用户名: 密码: 验证码:
MEA/离子液体混合水溶液吸收CO_2的传质—反应机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
温室气体引起的全球气候变暖已成为国际上关注的焦点。而C02作为最主要的温室气体,其控制与减排刻不容缓。一乙醇胺(MEA)化学吸收法是当今工业C02捕集应用最广泛吸收剂,具有吸收速率快、选择性良好等优势。论文研究的重点是基于传统MEA吸收法的基础上,通过离子液体的强化手段,提高混合体系的吸收容量,改善其抗氧化和再生能力,并降低再生能耗从而弥补传统MEA法的缺陷,使得强化后的吸收法更有利于工业应用与推广。论文选择MEA/离子液体混合水溶液吸收CO2的新体系,利用亲水性离子液体或实验室自行研发的高效功能性离子液体与MEA配比形成均一水溶液吸收C02,取得了以下的研究结果:
     (1)对常规离子液体进行筛选后,发现MEA与1-丁基3-甲基-咪唑四氟硼酸钠([Bmim]BF4)这一混合体系具有良好的亲和性,具有较高的吸收负荷(0.447molCO2/mol absorbent)以及良好的抗氧化和再生能力;基于吸收-再生性能以及稳定性等评估考核,确定了MEA/[Bmim]BF4混合水溶液的最佳摩尔配比为7:3,并探讨了两组分在混合体系中的交互作用。
     (2)结合有机胺“两性离子”反应机理以及混合溶液吸收特性考察结果,阐明了MEA/[Bmim]BF4混合水溶液体系吸收C02的机理,认为这一体系中仍然是MEA与C02的化学反应为主,并以[Bmim]BF4促进C02水解的反应为辅的耦合作用机制;建立了这一体系中C02的传质-反应动力学模型,确定了其吸收C02属拟一级快速反应;获得混合体系吸收C02过程的反应速率常数k2,mix为3487.6m3·kmol-1·s-1,离子液体促进CO2水解吸收的反应速率常数k2,IL为1936.7m3·kmol·s-1。
     (3)由于常规离子液体对混合体系的吸收能力促进效果有限,因此合成了亲水性氨基酸功能性离子液体[C2OHmim][Gly]o这一功能性离子液体在室温下为固体,高温(80℃)下为液体;通过核磁共振分析,证实固体状态下的这一功能性离子液体无法直接与C02反应,溶解于有机溶剂也无法与C02反应,必须溶解于水中才能吸收CO2。相比于MEA以及MEA[Bmim]BF4混合水溶液,利用实验室合成的高效亲水功能性离子液体[C2OHmim][Gly]强化MEA吸收C02,在3%02浓度下还能保持较高的CO2吸收负荷(0.534molCO2mol absorbent),特别是在温度和氧气含量较高条件下,仍然具有较好的稳定性和抗氧化能力;同时也考察了MEA/[C2OHmim][Gly]混合溶液处理不同工艺工况条件烟气的吸收-再生特性。
     (4)研究了MEA/[C2OHmim][Gly]混合水溶液吸收CO2的反应机理,发现MEA与[C2OHmim][Gly]这两种物质在水溶液中均遵循“两性离子”反应机理与C02进行反应,且随着混合体系中[C2OHmim][Gly]浓度的增加总反应速率常数增大;利用双膜理论建立了这一新体系的传质-反应动力学模型,获得了重要的动力学参数,MEA/[C2OHmim][Gly]混合体系吸收C02过程的总反应速率常数k2,mix为6506.4m3·kmol-1·s-1,[C2OHmim][Gly]吸收C02的反应速率常数k2.AAIL为8980.6m3·kmol-1·s-1.
