用户名: 密码: 验证码:
纳米SiC粉体的制备及Ni-P-SiC(纳米)化学复合镀研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以工业SiC粉末为原料,用高能球磨机制备了SiC纳米粉。用Philips XL30FEG型扫描电镜、Y-4A型X射线衍射仪对球磨后的粉末进行了形貌观察和相结构分析,统计了SiC粉体尺寸随球磨时间的变化规律。结果表明:随着时间的延长,粉末逐渐细化至纳米级,可以细化到30nm左右,但球磨时间超过25h后粉末颗粒继续细化的速度明显放慢,并且在球磨的过程因为晶粒细化和晶粒内部发生了严重的晶格畸变,纳米粉体X射线衍射峰产生严重宽化。
     采用稀土作为添加剂,利用高能球磨机球磨微米尺寸Si、C的混合粉体使其合成纳米尺寸的SiC,利用扫描电镜观察经球磨后的粉体形貌,用Y-4A型X射线衍射仪对球磨后的粉体进行物相分析。结果表明:添加一定量的稀土可促进SiC的合成并加快粉体的细化过程。
     在化学镀Ni-P工艺基础上添加不同浓度的纳米尺寸的SiC粒子,制备出纳米结构的涂层,探讨SiC纳米粒子及其浓度对镀速、复合镀层性能等的影响。利用XJP-2型金相显微镜观察镀层组织并测其厚度,Philips XL30 FEG型扫描电镜观测镀层表面的组织形貌,镀层与基体的结合力采用WS-92型声发涂层附着力划痕试验和弯折法两种方法来定性地检测。MVK-H3型显微硬度计测镀层硬度,镀层的晶化过程采用DSC-TGA热重分析仪进行的,在MPX-2000摩擦磨损试验机上进行滑动磨损试验,Philips XL30 FEG型扫描电镜观测镀层磨损后的形貌。结果表明:添加适量的SiC纳米粒子,镀速和镀层硬度都有显著的提高,当镀液中纳米碳化硅的浓度是4.5g/L时,镀速可达到68.4μm/h;当镀液中碳化硅的浓度是3.5g/L时,退火后镀层硬度可达到1650HV。镀层的晶化过程缓慢,Ni_3P析出峰延迟到530℃左右。镀层的耐磨性能也有显著的提高,从磨损失重曲线上看,纳米复合镀层明显优于Ni-P合金镀层和微米碳化硅复合镀层。
The nanometer powder of SiC was preparation by two different ways . one is that the micrometer SiC powder was directly milled to nanometer size grain, another is that the mixed powder of micrometer Si and C with rare earth was milled to sythesize the nanometer SiC by MA(Machine Alloying).
    Namometer silicon carbide powder was prepared from industrial silicon carbide by high energy ball milling. Then the morphology and the phase structure of the milled powder were inspected by Y-4A XRD and Philips XL30 PEG SEM., the variational rules of milled SiC powder size were determined. Experimental results show that the grains were gradually triturated to namometer size with milling time and the grain size might be 30nm or so, but the grain size was not decreasing after the powder has been milled for 25 hours.
    The nano-sized SiC was synthesized by ball milling of Si and C mixed powders which rare earths as a additive was added to. And the morphology and the phase structure of the milled powder were inspected by Philips XL30 PEG SEM and Y-4A XRD. The results revealed that: by adding some rare earths to the mixture of Si and C powders, the rate of synthesizing SiC increased and the grinding rate quickened.
    On the basis of the technology of general Ni-P electroless coating, different quantity of nanometer SiC powder was put into Ni-P solution to prepare the nanostructure coatings. And how nanometer SiC particles and the concentration of SiC in the solution affect the coating rate and coating properties were discussed. The structure and the thickness of the coatings was inspected by the XJP-2 metallography microscope, the structure morphology was tested by Philips XL30 PEG SEM, and the adhesion between the foundation and the coating was examed by two methods: one is WS-92 sound-producing coating adhesion nick testing, another is bending. The hardness of coating was inspected by the MVK-H3 hardness test machine and the crystal process was tested on the DSC-TGA heat and weight ananysis machine. The gliding abration test was on the MPX-2000 friction and abration machine and the abration morphoy was tested by Philips XL30 PEG SEM. The results revealed that
    
