用户名: 密码: 验证码:
离子液体酸性气体吸收剂的合成、表征及吸收性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工业的飞速发展给人类带来巨大便利的同时,也引发了严重的环境污染问题。在各种行业中,化工以及能源相关产业对环境的污染程度最严重。为了有效地控制并治理因化工生产而造成的污染,绿色化学应运而生,并逐渐成为化工领域的发展趋势。绿色化学的核心内容就是从源头上减少和消除污染物,合理地利用资源和能源并提高循环利用率。
     脱除二氧化碳、二氧化硫等酸性气体是一项关乎环境保护、能源利用和化工生产的关键技术。目前,工业上广泛使用有机胺水溶液法、热钾碱法以及石灰石等方法脱除酸性气体。这些工艺技术成熟、成本低、处理量大,但都面临设备腐蚀严重、解吸能耗高、因溶剂挥发而引起二次污染等弊端。离子液体作为绿色化学的重要分支之一,是在室温或相近温度下完全由离子组成的液体物质。离子液体具有几乎无蒸汽压,热稳定性好,分子结构可设计等独特的优势,并在催化、有机合成、萃取分离等众多应用领域逐渐成为研究的热点。若将离子液体作为酸性气体的吸收剂,最大的优势是没有蒸汽压。这将使得离子液体在吸收过程中,不会进入气相。一方面,离子液体不会因为自身的挥发而导致吸收剂的损失;另一方面,解吸后的气体也不会含有吸收液组分。此外,离子液体的结构可设计性特点使其可以按照实际的需求和特殊的目标,设计并合成专用于吸收酸性气体的功能化离子液体。因此,科学界普遍认为离子液体是绿色的、具有光明应用前景的酸性气体吸收剂。
     在前人工作的基础上,本文的主要工作是设计并合成了专用于吸收酸性气体的功能化离子液体。分析了离子液体的结构与物理化学性质的规律后,本文选择性地合成了四烷基季胺氨基酸离子液体,其中四乙基季胺L丙氨酸是当时粘度最低的功能化离子液体,且具有良好的CO2吸收性能。在此基础上,继续合成了一系列低粘度的非对称四烷基季胺有机酸离子液体。实验结果表明,全取代有机酸离子液体吸收CO2的容量(以质量比计)高于其他所有功能化离子液体。同时,一取代有机酸离子液体也是首次发现的吸收SO2容量最高、吸收速度最快的功能化离子液体。这些发现证明了从分子结构的角度设计并合成功能化离子液体思路的正确性,极大地推动了离子液体作为绿色高效酸性气体吸收剂的应用。随后,本文选择了合成路线短、粘度低、吸收速率大的功能化离子液体与工业中广泛使用的有机胺—一N-甲基二乙醇胺复配为混合液;研究混合液的物理化学性质与温度的关系以及混合液的吸收性能。希望通过将离子液体作为活化剂使用以减低工业应用成本,并加快离子液体作为酸性气体可逆吸收剂的产业化进程。通过这些工作,本文得到以下结论:
     (1)离子液体的粘度与结构的变化规律:通常,增长阳离子的烷基侧链会导致粘度的增高。当烷基链的碳原子数相同时,增多碳链分支将会加大粘度。此外,咪唑环阳离子2号位的甲基化、阳离子侧链的氟化以及阳离子对称性的提高都会增大粘度。阴离子对离子液体的粘度有明显的影响。一般情况下,平面结构的阴离子构成的离子液体粘度较低;而非平面构型、对称性好的阴离子构成的离子液体粘度相对较高。与阳离子类似,增大阴离子的体积和摩尔质量,增长阴离子的侧链长度,也会升高离子液体的粘度。残留的水或有机溶剂也会降低离子液体的粘度,而残余的卤素则会升高粘度。
     (2)低粘度的氨基酸离子液体吸收速率大:选择空间伸展性好的四烷基季胺作为阳离子和氨基酸阴离子构成氨基酸功能化离子液体。因阴阳离子之间的空间间隙大,氨基酸阴离子的摩尔质量和体积小,合成的氨基酸离子液体的粘度较文献已报道的功能化离子液体低。其中四乙基季胺L-丙氨酸([N2222][L-Ala])离子液体在25℃时粘度仅为81mPa·s,是当时粘度最低的功能化离子液体。将其作为吸收剂进行CO2吸收的实验结果表明:该离子液体吸收CO2的机理与有机伯胺(如MEA)和仲胺(DEA)以及其他含氨基功能化离子液体(如3-丙胺基-甲基咪唑四氟硼酸盐)类似,均是两分子的吸收剂与一分子的CO2生成氨基甲酸盐类化合物。低粘度的氨基酸离子液体吸收CO2的速率大,是有机胺的2至5倍。高吸收速率是因为离子液体较低的粘度,有利于CO2在液相中的扩散和传质。并且,合成氨基酸离子液体属于酸碱中和一步反应法,合成过程简单,成本较低,纯度较高。因此,该类型的离子液体在酸性气体吸收领域有潜在的应用价值。