     本文也对比了MEA与这两类离子液体混合水溶液体系吸收C02的效果,证实利用亲水性离子液体以及功能性离子液体强化MEA的方法能有效保留MEA吸收C02反应速率快的特点,也能结合离子液体的稳定性增强体系的抗氧化能力,弥补MEA易降解、氧化的缺陷。其中[C2OHmim][Gly]功能性离子液对MEA法的强化效果更具优势。MEA/离子液体混合水溶液这一新C02捕集方法,将为目前亟待解决的C02控制与减排目标提供了新的思路,也为这一技术的进一步推广提供了基础数据与理论依据。
Monoethanolamine (MEA) is one of the most conventional absorbents for CO2capture from flue gas in the past few years and has still suffer several shortcomings. Herein, a mixed absorbent of MEA and ionic liquids was proposed to achieve CO2capture. The aim of the new system is to enhance the MEA process and obtain higher absorbtion capacity, antioxidant activity and regeneration efficiency. The hydrophilic ionic liquids used in this work were commercial-available or were synthesized in our laboratory. The main conclusions of this dissertation are:
     (1) Screening from some conventional ionic liquids, it was found that the mixed solution of MEA and [Bmim]BF4have a highest absorption capacity compared with pure MEA aqueous. The optimum mole ratio of MEA to [Bmim]BF4was found to be7:3. The mixed absorbent owns higher stability and antioxidant activity compared with aqueous MEA solution in the present of8%O2. Additionally, the absorbent could be well recycled by thermal regeneration after multi-cycle experiments.
     (2) Based on the zwitterions mechanism and the absorption results, the reaction mechanism of the CO2absorption into the mixed solution of MEA and [Bmim]BF4was clarified. The reaction between CO2and MEA was still the dominant reaction in the mixed absorbent solution. And,[Bmim]BF4has a positive effect on enhancing the hydration of CO2which could improve the whole absorption rate. The reaction rate constant k2k2,mix and k2,IL of the mixed solution of MEA/[Bmim]BF4were found to be3487.6m3·kmol·s-1and1936.7m3·kmol-1·s-1, respectively.
     (3) A new hydrophilic amino acid ionic liquid ([C20Hmim][Gly]) that was functionalized based imidazolium ionic liquid with glycine anions and hydroxy group was designed for CO2absorption. Since [C20Hmim][Gly] is a solid at room temperature, chemical reaction between CO2and [C20Hmim][Gly] was occurring only in the presence of water. The absorption capacity of [C20Hmim][Gly] was0.575mol CO2/mol absorbent that was similar to the equimolar stoichiometry by the zwitterion mechanism. Furthermore,[C20Hmim][Gly] aqueous solution was mixed with MEA into aqucous solution for CO2capture, and the results showed a great intoxication ability and high regeneration efficiency compared with pure MEA solution, making the CO2capture by this mixture system more efficient and economic.
     (4) The reaction mechanism of the CO2absorption into the mixed solution of MEA and [C2OHmim][Gly] was clarified. The mass transfer model of this system was established based on the membrane model and permeation model. Some important kinetic parameters such as the reaction rate constant and the enhancement factor were obtained. The reaction rate constant k2,mix and k2AAILs of the mixed solution of MEA/[C2OHmim][Gly] were found to be6506.4m3·kmol·s-1and8980.6m3·kmol·s-1, respectively.
     The absorption and regeneration of the mixed solution of MEA/[Bmim]BF4and MEA/[C2OHmim][Gly] were contrast discussion. The results indicated that both the [Bmim]BF4and [C20Hmim][Gly] both could enhance the MEA process by great absorbtion capacity, good antioxidant activity and high regeneration efficiency. The results of this work will provide a new pathway for the CO2absorption and also will provide some theoretic data for the industrial application of this new technology.
引文
[1]UN. Kyoto protocol to the United Nations framework convention on climate change. United Nations; 1998.
    [2]费维扬,艾宁,陈健.温室气体C02的捕集和分离——分离技术面临的挑战与机遇.气体净化,2005,5(2).1-4.
    [3]Metz, B.; Davidson, O. R.; Bosch, P.; Dave, R.; Meyer, L.A. IPCC climate change 2007:mitigation of climate change. Working group Ⅲ contribution to the fourth assessment report of the IPCC. Cambridge:Cambridge University Press.,2007,97.
    [4]张培.位阻胺AMP溶液富集烟道气中二氧化碳的研究.浙江大学硕士论文.杭州.2007.
    [5]Nakicenovic, N.; Alcamo, J.; Davi, G.; De Vries, B.; Fenhann, J.; Gaffin, S.; Gregory, K.; Griibler, A.; Jung, T.Y.; Kram, T.; Lebre, E.; Rovere, L.; Michaelis, L.; Mori, S.;, Morita, T.; Smith, S.; Swart, R.; Van Rooijen, S.; Victor, N.; Dadi, Z. Special report on emissions scenarios:a special report of working group Ⅲ of the intergovernmental panel on climate change. Cambridge: Cambridge University Press,2000.599.
