ni-W-B composite coatings is discussed from the standpoint of thermodynamics.
    Through analysis of hardness and thickness of the composite coatings, the optimal process conditions of DC electrodeposition of RE-Ni-W-B composite coatings are screened out by orthogonal experiment. But there are many cracks on the surface of RE-Ni-W-B composite coatings owing to high internal stress.
    After determining the optimal process conditions of DC electrodeposition of RE-Ni-W-B composite coatings, the composite coatings are also obtained by means of pulse electrodeposition so as to decrease the internal stress, eliminate the cracks and enhance the hardness and wear-resistance of the coatings. The best pulse frequency and duty cycle are obtained, but the surface cracks of composite coatings are still obvious.
    The effects of wear-resistant grains such as SiC, B4C, AI2O3 and antifriction grains such as PTFE, BN, MoS2 on the properties of pulse electrodeposited RE-Ni-W-B multifunctional composite coatings are studied. Experimental results indicate that the sizes of other crystalline grains decrease during the co-deposition of these grains, and the higher the contents of these grains in the bath are, the smaller the sizes of other crystalline grains. The surface cracks of the RE-Ni-W-B composite coatings are eliminated and the smoothness is improved owing to the uses of these grains.
    The composition analysis shows that pulse electrodeposition can increase W and B contents in the RE-Ni-W-B composite coatings, compared with DC electrodeposition. All of
    
    
    
    these solids such as SiC, B4C, AI2O3, PTFE, BN, MoS2 can deposit into the RE-Ni-W-B composite coatings to a different degree, but this will affect W and B contents in the coatings.
    The X-ray diffraction results of RE-Ni-W-B-B4C-MoS2and RE-Ni-W-B-PTFE-B4C composite coatings show that (1) As to the RE-Ni-W-B-B4C-MoS2 composite coating, the coating is mainly amorphous and partially crystallized as-deposited, and the coating is been crystallized after heat treatment at 500. (2) As to the RE-Ni-W-B-PTFE-B4C composite coating, the coating is between amorphous and micro-crystalline as-deposited, and the coating changes into micro-crystalline state after heat treatment at 200; the diffraction peak of PTFE decreases after heat treatment at 400; PTFE begins to decompose and the composite coating is crystallized after heat treatment at 600. CeO2 and B4C in the RE-Ni-W-B-B4C-MoS2and RE-Ni-W-B-PTFE-B4C composite coatings are very stable and do not decompose after heat treatment at 800 .
    Through analysis and comparison of the hardness, wear rate and the resistance to oxidation at high temperature of the composite coatings, the effects of three different grains SiC, B4C, AI2O3 on the properties of pulse electrodeposited RE-Ni-W-B-PFTE, RE-Ni-W-B-BN and RE-Ni-W-B-MoS2 multifunctional composite coatings are studied. The results indicate that the properties of the multifunctional composite coatings including SiC, B4C, AI2O3 grains are much better than those of the coatings without these grains, the hardness improves and the wear rate decreases obviously. The results also indicate that the best self-lubricating material is PTFE in the RE-Ni-W-B composite coatings obtained by pulse electrodeposition.
引文
[1] U.S.pat.2571722
    [2] U.S.pat.2999798
    [3] 郭鹤桐,舒钰,唐致远.金属陶瓷复合材料的电沉积.电镀与环保,1982,3:4
    [4] Gugliemli.N, William Tiedemann, John Newman. Growing porous layers. J. Electrochem.Soc., 1972, 119(2):187
    [5] 曾华梁,吴仲达,陈均武等,电镀工艺手册.北京:机械工业出版社,1999,9:628~630
    [6] 彭群家,马莒生.复合电沉积的研究及进展.电镀与环保,1998,18(6):3~7
    [7] M.Ghouse, M.Viswanathan,E.G.Ramachandran.Electrocodepositionof nickel-molybdenum disulfide and nickel-tungsten disulfide. Metal Finishing, 1980,78(4):44
    [8] Hidetaka Hayashi,Shin-yalzumi Isao Tari. Codeposition of α-alumina particles from acid copper sulfate bath. J.Electrochem.Soc, 1993,140(2):362
    [9] J.Sedowaska Mazur, M.E.Wazwick R.Walker. Electrodeposition and properties of tin-nickel/silicon carbide composite coatings.Trans.IMF, 1986,64(4): 142
    [10] C. White,J.Foster, Ibid. 1981,59(1):8
    [11] V.D.Stankovic, M.Gojo. Electrodeposited composite coatings of copper with inert, semiconductive and conductive particles. Surface and coatings Technology, 1996,81 (2-3):225.
    [12] J.R.Roos,J.P.Celisetal.Trans.IMF, 1977,55(3): 113
    [13] Patrick R.Webb,Neil L.Robertson, Electrolytic codeposition of Ni-γ Al_2O_3 thin films. J.Electrochem. Soc, 1994,141 (3):669
    [14] M.E.Warwick,J.Sandowskamazur. A preliminary study of the electrodeposition of tin and non-metallic particles. Platingand Surface Finishing, 1985,72(5): 120
    [15] J.W.Graydon,D.W.Kirk. J.Electrochem Soc, 1990,137(7):2061
    [16] D.W.Snaith,P.D.Graves. Trans,IMF, 1972,50(3):95
    [17] J.Foster, A.M.J.Kariapper. Ibid. 1973,51(5):27
    [18] 马志坤,赵新明,杜锋.复合镀层的现状与发展.电刷镀技术,2001,(2):1
    [19] 彭群家.Ni-ZrO_2复合电沉积机理的研究.电化学,1999,5(1):68
    [20] 张允诚等主编,电镀手册.北京:国防工业出版社,1997:606
    [21] 曾华梁,吴仲达,陈均武等,电镀工艺手册.北京:机械工业出版社,1999,9:628~630
    [22] Karthikeyan S, Srinivasan K N, Vasudevan T, et al. Characterisation of electroless nickel
    