     (3)全取代有机酸离子液体具有较高的CO2吸收容量:根据阳离子结构与离子液体粘度的规律,选择非对称四烷基季胺—丁基三乙基季胺([N2224])为阳离子,以合成粘度更低的离子液体;选择有机酸作为阴离子,以降低合成成本。本文有目标地合成了非对称性四烷基季胺有机酸([N2224][carboxylate])离子液体。该离子液体易和水结合,处于盐-水复合物的状态。因为水的存在,全取代有机酸离子液体的粘度较低,但热稳定性较差。研究结果表明:水和阴离子有一定的作用力,水与盐的摩尔配比越小,相互作用力越大。吸收CO2的实验结果表明:全取代有机酸离子液体表现出较强的CO2亲和力,[N2224][CH3COO]的吸收容量比其他以有机酸为阴离子的所有离子液体高。此外,吸收实验结果还表明:有机酸阴离子的摩尔质量越大,有机官能团越多,吸收CO2的能力越弱;温度越高,吸收容量越低;水含量越高,吸收容量越低。
     (4)一取代有机酸离子液体具有优异的SO2吸收性能:选择二元有机酸作为阴离子时,若只中和阴离子中的一个活性氢,就可获得非对称四烷基季胺一取代有机酸([N2224][H-carboxylate])离子液体。该离子液体的粘度比全取代有机酸离子液体高,但其热稳定性好。吸收SO2的实验结果表明:[N2224][H-carboxylate]是目前吸收SO2耗时最短、吸收容量最高的功能化离子液体。吸收机理的研究结果表明:SO2破坏了离子液体中原本的分子间氢键,并作为媒介帮助两个羧基形成一个以分子内氢键为主体的八元环结构,该环结构在高温和真空条件下不稳定,故而SO2的解吸率高,离子液体重复吸收性能优良。虽然一取代有机酸离子液体具有较强的SO2亲和力,但由于其本身的弱酸性,该离子液体吸收CO2的能力很弱(甚至比普通离子液体还低),这一研究表明了一取代有机酸离子液体具有应用于分离SO2和CO2的潜在优势。
     (5)离子液体与MDEA混合液的物理性质独特,吸收C02性能优良:本文选择了三类离子液体作为添加剂与MDEA复配为混合吸收液,分别是[emim][BF4],[N1111][Gly]知[N2222][L-Ala]。按照不同摩尔配比制备的混合液物理化学性质独特,表现出与纯MDEA或是纯离子液体不同的变化规律。首先,混合液的密度并非随温度的升高而线性地下降;混合吸收液的体积膨胀系数较小,表明了温度对混合液的体积影响较弱;不同配方混合液的超额摩尔体积均为负值,表明了各组分之间发生了有效地分子结构堆积。其次,不同于纯有机溶剂,混合液的粘度随温度的变化规律并不符合阿仑尼乌斯公式,而符合Vogel-Tammann-Fulchers公式。最后,即使纯离子液体与混合液所表现出相似的表面张力值,但表面张力受温度的影响却不相同。MDEA与离子液体混合液的表面张力受温度的影响更小。且添加离子液体可以一定程度上抑制MDEA水溶液的挥发性。
     离子液体在混合液中起到活化剂的作用:一方面,可提供活性质子氢,参与到化学反应中,提高混合液的吸收容量和吸收速率;另一方面,离子液体可以抑制MDEA和水的挥发性,提高生产过程中的绿色性,降低设备腐蚀程度和解吸能耗。吸收实验结果表明:[emim][BF4]作为普通离子液体与纯MDEA混合后,混合液吸收性能类似于MDEA水溶液的吸收性能,证明了[emim][BF4]作为物理溶剂和MDEA复配应用于工业吸收的前景;添加[N1111][Gly]和[Nzzzz][L-Ala]氨基酸功能化离子液体在低压条件下(小于0.3MPa)可以促进混合液的吸收容量;升高温度使得混合液的吸收容量略有下降,却可以极大地提高混合液的吸收速率;无论添加何种离子液体,均可有效地增大吸收速率;添加氨基酸功能化离子液体更易提高混合液的吸收速率。
Although benefiting from fast development of economy, we unfortunately also had to face up the serious environmental pollution problems. Among all kinds of industries, chemical and energy-related ones make the most important contributions to the pollution. In order to control and fix the pollution from the chemical and energy-related industries, the concept of green chemistry, which focuses on avoiding pollutants before they are produced and using resource reasonably and reversibly, has been proposed and attracted significant interest in the decades.