    [6]Canadell, P.; Ciais, P.; Conway, T.; Field, C.B.; Quere, C.L.; Houghton, R.A.; Marland, G.; Raupach, M.R.; Carbon Budget 2007. Global carbon project,2008.
    [7]EIA. Emissions of greenhouse gases in the United States 2008. U.S. E.I A.2009, 1-68.
    [8]Oh, T.H. Carbon capture and storage potential in coal-fired plant in Malaysia a review. Renew. Sust. Energy Rev.,2010,14.2697-709.
    [9]IEA. World Energy Outlook 2011. Paris:IEA/OECD; 2011.
    [10]Wikipedia.File:Countries by carbon dioxide emissions world mapdeobfuscated. Png
    [11]IEA. Capturing CO2:IEA greenhouse gas R & D program. Cheltenham:IEA, 2007.23.
    [12]Bert,M. Intergovernmental Panel on Climate Change. Working Group Ⅲ. IPCC special report on carbon dioxide capture and Storage. Cambridge:Cambridge University Press.2005,440.
    [13]de Coninck, H.; Stephens, J.C.; Metz, B. Global learning on carbon capture and storage:a call for strong international cooperation on CCS demonstration. Energy Policy.2009,37.2161-2165.
    [14]Forbes, S. Carbon capture and sequestration (CCS) and underground capacity. World Resources Institute,2010.
    [15]IEA. Energy technology analysis:prospect for CO2 capture and storage.I.E. Agency,2004.
    [16]IEA. Carbon capture and storage roadmap. Paris:IEA/OECD,2008.
    [17]Sanpasertparnich, T.; Idem, R.; Bolea, I.; deMontigny, D.; Tontiwachwuthikul, P.Integration of post-combustion capture and storage into a pulverized coal-fired power plant. Int.J. Greenhouse Gas Control,2010,4.499-510.
    [18]Bohm, M.; Herzog, H.J.; Arsons, J.E.; Sekar, R.C. Capture-ready coal plants options, technologies and economics. Int. J. Greenhouse Gas Control.,2007,1. 113-120.
    [19]Kunze, C.; Spliethoff, H. Assessment of oxy-fuel, pre-and post-combustion-based carbon capture for future IGCC plants. Appl. Energy.2012,94.109-16.
    [20]Chen, Q.; Rao, A.; Samuelsen, S. H2 coproduction in IGCC with CCS via coal and biomass mixture using advanced technologies. Appl. Energy.2014,118,, 258-270.
    [21]Rubin, E.S.;Chen, C.;Rao, A.B. Cost and performance of fossil fuel power plants with CO2 capture and storage. Energy policy.2007.35 (9).4444-4454.
    [22]Wang, M.;Lawal, A.; Stephenson, P.; Sidders, J.; Ramshaw, C. Postcombustion GO2 capture with chemical absorption:a state-of-the-art review. Chem. Eng. Res.,2010,89 (9).1609-1624.
    [23]Hong, J.; Chaudhry, G.; Brisson, J.G.; Field, R.; Gazzino, M.; Ghoniem, A.F. Analysis of oxy-fuel combustion power cycle utilizing a pressurized coal combustor. Energy.2009,34.1332-1340.
    [24]Wall, T.;Liu, Y:H.;Spero, C.;liott, L.;Khare, S.;Rathnam, R. et al., An overview on oxyfuel coal combustion-state of the art research and technology development.Chem. Eng. Res. Design.,2009,1003-1016.
    [25]Rinker, E.B.; Ashour, S.S.; Sandall, O.C. Absorption of carbon dioxide into aqueous blends of Diethanolamine and Methyl-diethanolamine. Ind. Eng. Chem. Res.2000,39 (11).4346-4356.
    [26]Le, M.Y.; Kanniche, M. Screening of flowsheet modifications for an efficient monoethanolamine (MEA) based post-combustion CO2 capture. Int. J. Greenhouse Gas Control.2011,5.727-40.
    [27]王志安.烟道气中回收C02.化肥设计,1997,35(5):50-52.
    [28]Kohl, A.; Nielson, R. Gas purification, Fifth edition, Gulf Publishing Company, 1997.
    [29]Alie, C.; Backham, L.; Croiset, E.; Douglas, P.L. Simulation of CO2 capture using MEA scrubbing:a flowsheet decomposition method. Energy Con. Manag., 2005,46.475-87.