    phosphorus silicon carbide composites. Bull. Electrochem. 2001,17(3):127~130
    [23] D. H. Cheng, W. Y. Xu. L, Q. Hua. Z. Y. Zhang, et al. Electrochemical preparation & mechanical properties of amorphous Nickel-SiC composites. Plating & Surface Finishing.1998.2:61~64
    [24] Yucheng W, Zhao Y. Constitution of wear-resistant electroless nickel phosphorus composite with silicon carbide. Z. f. Metallkunde. 2000,91(9):788~793
    [25] 刘颖,陈家钊,涂铭旌.ZrO_2对Ni-P化学镀层抗高温氧化性影响.表面技术,1996,25(5):7~8
    [26] 谢凤宽.摩擦电喷镀Ni-Co-MoS_2复合镀层结构与摩擦学性能.中国表面工程,2002,(2):27~29,32
    [27] 刘善淑,成旦红,应太林等.电沉积Ni-P-ZrO_2复合电极析氢催化性能的研究.电镀与涂饰,2001,20(6):4~7
    [28] Osiewicz B. Ni-P composite coatings containing TiO_2 and PTFE. Thin Solic Films, 1999,349(1):43~47
    [29] 宋来州,李健,王福君.化学镀Ni-P合金/TiO_2复合膜的耐蚀性研究.材料科学与工艺,2002,10(2):148~150
    [30] 曲彦平,李德高,孙泰礼.铝合金Ni-P-Al_2O_3复合镀前处理工艺和耐蚀耐磨损性能的研究.表面技术,2001,30(1):3~5
    [31] 曲彦平,李德高.化学镀Ni-P-Al_2O_3工艺及性能研究.表面技术,1999,28(6):3~6
    [32] Y.L.Wang, Y. Z. Wan, Sh. M. Zhao,H. M. Tao, X. H. Dong. Electrodeposition and characterization of Al_2O_3-Cu(Sn), CaF_2-Cu(Sn) and talc-Cu(Sn) electrocomposite coatings.Surface and Coatings Technology. 106(1998) 162~166
    [33] 周白杨,高诚辉,李晓峰等.Ni-Fe-P/Al_2O_3复合镀层的硬度和耐磨性.电镀与环保,1998,18(3):6~9
    [34] 朱龙章,张庆元,陈宇飞等.电沉积镍-钴-碳化钨复合镀层的研究.电镀与涂饰,1999,18(1):4~7
    [35] Guo Zhongcheng, Zhu Chengyi, Zhai Dacheng, et al. Microstructure of electrodeposited RE-Ni-W-P-SiC composite coating. Trans. Nonferrous Met. Soc. China. 2000,10(1):50~52
    [36] Guo Zhongcheng, Zhu Xiaoyun,Yang Xianwan. Corrosion resistance of electrodeposited RE-Ni-W-P-SiC composite coating. Trans. Nonferrous Met. Soc. China. 2001,11 (3):413~416
    [37] Z.C. Guo, X.Y. Zhu, R.D. Xu, et al.Cathodic process and wear resistance of electrodeposited RE-Ni-W-P-SiC composite coating. ACTA METALLURGICA SINICA.
    