    
    
    coating rate and film hardness increase much for putting proper nanometer SiC particles in the solution. When the nanometer SiC concentration is 4.5g/L, the rate can reach 68.4 m / h and the nanometer SiC concentration is 3.5g/L, the film hardness can reach 1650HV . The crystallizing progress is more slow and the temperature that Ni3P separate out postponed at 530 C or so. The wearability of the coating improved, the nanometer composite electroless coating was better than the Ni-P electroless coating and the micrometer composite electroless coating from the curve of the loss weight for abration.
引文
[1] 尹占帮,纳米时代现实与梦想。北京:中国轻工业出版社。20-25
    [2] 师昌绪,李克键,吴述尧,关于发展我国纳米科学技术的几点思考。新材料产业,2001年9月刊,第9期,总第26期,51-53
    [3] Rohrer.H, The Nanometer Age: Challege and Chance.Microelectronic Engineering. Vol.27, Issue 1-4, February, 1995,pp:3-15.
    [4] Menon, A.K; Gupa.B.K, Nanotechnology: data storage perspective. Nanostructured Materials, Vol. 11, No.8, pp965-985
    [5] 何时金,包大新,任旭余等,纳米科技给传统磁性产业带来的机遇和挑战磁性材料及器件,Vol.32 No.6,40-44 .
    [6] 张立德,跨世纪的新领域:纳米材料科学。
    [7] 张立德,我国纳米材料研究的现状.中国粉体技术,Vol.7,No.5,1-5
    [8] 白春礼,纳米科技的内涵及其发展趋势。武汉理工大学学报·信息与管理工程版,Vol.24,No.5,5-8
    [9] 张立德,纳米材料技术的发展趋势和应用机遇。世界科技研究与发展,18-22
    [10] 孙冬柏,表面纳米技术与工程,纳米科技与产业,2001年8月刊
    [11] 马运柱,范景莲,熊翔等,几种常见制备纳米粉末的方法,Vol.54,No.4,November 2002,33-37
    [12] 钱军民,李旭祥,黄海燕,纳米材料的性质及其制备方法[J]化工新型材料,2001,29(7):1
    [13] 李星国,超细粉研究及其动态,[J]材料导报,1992,5:14
    [14] 刘珍,梁伟,纳米材料制备方法及其研究进展[J],材料科学与工艺,2000,8(3):103
    [15] Anig A, Whangz O, Courttney TH. Tungsten solution kinetics and a thorphization of nickel in mechanical alloy[J],Acta Metal Moder, 1993,41 (1):165
    [16] Fan J L, Huang B Y, Qu X H.W-Ni-Fe nanostructure materials synthesized by high energy ball milling [J]. Trans of NP SC,2000,10(1):57
    [17] Koch,C.C, Synthesis of nanostructured materials by mechanical milling
    
    problems and opportunities, Nanostructured Materials, Vol.9,pp 13-22, 1997
    [18] 王庆学,张联盟,机械合金化——新型固态非平衡加工技术。中国陶瓷,Vol.38 No.2.36-40
    [19] Janot,Paphha ;Gu? rard,Danid,one-step synthesis of magnemite nanometric powders by ball-milling, Journal of Alloys and Compounds, Vol.333,Issue: 1-2,February 17,2002,pp.302-307
    [20] Froes, F.H.;Rusell;Lic,C-G;Froes,F.H.S.;etc, Synthesis of intermetallics by mechanical alloying, Materials Science and Engineering:A Vol: 192-193 ,February 28,1995,pp. 612-623
    [21] Sridhar, K;Chattopadhyan,k.,Synthesis by mechanical alloying and thermoelectric properties of Cu2Te, Journal of Alloys and Compounds, Vol.264,Issue: 1-2, Janrary 9,1998,pp.293-298
    [22] 邹正光,李金莲,陈寒元,高能球磨在复合材料制备中的应用。桂林工学院学报,Vol.22 No.2,Apr.2002,174-179
    [23] 程抱昌,机械合金化制备超细TiC颗粒及其增强铜基复合材料的研究,昆明理工大学硕士学位论文
    [24] 高海燕,曹顺华,机械合金化制备纳米晶硬质合金粉的进展。粉末冶金技术,Vol.21 No.6,Dec 2003,355-358.
    [25] 任瑞铭,纳米粉体材料的制备技术。大连铁道学院学报,Vol.20 No.3Sep.1999
    [26] 朱敏,纳米结构合金的机械合金化制备,华南理工大学学报(自然科学版),Vol.30 No.1,No.2002,89-94
    [27] 郭海祥,化学镀技术应用新进展。金属热处理2001年第1期,9-12
    [28] 胡信国,张钦京,化学镀镍技术的新进展.新技术新工艺材料与表面处理2001年第2期,35-37
    [29] 化学镀—新兴金属表面处理技术。金属工业,2000年7/8月,第四期
    [30] 张燕红,化学复合镀及其应用。稀有金属,Vol.22 No.6,439-434
    [31] 杨会静,镍-磷-纳米粒子复合镀工艺及镀层性能研究,哈尔滨工程大学硕士学位论文,2001
    [32] 吕正茂,李成明,吕反修,金刚石复合镀层的研究现状。表面技术,Vol.32No.6,Dec.2003.1-3
    [33] 林文松,李培耀,钱士强,郭铁波,周细应,纳米涂层的研究现状与展望。
    