    [30]Mangalapally, H.P.; Notz, R.; Hoch, S.; Asprion, N.; Sieder, G.; Garcia, H.; Hasse. H. Pilot plant experimental studies of post combustion CO2 capture by reactive absorption with MEA and new solvents. Energy Procedia.2009,1. 963-970.
    [31]Voice, A.K.; Gary, T.; Rochelle, G.T.Products and process variables in oxidation of monoethanolamine for CO2 capture.Int. J. Greenhouse Gas Control. 2013,12.472-477.
    [32]Jackson, P.; Attalla M. Environmental impacts of post-combustion capture-new insights. Energy Procedia,2010,4.2277-2284.
    [33]Chi, S.; Rochelle. G.T. Oxidative degradation of monoethanolamine. Ind. Eng. Chem. Res.,2002,41 (17).4178-4186.
    [34]Strazisar, B.R.; Anderson, R.R.; White. C.M.Degradation pathways for monoethanolamine in a CO2 capture facility.Energy and Fuels,2003,17 (4). 1034-1039.
    [35]Supap, T.; Idem, R.; Veawab, A. Aroonwilas, A.; Tontiwachwuthikul, P.; Chakma, A.; Kybett, B.D. Kinetics of the oxidative degradation of aqueous monoethanolamine in a flue gas treating unit. Ind. Eng. Chem. Res,.2001,40 (16).3445-3450.
    [36]Rebolledo-Libreros, M.E.; Trejo, A. Density and viscosity of aqueous blends of three alkanolamines:N-Methyldiethanolamine, Diethanolamine, and 2-Amino-2-Methyl-l-Propanol in the range of (303 to 343) K. J. Chem. Eng. Data.,2006, 51(2).702-707.
    [37]Chiu, Li.F.; Li, M.H. Heat capacity of Alkanolamine aqueous solutions. J. Chem. Eng. Data.,1999,44(6).1396-1401.
    [38]Tobiesen, E.A.; Svendsen, H.F. Study of a modified amine based regeneration unit. Ind. Eng. Chem. Res.,2006,45(8).2489-2496.
    [39]毛松柏,叶宁,丁雅萍.低分压C02的回收新技术与应用.化学工业与工程技术,2004,25(3).12-15.
    [40]王泉清.有机胺溶液吸收C02的研究评述.山东师范大学学报:自然科学版2008,23(1).81-83.
    [41]Xiao, J.; Li, C.W.; Li M.H. Kinetics of absorption of carbon dioxide into aqueous solutions of 2-Amino-2-Methyl-1-Propanol+Monoethanolamine[J]. Chem. Eng. Sci.,2000,55(1).161-175.
    [42]Glasscock, D.A.; Critchfield, J.E.; Rochelle, G.T. CO2 Absorption/desorption in mixture of Methyldiethanolamine with Monoethanolamine or Diethanolamine. Chem. Eng. Sci.,1991,46(11).2829-2845.
    [43]Sakwattanapong, R.; Aroonwilas, A.; Veawab, A. Behavior of reboiler heat duty for CO2 capture plants using regenerable single and blended alkanolamines. Ind. Eng. Chem. Res.,2005,44(12).4465-4473.
    [44]Hagewiesche, D.P.; Ashour, S.S.; AI-Ghawas, H.A. et aL Absorption of carbon dioxide into aqueous blends of Monoethanolamine and N-Methyldiethanolamine. Chem. Eng. Sci.,1995,50(7).1071-1079.
    [45]Rangwala, H.A.; Morrell, B.R.; Mather, A.E. et al. Absorption of CO2 into aqueous tertiary amine/MEA solutions. Can. J. Chem. Eng.,1992,70(3). 482-490.
    [46]Alvarez, E.; Gomez-Diaz, D.; La Rubia, M.D. Navaza, J.M. Densities and viscosities of aqueous ternary mixtures of 2-(Methylamino)ethanol and 2-(Ethylamino)ethanol with Diethanolamine, Triethanolamine, N-Methyldi-ethanolamine, or 2-Amino-l-Methyl-1-Propanol from 298.15 to 323.15 K. J. Chem. Eng. Data,2006,51(3).955-962.
    [47]Mandal, B.P.; Guha, M.; Biswas, A.K.; Bandyopadhyay, S.S. Removal of carbon dioxide by absorption in mixed amine:modeling of absorption in aqueous MDEA/MEA and AMP/MEA solutions. Chem. Eng. Sci.,2001,56(22). 6217-6224.