     The removal of acidic gases, such as carbon dioxide (CO2), sulfur dioxide (SO2) is of significant importance for environmental protection, effective fuel utilization and chemical processes. Nowadays, technologies of trapping CO2using aqueous organic amines, inorganic base solutions and limestone as absorbents have extensively carried out in the chemical plants. However, these technologies often accompanied with resource consumption due to the irreversible reaction of absorbents with CO2(in case of inorganic base solutions and limestone) or organic pollutants releasing to the atmosphere and aqua-sphere (in case of aqueous organic amines). Additionally, high operation costs and large consumption of energy are also drawbacks of these processes. As an alternative to traditional organic solvents, ionic liquids (ILs) provoke a wide interest in scientific community and industrial fields, involving its applications in organic synthesis, catalysis, supercritical fluid reaction and gas separation due to their outstanding characteristics such as negligible vapor pressure, high thermal stability and so on. Comparing to the volatile amines as sequestering agents, ILs possess the non-volatile and thermal stable characteristics that make them environmentally benign gas absorbents without causing concurrent loss of the liquid into the gas and then polluting the environment. Some pioneering works have shown that ILs could reversibly trap acidic gases with high capacities. Inspired by these works, this paper designed and synthesized novel task-specific ionic liquids in order to capture acidic gases. For the first time, novel TSILs (such as [N2222][L-Ala]) with the low viscosity were prepared, which have shown good peformance of trapping CO2. Then, TSILs composed of asymmetric tetraalkylammnoium and carboxylic acid were synthesized. It is interesting to find that the full-deprotonted carboxylate ILs have the largest absorption capacity of CO2, while the half-deprotonted ones can effetively trap SO2even though they are weak acidic. These results have proved that the idea of designing and preparing TSILs for the separation of the acidic gases is worth to study in the future and the TSILs with amino acid or carboxylate anions are very attractive for industrial applications. After characterization of the physical chemical parameters and the determination of the absorption properties, ILs with advantages such as easy to prepare, low viscosity and high absorption rate were chosen to be additive species blended with aqueous organic amines (MDEA). Then, the physical chemical parameters such as density, viscosity and surface tension of the blended absorbents were determined as well as the absorption properties. Experimental results have shown that adding ILs into MDEA is a promising way to utilize ILs in the industry without large operation cost. Several important conclusions have been obtained and summarized as follows:
     (1) The relation between the viscosity and the structure of the ILs:normally, the addition of carbon atoms and brunches in the cation, as well as methyl group on the2-C in imidazolium cation and fluorination of the carbon atoms can enlarge the viscosity. The structure of anions has most important effects on the viscosity. The symmetric anions will arise the viscosity, while the two dimensional ones can decrease the viscosity. Assembling to the cation, large volume and molar mass of the anions as well as the enlargement of the carbon length will cause high viscosity. The viscosity will be diminished when water and other organic solvents are present in ILs, whereas reverse effects occur due to the remaining halide.