    材料保护,Vol.36 No17,July 2003,1-3
    [34] 毛豫兰,赵雷康。纳米材料的制备及研究进展。国外建材技术,2001年第22卷第四期,16-20
    [35] 王晓刚,刘永胜,李晓池,SiC纳米材料制备及应用。西安科技学院学报,Vol.22,No.4,440-444
    [36] 宋祖伟,戴长虹,翁长根。碳化硅陶瓷粉体的制备技术。青岛化工学院学报,2001,Vol.22(2):135~138
    [37] 戴长虹,杨静漪,蔺玉胜。微波法合成SiC纳米粉。青岛化工学院学报,1999,Vol.20(1):25~28
    [38] 唐振方,高勇,杨元政,钟红海。WC粉体的高能球磨超细化。中国有色金属学报2000,Vol.10 Suppl.1:246~249
    [39] 张志焜,崔作林。纳米技术与纳米材料。北京:国防工业出版社,2000年10月,153~154
    [40] 王军民,王夏冰。球磨过程粉末的行为变化。甘肃工业大学学报,1999,Vol.25(1):26~30
    [41] 张先,冉广,机械合金化的反应机制的激战,金属热处理,2003,Vol.28No.6.28-32
    [42] Suryanarayana, C., Mechanical alloying and milling, Progress in Materials Science, Vol.46,Issuel-2, January, 2001,pp1-8
    [43] Ishikawa,Takashi;Yukawa,Nobuki;Yoshida,Yoshinori; et al.,Development of high-speed superplastic Al foil,Joural of Materials Processing Technology,113(2001),632-635
    [44] 林文松。机械合金化过程中的金属相变。粉末冶金技术2001 Vol.19(3):178~180.
    [45] 杨晓云,黄震威等。球磨Si,C混合粉合成纳米SiC的高分辨电镜观察。金属学报2000,36(7):684~688
    [46] R?v?sz,A,;Vng?r, T.;Borb?ly, A.;Lendvai,J.,Dislocations and grain size in ball-milled iron powder, Nanostructured Materials, Vol.7,No.7,1996,pp779-788
    [47] Kisi,E.H.;Zhang, H.,New ball milling induced solid solution and amorphous phases in the Zn-V system, Journal of Alloys and Compounds, Vol.248,February 15,1998,pp201-205
    
    
    [48] Kun.C, Mecnanical alloying process during high energy ball milling, Metal Powder Report, Vol.52,Issue: 1,January, 1997,pp.3-6
    [49] Ivanov, E.Y.;Suryannarayana,C.;Bryskin,B.D., synthesis of a nanocrystalline W-25wt% Re alloy by mechanical alloying, Materials Science and EngineeringA351(1998),255-261
    [50] 许俊友,刘英才等。稀土在铁基高铬合金粉末球磨过程中的作用.中国稀土学报,2000,18(4):347~351.
    [51] 许北雪,吴锦雷等。稀土镧对真空蒸发沉积银纳米粒子团聚的影响.物理化学学报,2002,18:91~94.
    [52] 陈世柱,黎文献,尹志民,行星式高能球磨机工作原理研究。矿冶工程,Vol.17 NO.4.62-65
    [53] 范景莲,黄伯云等。过程控制剂对机械合金化过程与粉末特征的影响。粉末冶金工业,2002,Vol.12 No.2:7~12
    [54] 李凡,吴炳尧,机械合金化——新型的固态合金化方法。机械工程材料,Vol.23 NO.4.23-27
    [55] Ying,D.Y.;Zhang ,D.L., Solid-state reactions between Cu and A1 during mechanical alloying and heat treatment, Joural of Alloys and Compounds 311(200) 275-282
    [56] Hen-ich, M.;Ismail,N.;Lyubina, J., et al.,Synthesis and decomposition of Mg2FeH6 prepared by reactive milling
    [57] 王尔德,刘京雷,刘祖岩,机械合金化诱导固溶度扩展机制研究进展。粉末冶金技术,Vol.20,No.2 Apr.2002,110-113
    [58] 刘志坚,曲选辉,黄伯云,机械合金化反应合成TiN,粉末冶金技术,1997年第15卷第2期,110-113
    [59] 刘方新,董远达,机械合金化合金相形成机制的研究现状,物理,Vol.23 No.10559-604
    [60] 程兰征等。物理化学,上海,上海科技出版社,1982年6月
    [61] 杨朝聪,机械合金化技术及发展。云南冶金2001 Vol.30(1):38~42
    [62] 张博,Ni-Co-P/WC(nm)复合镀层研究及硅的表面金属化,广东工业大学硕士论文,广东工业大学图书馆,2001
    [63] 张清霄,张卫红,曹佰顺。Ni-P和Ni-P-SiC化学镀层的结构和性能,郑州
    