    [48]Amann, J.M.G; Bouallou, C. CO2 capture from power stations running with natural gas (NGCC) and pulverized coal (PC):assessment of a new chamical solvent based on aqueous solutions of N-Methyldiethanolamine+Triethylene Tetramine. Energy Procedia.2009,1.909-16.
    [49]Oexmann, J.; Hasenbein, C.; Kather, A. Semi-empirical model for the direct simulation of power plant with integrated post-combustion CO2 capture processes by wet chemical absorption. Energy Procedia.2011,4.1276-85.
    [50]Jamal, A.; Meisen, A.; Lim, C.J. Kinetics of carbon dioxide absorption and desorption in aqueous alkanolamine solutions using a novel hemispherical contactor, experimental apparatus and mathematical modeling. Chem. Eng. Sci., 2006,61(19).6571-6589.
    [51]Aroua, M.K.; Haji-Sulaiman, M.Z.; Ramasamy, K. Modelling of carbon dioxide absorption in aqueous solutions of AMP and MDEA and their blends using aspenplus. Sep. Purif. Technol,2002,29(2).153-162.
    [52]Arashi, N. Evaluation of test results of 1000 m3 N/h pilot plant for CO2 absorption using an amine-based solution. Energ. Convers. Manage.,1997, 38(S1).63-68.
    [53]Mandal, B.P.; Kundu, M.; Bandyopadhyay, S.S. Physical solubility and diffusivity of N2O and CO2 into aqueous solutions of (2-Amino-2-Methyl-1-Propanol+Monoethanolamine) and (N-Methyldiethanol-amine+Monoethanol-Amine).J. Chem. Eng. Data,2005,50(2).352-358.
    [54]Choi, W.J.; Seo, J.B.; Jang, S.Y.; Jung, J.H.; Oh, K.J. Removal Characteristics of CO2 Using Aqueous MEA/AMP Solutions in the Absorption and Regeneration Process.J. Environ. Sci-China.2009,21(7).907-913.
    [55]Caplow, M. Kinetics of carbamate formation and breakdown. J. Am. Chem. Soc. 1968,90.6795-6803.
    [56]Danckwerts, P. V. The reactions of CO2 with ethanolamines. Chem. Eng. Sci. 1979,34.443-446.
    [57]Sada, E.; Kumazawa, H.; Han, Z. Q.; Matsuyama, H. Chemical kinetics of the reaction of carbon dioxide with ethanolamines in nonaqueous solvents. AIChE J. 1984,31.1297-1303.
    [58]Blauwhoff; P. M. M.; Versteeg, G. F.; Van Swaaij, W. P. M. A study on the reaction between CO2 and Alkanolamines in aqueous solutions. Chem. Eng. Sci., 1984,39(2).207-225.
    [59]Kumar, S.; Cho, J.H.; Moon, I. Ionic liquid-amine blends and CO2 BOLs: prospective solvents for natural gas sweetening and CO2 capture technology-a review. Int. J. Greenhouse Gas Control.2014.20.87-116.
    [60]Blanchard, L. A.; Hancu, D.; Beckman, E. J.; Brennecke, J. F. Green processing using ionic liquids and CO2. Nature,1999,399.28-29.
    [61]Blanchard, L. A.; Gu, Z.; Brennecke, J. F. High-pressure phase behavior of ionic liquid/CO2 systems.J. Phys. Chem. B.,2001,105.2437-2444.
    [62]Cadena, C.; Anthony, J. L.; Shah, J. K.; Morrow, T. I.; Brennecke, J. F.; Maginn, E. J. Why is CO2 so soluble in imidazolium-based ionic liquids? J. Am. Chem. Soc.,2004.126,5300-5308.
    [63]Zhang, S. J.; Chen, Y. H.; Li, F. W.; Lu, X. M.; Dai, W. B.; Mori, R. Fixation and conversion of CO2 using ionic liquids. Catalysis Today.,2006,115.61-69.
    [64]Huang, X.; Margulis, C. J.; Li, Y.; Berne, B. J. Why is the partial molar volume of CO2 so small when dissolved in a room temperature ionic liquid? Structure and dynamics of CO2 dissolved in [Bmim+][PF6-]. J. Am. Chem. Soc.,2005.127, 17842-17851.
    [65]Galan Sanchez, L.M.; Meindersma, G.W.; de Haan, A.B. Solvent properties of func-tionalized ionic liquids for CO2 absorption. Chem. Eng. Res. Design.2007, 85.31-9.