    2002,15(4):369~374
    [38] 郭忠诚,杨显万,翟大成等.电沉积RE-Ni-W-P-SiC多功能复合材料的抗高温氧化性研究.功能材料,2000,31(6):651~653
    [39] 苏加国,郭忠诚,邓纶浩等.工艺条件对电沉积RE-Ni-W-P-SiC-PTFE复合镀层性能的影响.电镀与环保,2002,22(2):1~4
    [40] 郭忠诚,邓纶浩,朱晓云等.RE-Ni-W-P-SiC-PTFE复合镀层的抗氧化性研究.机械工程材料,2001,25(4):26,36
    [41] Chen Ling, Guo Zhongcheng, Yang Xianwan. Structure and characteristics of electrodeposited RE-Ni-W-P-B_4C-PTFE composite coatings. Trans. Nonferrous Met. Soc. China. 2001,11(6):887~890
    [42] Orlovskaya L, Medeliene V. Electrodeposition of multiplayer cobalt-sillicon carbide composite coatings from a single bath. Bull. Electrochem. 2001,17(8):371~377
    [43] Sun Kyu Kim, Hong Jae Yoo. Formation of bilayer Ni-SiC composite coatings by electrodeposition. Surface and Coatings Technology. 108-109 (1998): 564~569
    [44] 王宏智,张卫国,姚素薇.电沉积梯度功能材料的研究进展.电镀与环保,2001,21(3):1~4
    [45] Q. Zhao, Y. Liu, H. M(?)ller-Steinhagen, G. Liu. Graded Ni-P-PTFE coatings and their potential applications. Surface and Coatings Technology. 155(2002) 279~284
    [46] 文明芬,刘晓冰,张晶等.功能梯度材料的新型制备法—多层复合镀.电镀与涂饰,1999,18(1):44~4
    [47] 尹邦跃,纳米时代,北京:中国轻工业出版社.2001,(7):13
    [48] 蒋斌,徐滨士,董世运等.纳米复合镀层的研究现状.材料保护,2002,35(6):1~3
    [49] 顾宝珊,纪晓春,张启富等.化学镀镍-磷-超微金刚石复合镀层初探.电镀与精饰,1999,21(5):9~11
    [50] 程森,王昆林,赵高敏.纳米SiC复合镀层制备工艺的研究.材料保护,2002,35(8):24~26
    [51] X.H.Chen, F.Q.Cheng, S. L. Li, L. P. Zhou, D. Y. Li. Electrodeposited nickel composites containing carbon nanotubes. Surface and Coatings Technology. 155(2002) 274~278
    [52] 王健雄,陈小华.碳纳米管镍基复合镀层材料耐腐蚀性的初步研究.腐蚀与防护,2002,23(1):6~9
    [53] Benea L, Bonora P.L. Composite electrodeposition to obtain nanostructured coatings. J. Electrochem Soc. 2001,148(7),461~465
    