     (2) Amino acid ILs with low viscosity have large absorption rate. After consideration of the relation between the structure of the ions and the viscosity, we chose tetraalkylammonium and amino acid to construct ILs. Because of the large space between the cation and anion, and small size of the anions, the amino acid ILs have smaller viscosities than other functionalized ILs. The lowest viscosity of81mPa s at25℃belongs to [N2222][L-Ala] which has been chosen to determine the absorption prosperities. The absorption results have shown that the reaction mechanism between [N2222][L-Ala] and CO2was similar to that of organic amines (MEA or DEA) and amino-functionalized ILs ([p-NH2mim][BF4]), but with about2to5times larger absorption rate than the amines. Large absorption rate is the result of the low viscosity, which can improve the mass transfer of CO2in the liquid phase. In addition, the synthesis of amino acid ILs was simple and the final products were of high purity. In this case, amino acid ILs are considered as green, effective absorbents of potential use for CO2separation.
     (3) Full-deprotonated dicarboxylic acid ILs have large CO2absorption capacity. In order to have ILs with lower viscosity and lower cost, asymmetric tetraalkylammonium cation ([N2224]) and carboxylic acids were used to synthesis carboxylate ILs. It is found that these type anions have the hydrophilic nature and the water interacts with the anions. Because of the water, the ILs have low viscosity but suffer poor thermal stability. Experimental absorption results have shown that the carboxylate ILs have large CO2affinity and have almost the highest capacity than any other ILs based on carboxylic acids. It is further proved that the large molar mass of the anion, high water content, high absorption temperature, and other functional groups are negative effects to the absorption capacity.
     (4) Half-deprotonated dicarboxylic acid ILs have excellent SO2absorption properties. If one proton H atom in the dicarboxylic acid is merely neutralized, half-deprotonated carboxylic acid (H-carboxylate) ILs can be prepared. Experimental results have shown that these ILs have higher viscosities and more stable at high temperature than the full-deprotonated ones. It is interestingly found that H-carboxylate ILs have more attractive SO2absorption properties than any other TSILs. The reaction mechanism between ILs and SO2indicated that the SO2interruptted the original inter-molecular hydrogen bond and helped to form intra-molecular hydrogen bond through an octatomic ring, which also made the viscosity diminished after absorption. Additionally, this kind of ILs has low CO2affinity because of the weak acidic nature. These results strongly confirm that H-carboxylate ILs will be of significant importance for the separation of acidic gases from each other.
     (5) The mixture of MDEA and ILs show unique physical chemical properties and good performance of absorbing CO2. After thoughtful consideration, three ILs [emim][BF4],[N1111][Gly] and [N2222][L-Ala] have been chosen to blend with MDEA. The physical chemical properties such as density, viscosity and surface tension of the mixtures are quite different from neither pure MDEA nor pure ILs. The densities of the mixtures decreased not linearly with the rising temperature. Small coefficient of expansion indicates that the temperature has minor effect on the volume of mixture. At the same time, the excess molar volumes of all mixtures are negative values, implying that MDEA and the ILs have strong interaction and the molecular cumulated effectively. Unlike pure organic solvents, the relation between the viscosity of the mixture and the temperature can not be correlated by Arrhenius Equation but can be fitted to Vogel-Tammann-Fulchers Equation. Although the values of the surface tension is very close between the mixture and pure ILs, the temperature shows less importance to affect the surface tension of the mixture, making the mixture more attractive to the industrial applications. The ILs play a role as accelerant in the mixture from two aspects. Firstly, ILs take part in the chemical absorption process by providing active hydrogen which can accelerate the absorption rate. Secondly, ILs have no vapor pressure which can restrain the volatility of the MDEA and water, making the process more environmental benign. The experimental results have shown that the mixture composed by [emim][BF4] and MDEA act almost like aqueous MDEA mixtures, which proves the possibility of [emim][BF4] application as physical solvent but with outstanding ILs advantages. Task-specific ionic liquids, such as [N1111][Gly] and [N2222][L-Ala] can enlarge the absorption capacity at low partial pressure of CO2, and accelerate the absorption process significantly. Although the mixture trap less CO2at higher temperature, but the absorption rate would be very large due to the rising temperature.
引文
1. White, C. M.; Strazisar, B. R.; Granite, E. J.; Hoffman, J. S.; Pennline, H. W., Separation and capture of CO2 from large stationary sources and sequestration in geological formations-Coalbeds and deep saline aquifers. Journal of the Air & Waste Management Association 2003,53 (6),
    2. Karadas, F.; Atilhan, M.; Aparicio, S., Review on the Use of Ionic Liquids (ILs) as Alternative Fluids for CO2 Capture and Natural Gas Sweetening. Energy & Fuels 2010,24,5817-5828.