    工业大学学报。1998,Vol.19 No.3.50-53
    [64] 吕正茂,李成明,吕反修,金刚石复合镀层的研究现状。表面技术,Vol.32No.6,Dec.2003.1-3
    [65] 李金桂主编,防腐蚀表面工程技术。北京:化学工业出版社,2003.01,153~155
    [66] 姜晓霞,沈伟,化学镀理论及实践。北京:国防工业出版社,2000.06
    [67] 黄新民,吴玉程,谢跃勤,宋皖英。Ni-P-纳米TiO2化学复合镀层。中国表面工程2001 Vol.52(3):30~32.
    [68] 王艳辉,藏建兵,王明智。纳米金刚石在摩擦副界面的减摩耐磨机理探讨,金刚石与磨料磨具工程。2001,4(124)4-5.
    [69] 曹茂盛,杨会静,刘爱东,王彪,周振功。Ni-P-Si纳米粒子化学复合镀工艺及力学性能研究,中国表面工程,2000,Vol.48(3):42~45.
    [70] 阳范文,Ni-P-SiC化学复合镀研究,桂林工学院学报1998 Vol.18(2):25-27
    [71] A.Grosjiean, M.Rezrazi, Study of the surface charge of silicon carbide (SiC) particles for electroless composite deposits nickel-SiC, Surface and Coatings Technology 96(1997) 300-304
    [72] 揭晓华,谢光荣,卢国辉。4Cr13不锈钢活塞环化学镀镍磷的试验研究。热加工工艺2002(2):38-39
    [73] 刘美华,李秀珍等。传统抗磨添加剂与纳米粒子的抗磨减摩机理分析比较合成润滑材料。2002,Vol.28(2):19-22
    [74] 冶银平,陈建敏等。含纳米金刚石的复合镍刷镀层的摩擦学特性。表面技术,1996,Vol25(2):27-29
    [75] 刘美华,李秀珍,沈兆光等,纳米粒子对钢/钢摩擦副摩擦学性能影响的试验研究,重型机械,2002,No.5,46-48
    [76] R.Taneri,I.N.A.Oguocha, S.Yannacopoulos, The tribological characteristics of electroless NiP coatings, Wear, 249(2001)389-396
    [77] Grosjjiean, M.Rezrazi, J.Takadoum, et al.,Hardness,friction and wear characteristics of nickel-SiC electroless composite
    [78] V.N.N.Reddy, B.Ramamoorthy, P.Kesavan Nair, Astudy on the wear resitance of electroless Ni-P/Diamond composite coatings, Wear 239(200) 111-116
    [79] W.X.Chen, J.P.Tu,H.Y.Gan, et al., Electroless preparation and tribological
    
    properties of Ni-P-Carbon nanotube composite coatings under bubricated condition, Surface and Coatings Technology 160(2002)68-73
    [80] 黎樵隼,白晓军,朱有兰,表面工程,北京:中国科学技术出版社,2001,130-131
    [81] 朱立群,丁学谊,王建华等,化学镀非晶态镍磷合金镀层抗氧化性性能研究,电镀与精饰,Sep.1999,Vol.18.No.3,22-26
    [82] 全永昕,施高义,摩擦磨损原理,浙江大学出版社,1988,148-151
    [83] 黄新民,谢跃勤,吴玉程等,(Ni-P)-纳米TiO2微粒化学复合镀层的摩擦特性。电镀与精饰,第23卷第5期,1-4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700