    
    [54] Zimmerman A F. Coposite Ni-SiC nano-coating by electrodeposition. AESF SUR/FIN, 2001
    [55] 徐滨士,董世运,马世宁等.N-Al_2O_3p/Ni复合刷镀层的组织和摩擦磨损特性.材料保护,2002,35(6):6~8
    [56] 张玉峰.复合刷镀纳米Ni-ZrO_2高温耐磨性的研究.电镀与涂饰,2002,19(4):18~21
    [57] 黄新民,谢跃勤,吴玉程等.Ni-P-纳米TiO_2微粒化学复合镀层的摩擦特性.电镀与精饰,2001,23(5):1~4
    [58] 黄新民,吴玉程,郑玉春等.表面活性剂对复合镀层中TiO_2纳米颗粒分散性的影响.表面技术,1999,28(6):10~12
    [59] 李声泽.纳米电沉积技术最新发展简介.中国电镀材料信息,2002,2(1):1~3
    [60] Mandich N V, Dennis J K. Codeposition of nano-diamonds with chromium. Metal Finishing. 2001,99(6): 117~119
    [61] 刘先黎.Ni-纳米FeS复合镀层耐磨性的研究.电刷镀技术,2001,(1):9~11
    [62] 张玉峰.Ni-P-纳米Si_3N_4微粒复合刷镀工艺研究.电镀与精饰,2001,23(6):5~7
    [63] 专家访谈.徐滨士院士谈纳米表面工程.中国表面工程,2002,55(2):47
    [64] Pierre-Antonine Gay, Patrice Bercot,Jacques Pagetti. Electrodeposition and characterisation of Ag-ZrO_2 electroplated coatings. Surface and Coatings Technology. 2001,140:147~154
    [65] 吴元康,余焜,熊晓辉等.纳米晶金刚石织构粒子增强银基电接触复合镀层的研究.中国电镀材料信息,2002,2(6):64~68
    [66] 霍世琼,梁坚.矩形波脉冲电镀及其电源的选择.电镀与精饰,1994,16(3):24
    [67] 杨凯华,脉冲电镀工艺参数对镀层性能影响的研究.探矿工程,1996,(3),28~31
    [68] 郭万华,张国栋.Ni-SiC复合电镀沉积机理的研究.华东冶金学院学报,1999,16(3):235~239
    [69] 杨防组,曹刚敏,郑雪清等.镀液组成对Ni-W合金电沉积的影响.材料保护,1999,32(8):1~3
    [70] 杨防组,曹刚敏,郑雪清等.镍钨合金电沉积的电流效率和镀层显微硬度.电镀与涂饰,1999,18(3):1~4
    [71] 杨防组,曹刚敏,胡筱等.镍钨硼合金电沉积机理及镀层微晶粒尺寸.电化学,2000,6(2):169~175
    [72] 姚素薇,王宏智,桂枫.电沉积Ni-W纳米梯度镀层.天津大学学报,2000,33(4):526~530
    [73] 朱立群,李卫平,吴彩峰.基体材料对镍钨非晶态镀层的影响.材料保护,1997,30(7):
    
    16~20
    [74] 李爱昌.电沉积(Ni-W)-SiC复合镀层结构与性能的研究.河北大学学报,1995,15(3):66~72
    [75] 于金库.稀土元素在电沉积Ni-P基镀层中的作用.电镀与精饰,1992,14(5):8~9
    [76] 肖秀峰,刘榕芳.非晶态Ni-W-WC复合镀层的制备及镀层性能研究.材料保护,2003,36(4):25
    [77] 王宏智,姚素薇,刑冬梅等.Ni-W纳米结构梯度镀层的制备、表征及热应变特性.物理化学学报,2002,18(11):1029~1032
    [78] 王宏智,姚素薇,张卫国.Ni-W纳米结构梯度镀层耐热及高温氧化性能.化工学报,2003,54(2):237~241
    [79] 王宙,李智,于靖华等.电沉积Ni-W-Al_2O_3复合镀层工艺与性能研究.表面技术,2002,31(5):24~25
    [80] 王宙,许光宇,王金玉等.电沉积Ni-W合金镀层的X射线光电子能谱分析.材料保护,2002,35(4):15
    [81] 曹刚敏,杨防组,黄令等.退火前后镍钨硼合金电沉积层的结构与性能.物理化学学报,2001,17(2):150~154
    [82] 黄令,董俊修,杨防组等.镍-钨合金电沉积层结构与显微硬度的研究.材料保护,1999,32(10):18~19
    [83] 文明芬,郭忠诚,杨显万.电沉积Ni-Mo-P-SiC复合镀层.材料保护,1999,32(3):6
    [84] 张敬尧,李延祥.SiC表面活化对Ni-Co-P/SiC复合沉积层性能的影响.腐蚀与防护,2002,23(3):99~101
    [85] 李爱昌.(Ni-W)-ZrO_2非晶复合镀层的制备及性能.材料保护,2000,33(7):11~12
    [86] 董允,林晓娉.Ni-W-Co/Al_2O_3复合电刷镀研究.表面技术,1997,26(6):14~16
    [87] Zhongcheng Guo, Xiaoyun Zhu, Dacheng Zhai,et al. Electrodeposition of Ni-W amorphous alloy and Ni-W-SiC composite deposits. J. Mater. Sci. Technol. 2000,16(3):323~326
    [88] Guo Zhongcheng, Liu Hongkang, Wang Zhiyin, et al. Properties of electrodeposited amorphous Ni-W-P-SiC composite coatings. ACTA METALLURGICA SINICA. 1996,9(1):44~48
    [89] Guo Zhongcheng, Yang xianwan, Liu Hongkang. Microstructure of electrodeposited Ni-W-P-SiC composite coatings. Trans. Nonferrous Met. Soc. China. 1997,7(1):22~26
    [90] 邓纶浩,何柳,郭忠诚等.Ni-W-B-SiC复合电镀中B的沉积机理及其对镀层硬度的影
    