    3. Aroua, M. K.; Salleh, R. M., Solubility of CO2 in aqueous piperazine and its modeling using the Kent-Eisenberg approach. Chemical Engineering & Technology 2004,27 (1),65-70.
    4. Derks, P. W. J.; Dijkstra, H. B. S.; Hogendoorn, J. A.; Versteeg, G. F., Solubility of carbon dioxide in aqueous piperazine solutions. Aiche Journal 2005,51 (8),2311-2327.
    5. Astarita, G.; Savage, D. W.; Bisio, A., Gas Treating with Chemical Solvents. New York,1983.
    6. Shi, F.; Deng, Y. Q.; SiMa, T. L.; Peng, J. J.; Gu, Y. L.; Qiao, B. T., Alternatives to phosgene and carbon monoxide:Synthesis of symmetric urea derivatives with carbon dioxide in ionic liquids. Angewandte Chemie-International Edition 2003,42 (28),3257-3260.
    7. Peng, J. J.; Deng, Y. Q., Cycloaddition of carbon dioxide to propylene oxide catalyzed by ionic liquids. New Journal of Chemistry 2001,25 (4),639-641.
    8. Yuan, X. L.; Zhang, S. J.; Lu, X. M., Hydroxyl ammonium ionic liquids:Synthesis, properties, and solubility of SO2. Journal of Chemical and Engineering Data 2007,52 (2),596-599.
    9. 钟秦,燃煤烟气脱硫脱硝技术及工程实例.2 ed.;化学工业出版社:北京,2007.
    10.唐莉;王宝林;陈健,应用变压吸附发分离回收CO2.低温与特气1998,2,47-52.
    11.许阳;毛玉如,能源洁净利用与C02排放控制技术.能源工程2002,4,11-15.
    12.任建新,膜分离技术及其应用.化学工业出版社:北京,2003.
    13. Chinn, D.; Vu, D. Q.; Driver, M. S.; Boudreau, L. C. CO2 removal from gas using ionic lqiud absorbents. November 9,2006.
    14. Mondal, M. K., Solubility of Carbon Dioxide in an Aqueous Blend of Diethanolamine and Piperazine. Journal of Chemical and Engineering Data 2009,54 (9),2381-2385.
    15. Jamal, A.; Meisen, A.; Lim, C. J., Kinetics of carbon dioxide absorption and desorption in aqueous alkanolamine solutions using a novel hemispherical contactor-Ⅱ:Experimental results and parameter estimation. Chemical Engineering Science 2006,61 (19),6590-6603.
    16.张天来;李天文;曹永生,脱碳活化剂的开发应用进展.大氮肥2000,23(3),163-170.
    17. Bello, A.; Idem, R. O., Comprehensive study of the kinetics of the oxidative degradation of CO2 loaded and concentrated aqueous monoethanolamine (MEA) with and without sodium metavanadate during CO2 absorption from flue gases. Industrial & Engineering Chemistry Research 2006,45 (8),2569-2579.
    18. Song, H. J.; Lee, S.; Maken, S.; Park, J. J.; Park, J. W., Solubilities of carbon dioxide in aqueous solutions of sodium glycinate. Fluid Phase Equilibria 2006,246 (1-2),1-5.
    19. Cullinane, J. T.; Rochelle, G. T., Thermodynamics of aqueous potassium carbonate, piperazine, and carbon dioxide. Fluid Phase Equilibria 2005,227 (2),197-213.
    20. Shen, J. N.; Qiu, J. H.; Wu, L. G.; Gao, C. J., Facilitated transport of carbon dioxide through poly (2-N,N-dimethyl aminoethyl methacrylate-co-acrylic acid sodium) membrane. Separation and Purification Technology 2006,51 (3),345-351. 21. Matsuyama, H.; Terada, A.; Nakagawara, T.; Kitamura, Y.; Teramoto, M., Facilitated transport of CO2 through polyethylenimine/poly(vinyl alcohol) blend membrane. Journal of Membrane Science 1999,163 (2),221-227.
    22.伊春海;王世昌,含聚乙烯基胺共混固定载体复合膜制备及其CO2/CH4分离性能.化工学报2006,57(4),997-1002.
    23.李汝雄,绿色溶剂——离子液体的制备与应用.化工进展2002,21(1),43-48.