    [66]Olivares-Marin, M.; Drage, T.C.; Maroto-Valer, M.M. Novel lithium-based sorbents from fly ashes for CO2 capture at high temperatures. Int. J. Greenhouse Gas Control.2010,4.623-9.
    [67]Muldoon, M.J.; Aki, S.N.V:K.; Anderson, J.L.;Dixon, J.K.; Brennecke, J.F. Improving carbon dioxide solubility in ionic liquids. J. Phy. Chem.2007,111. 9001-9009.
    [68]Shiflett, M.B.; Yokozeki, A. Solubilities and diffusivities of carbon dioxide in ionic liquids:[bmim][PF6] and [bmim][BF4]. Ind. Eng. Chem. Res.2005,44 4453-4464.
    [69]Muldoon, M. I; Aki, S. N. V. K.; Anderson, I L.; Dixon, J. K.; Brennecke, J. F. Improving carbon dioxide solubility in ionic liquids. J. Phys. Chem. B..2007, 111.9001-9009.
    [70]Aki, S.N.V.K.; Mellein, B.R.; Saurer, E.M.; Brennecke, J.F.; High-pressure phase behavior of carbon dioxide. J. Phy. Chem. B.2004,108.20355-20365.
    [71]Jalili, A.H.; Mehdizadeh, A.; Shokouhi, M.; Sakhaeinia, H.; Taghikhani, V. Solubility of CO2 in 1-(2-hydroxyethyl)-3-methylimidazolium ionic liquids with different anions. J. Chem. Therm.2010,42.787-791.
    [72]Schilderman, A.M.; Raeissi, S.; Peters, C.J.; Solubility of carbon dioxide in the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Fluid. Phase Equ.,2007,260.19-22.
    [73]Anthony, J. L.; Maginn, E. J.; Brennecke, J. F. Solubilities and thermodynamic properties of gases in the ionic liquid 1-n-Butyl-3-methylimidazolium hexafluorophosphate. J. Phys. Chem. B.,2002,106.7315-7320.
    [74]Bates, E. D.; Mayton, R.D.; Ntai, I.; Davis, Jr. J. H. CO2 Capture by a task-specific ionic liquid. J. Am. Chem. Soc.,2002,124 (6).926-927.
    [75]Sharma, P.; Park, S. D.; Baek, I. H.; Park, K. T.; Yoon, Y. I.; Jeong, S. K. Effects of anions on absorption capacity of carbon dioxide in acid functionalized ionic liquids. Fuel Proces. Tech.,2012,100.55-62.
    [76]Xue, Z. M.; Zhang, Z. F.; Han, J.; Chen, Y.; Mu, T. C. Carbon dioxide capture by a dual amino ionic liquid with amino-functionalized imidazolium cation and taurine anion. Int. J. Greenhouse Gas Control,2011,5.628-633.
    [77]Zhao, Y. S.; Zhang, X. P.; Dong, H. F.; Zhen, Y. P.; Li, G H.; Zeng, S. J.; Zhang, S. J. Solubilities of gases in novel alcamines ionic liquid 2-[2-hydroxyethyl (methyl) amino] ethanol chloride. Fluid Phase Equilibr,2011,302.60-64.
    [78]Zhang, Y.; Wu, Z. K.; Chen, S. L.; Yu, P.; Luo, Y. B. CO2 Capture by Imidazolate-based ionic liquids:effect of functionalized cation and dication. Ind. Eng. Chem. Res.,2013,52.6069-6075.
    [79]Aronu, U.E.; Hessen, E.T.; Haug-Warberg, T.; Hoff, K.A.; Svendsen, H.F. Vapor-liquid equilibrium in amino acid salt system:experiments and modeling. Chem. Eng. Sci.2011,66.2191-2198.
    [80]Goodrich, B.F.; de la Fuente, J.C.; Gurkan, B.E.; Lopez, Z.K.; Price, E.A.; Huang, Y; Brennecke, J.F. Effect of water and temperature on absorption of CO2 by amine-functionalized anion-tethered ionic liquids. J. Phys.Chem. B. 2011,115.9140-9150.
    [81]Zhang, J.; Zhang, S.; Dong, K.; Zhang, Y.; Shen, Y.; Lv, X. Supported absorption of CO2 by tetrabutylphosphonium amino acid ionic liquids. Chem. Eur.J.2006,12.4021-4026.