    响.材料保护,1999,32(6):3~5
    [91] Ma Keyi, Guo Zhongcheng, Wenmingfen, et al. Combination strenthening process of Ni-W-Ti-SiC composite coating and nitrocarburization. Trans. Nonferrous Met. Soc. China. 1997,7(4): 148~151
    [92] Guo Zhongcheng, Zhai Dacheng, Yang Xianwan. Effects of addition of rare earth on properties and structures of Ni-W-B-SiC composite coatings. Trans. Nonferrous Met. Soc. China. 2000,10(4):538~541
    [93] Guo Zhongcheng, Liu Hongkang, Wang Zhiyin, et al. Process and properties of electroless plating RE-Ni-B-SiC composite coatings. ACTA METALLURGICA SINICA. 1995,8(2): 118~122
    [94] 欧忠文.纳米材料在表面工程中应用的研究进展.中国表面工程,2000,(2):5~8
    [95] 王鸿建著,电镀工艺学.哈尔滨工业大学出版社.1995:8,155~157
    [96] 郭忠诚,杨显万著,电沉积多功能复合材料的理论与实践.北京:冶金工业出版社,2002
    [97] N.Guglielmi. Kinetics of the deposition of inert particles from electrolytic baths. J.Electrochem.Soc, 1972,119(8): 1009
    [98] J.P.Celis,J.R.Roos. Kinetics of the deposition of Alumina particles from copper sulfate plating baths. J.Electrochem.Soc, 1977,124(10): 1508
    [99] A.Hovestad,L.J.J.Janssen.J.Appl.Electrochem. 1995,25(5): 519
    [100] Bing Joe Hwang,Cheng Sheng Hwang.J.Electrochem.Soc. 1993,140(4):979
    [101] Valdes J L,Cheh H Y .J.J.P.Celis 1987,134(4):223
    [102] Fransaer J, Celis J.P.,Roos J R. Analysis of the electrolytic codeposition of non-brownian particles with metals. J. Electrochem.Soc, 1992,139(2):413
    [103] 屠振密著,电镀合金原理与工艺.北京:冶金工业出版社,1993
    [104] 向国朴等.脉冲电沉积中阴极电流分布规律.天津大学学报,1993,5,76~82
    [105] 蒋汉著,冶金电化学.北京:冶金工业出版社.1982
    [106] L.I.安特罗波夫著,吴仲达等译.理论电化学,北京:高等教育出版社,1982,7
    [107] 杨熙珍,杨武.金属腐蚀电化学热力学电位-pH图及其应用,化学工业出版社.北京,1991:232
    [108] 杨显万等.96’全国物理化学学术年会论文集.1996:26
    [109] Barim, o, knachke, o, knbascheuski,Thermochemical Properties of inorganic substance, supplement, sping-verlag Belin Heideberg NEW YORK 1997
    [110] 钟竹前,梅光贵.化学位图在湿法冶金和废水净化中的应用,1986
    
    
    [111] 邓伦浩,何柳,郭忠诚等.Ni-W-B-SiC复合电镀中B的沉积机理及其对镀层硬度的影响.材料保护,1999.32(6):4
    [112] 郭忠诚,朱晓云.电沉积RE-Ni-W-B-B_4C-MoS_2复合镀层的性能研究.材料保护,2002,35(7):29~31

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700