    [82]Aronu, U. E.; Svendsen, H. F.; Hoff, K. A. Kinetics of carbon dioxide absorption into aqueous amine amino acid salt:3-(methylamino)propylamine/sarcosine solution. Int. J. Greenhouse Gas Control.,2010,4(5).771-775.
    [83]Hartono, A.; Aronu, U.E.; Svendsen, H.F. Liquid speciation study in amine amino acid salts for CO2 absorbent with 13C-NMR. Energy Procedia,2011,4. 209-215.
    [84]Wei, C.C.; Puxty, G.;Feron, P. Amino acid salts for CO2 capture at flue gas temperatures. Chem. Eng. Sci.,2013,107.218-226.
    [85]Fukumoto, K.; Yoshizawa, M.; Ohno, H. Room temperature ionic liquids from 20 natural amino acids.J. Am. Chem. Soc.,2005,127 (8),2398-2399.
    [86]Jiang, Y. Y.; Wang, G N.; Zhou, Z.; Wu, Y T.; Geng, J.; Zhang, Z. B. Tetraalkylammonium amino acids as functionalized ionic liquids of low viscosity. Chem. Commun.,2008,4.505-507.
    [87]Ma, J. W.; Zhou, Z.; Zhang, F.; Fang, C.G; Wu, Y. T.; Zhang, Z. B.; Li, A. M. Ditetraalkylammonium amino acid ionic liquids as CO2 absorbents of high capacity. Environ. Sci. Technol.,2011,45.10627-10633.
    [88]Camper, D.; Bara, J. E.; Gin, D. L.; Noble, R.D. Room-temperature ionic liquid-amine solutions:tunable solvents for efficient and reversible capture of CO2. Ind Eng Chem Res,2008,47(21).8496-8498.
    [89]Zhang, C.; Wang, H.; Malhotra, S.V.; Dodge, C.J.; Francis, A.J.; Biodegradation of pyridinium-based ionic liquids by an axenic culture of soil Corynebacteria. Green Chem.2010,12.851-858.
    [90]Zhang, F.; Fang, C.G.; Wu, Y.T.; Wang, Y.T.; Li, A.M.; Zhang, Z.B.; Absorption of CO2 in the aqueous solutions of functionalized ionic liquids and MDEA. Chem. Eng. J.,2010,160.691-697.
    [91]Ahmady, A.; Hashim, M.A.; Aroua, M.K.; Absorption of carbon dioxide in the aqueous mixtures of methyldiethanolamine with three types of imidazolium-based ionic liquids. Fluid Phase Equ.,2011,.309.76-82.
    [92]Zhou, Z.M.; Jing,GH.; Zhou L.J. Characterization and absorption of carbon dioxide into aqueous solution of amino acid ionic liquid [N1111][Gly] and 2-amino-2-methyl-l-propanol. Chem. Eng. J.2012,204-206.235-243.
    [93]Danckwerts, P.V.; McNeil, K.M. The absorption of carbon dioxide into aqueous amine solutions and the effects of catalysis. Trans. Inst. Chem. Eng.1967,45. 32-49.
    [94]马碧瑶.络合吸收NO传质—反应动力学及Fe(Ⅲ)生物还原研究.浙江大学硕 士论文.杭州.2004,24-25.
    [95]Shi, Y.; Littlejohn, D.; Chang, S. G Absorption of NO in aqueous Fe2+(DMPS)2 solutions:a kinetic study in a double-stirred reactor. Ind. Eng. Chem. Res.1996, 35.1668-1672.
    [96]Monchick, L.; Mason, E.A. Transport properties of polar gases. J. Chem. Phys. 1961,35.1676-1697.
    [97]Jing, G.H.; Zhou, L.J.; Zhou, Z.M. Characterization and kinetics of carbon dioxide absorption into aqueous tetramethylammonium glycinate solution. Chem. Eng.J.,2012,181-182.85-92.
    [98]Gonclaves, F. A.; Kestin, J.; Sengers, J.V. Surface-tension effects in suspended-level capillary viscometers. Int. J. Thermophys.1991,12.1013-1028.
    [99]Ko, J.J.; Tsai, T.C.; Lin, C.Y.; Wang, H.M.; Li, M.H. Diffusivity of nitrous oxide in aqueous alkanolamine solutions. J. Chem. Eng. Data.2001,46.160-165.
    [100]Saha, A.K.; Bandyopadhyay, S.S.; Saju, P.; Biswas, A.K. Solubility and diffusivity of N2O and CO2 in aqueous solutions of.2-Amino-2-methyl-1-propanol. J. Chem. Eng. Data.1993,38.78-82.
    [101]Versteeg, G. F.; van Swaaij, W. P. M. Solubility and diffusivity of acid gases (carbon dioxide, nitrous oxide) in aqueous alkanolamine solutions. J. Chem. Eng. Data.1988,33.29-34.
    [102]Al-Ghawas, H.A.; Hagewiesche, D.P.; Ruiz-Ibanez, G.; Sandall, O.C. Physicochemical properties important for carbon dioxide absorption in aqueous methyldiethanolamine. J. Chem. Eng. Data.1989,34.385-391.
    [103]Ahmady, A.; Hashim, M.A.; Aroua, M.K. Kinetics of carbon dioxide absorption into aqueous MDEA+[bmim][BF4] solutions from 303 to 333K. Chem. Eng. J.2012,200-202.317-328.
    [104]Shen, K.P.; Li, M.H. Solubility of carbon dioxide in aqueous mixtures of monoethanolamine with methyldiethanolamine. J. Chem. Eng. Data,1992,37. 96-100.
    [105]Ali, B.S.; Aroua, M.K.. Effect of Piperazine on CO2 loading in aqueous solutions of MDEA at low pressure. Int. J. Thermophys.2004,25(6).11.
    [106]Roberts, B.E.; Mather, A.E. Solubility of CO2 and H2S in a hindered amine solution. Chem. Eng. Commun.,1988,64.105-111.
    [107]Yang, Z.Y.; Soriano, A.N.; Caparanga, A.R.; Li, M.H. Equilibrium solubility of carbon dioxide in (2-amino-2-methyl-l-propanol+piperazine+water). J. Chem. Thermodyn.2010,42(5).659-665.
    [108]Mohamed, E.; Ahmed, A.; Raphael, I.; Kinetics of carbon dioxide absorption into mixed aqueous solutions of MDEA and MEA using a laminar jet apparatus and a numerically solved 2D absorption rate/kinetics model. Int. J. Greenhouse Gas Control,2009,3(5).550-560.
    [109]Vaidya, P.D.; Kenig, E.Y. A study on CO2 absorption kinetics by aqueous solutions of N,N-Diethylethanolamine and N-Ethylethanolamine. Chem. Eng. Technol,2009,32.556-563.
    [110]Yu, W. C.; Astarita, G.; Savage, D. W. Kinetics of carbon dioxide absorption in solutions of methyldiethanolamine. Chem. Eng. Sci.,1985,40.1585-1590.
    [111]Sharma, M.M.; Danckwerts, P. V. Chemical methods of measuring interfacial area and mass transfer coefficients in two-fluid systems-British. Chem. Eng.1970,15.522.
    [112]Levenspiel, O. Experimental search for a simple rate equation to describe deactivating porous catalyst particles. John. Wiley and Sons. New York.1972.
    [113]Ramachandran, N.; Raphael Idem, A.A.; Tontiwachwuthikul, P. Kinetics of the absorption of CO2 into mixed aqueous loaded solutions of Monoethanol-amine and Methyldiethanolamine. Ind. Eng. Chem. Res.2006,45.2608-2616.
    [114]Hagewiesche, D.P.; Ashour, S.S.; Sandall, O.C. Solubility and Diffusivity of Nitrous Oxide in Ternary Mixtures of Water, Monoethanolamine and N-Methyldiethanolamine and Solution Densities and Viscosities. J. Chem. Eng. Data.1995,40.627-629.
    [115]Liao, C.H.; Li, M.H. Kinetics of absorption of carbon dioxide into aqueous solutions of monoethanolamine+N-methyldiethanolamine. Chem. Eng. Sci.2002, 57.4569-4582.
    [116]Sun, W.C.; Yong, C.B.; Li, M.H. Kinetics of the absorption of carbon dioxide into mixed aqueous solutions of 2-amino-2-methyl-l-propanol and piperazine. Chem. Eng. Sci.,2005,60.503-516.
    [117]Stevanovic, S.; Podgorsek, A.; Moura, L.; Santini, C.C.; Padua, A.A.H.; M.F. Costa Gomes, M.F. Absorption of carbon dioxide by ionic liquids with carboxylate anions. Int. J. Greenhouse Gas Control,2013,17.78-88.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700