    24. Dixon, J. K.; Muldoon, M. J.; Aki, S.; Anderson, J. L.; Brennecke, J. F.; Maginn, E. J. In Designing ionic liquids for CO2 capture,231st National Meeting of the American-Chemical-Society, Atlanta, GA, Mar 26-30; Atlanta, GA,2006; pp 221-IEC.
    25. Wiles, J. S.; Zaworotko, J. M., Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. Chemical Communications 1992,13,965-966.
    26. Ngo, H. L.; LeCompte, K.; Hargens, L.; McEwen, A. B. In Thermal properties of imidazolium ionic liquids,26th North-American-Thermal-Analysis-Society Conference, Cleveland, Ohio, Sep 13-15; Cleveland, Ohio,1998; pp 97-102.
    27. Chen, P. Y.; Sun, I. W., Electrochemistry of Cd(II) in the basic 1-ethyl-3-methylimidazolium chloride/tetrafluoroborate room temperature molten salt. Electrochimica Act a 2000,45 (19), 3163-3170.
    28. Abbott, A. P.; Capper, G.; Davies, D. L.; Rasheed, R. K.; Tambyrajah, V., Novel solvent properties of choline chloride/urea mixtures. Chemical Communications 2003, (1),70-71.
    29. Welton, T., Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chemical Reviews 1999,99 (8),2071-2083.
    30. de Maria, P. D., "Nonsolvent" applications of ionic liquids in biotransfonnations and organocatalysis. Angewandte Chemie-International Edition 2008,47 (37),6960-6968.
    31. Han, X.; Armstrong, D. W., Ionic liquids in separations. Accounts of Chemical Research 2007, 40(11),1079-1086.
    32. Antonietti, M.; Kuang, D. B.; Smarsly, B.; Yong, Z., Ionic liquids for the convenient synthesis of functional nanoparticles and other inorganic nanostructures. Angewandte Chemie-International Edition 2004,43 (38),4988-4992.
    33. Li, M. C.; Ma, C. A.; Liu, B. Y.; Jin, Z. M., A novel electrolyte 1-ethylimidazolium trifluoroacetate used for electropolymerization of aniline. Electrochemistry Communications 2005,7 (2),209-212.
    34. Quinn, R.; Appleby, J. B.; Mathias, P. M.; Pez, G. P., LIQUID SALT HYDRATE ACID GAS ABSORBENTS-AN UNUSUAL DESORPTION OF CARBON-DIOXIDE AND HYDROGEN-SULFIDE UPON SOLIDIFICATION. Separation Science and Technology 1995,30 (7-9),1711-1723.
    35.王伟彬;银建中,含CO2/离子液体系统相行为及其在反应与分离中的应用进展.化学进展2004,20(4),144.
    36. Scovazzo, P.; Kieft, J.; Finan, D. A.; Koval, C.; DuBois, D.; Noble, R., Gas separations using non-hexafluorophosphate [PF6](-) anion supported ionic liquid membranes. Journal of Membrane Science 2004,238 (1-2),57-63.
    37. Hurley, F.H.1984.
    38. Chum, H. L.; Koch, V. R.; Miller, L. L.; Osteryoung, R. A., ELECTROCHEMICAL SCRUTINY OF ORGANOMETALLIC IRON COMPLEXES AND HEXAMETHYLBENZENE IN A ROOM-TEMPERATURE MOLTEN-SALT. Journal of the American Chemical Society 1975, 97(11),3264-3265.
    39. Wilkes, J. S.; Zaworotko, M. J., AIR AND WATER STABLE 1-ETHYL-3-METHYLIMIDAZOLIUM BASED IONIC LIQUIDS. Journal of the Chemical Society-Chemical Communications 1992, (13),965-967.
    40.杨雅立;王晓化;寇元,不断壮大的离子液体家族.化学进展2003,15(6),471-476.
    41. Li, D. M.; Shi, F.; Peng, J. J.; Guo, S.; Deng, Y. Q., Application of functional ionic liquids possessing two adjacent acid sites for acetalization of aldehydes. Journal of Organic Chemistry 2004,69(10),3582-3585.
    42. Mehnert, C. P.; Dispenziere, N. C.; Cook, R. A., Preparation of C-9-aldehyde via aldol condensation reactions in ionic liquid media. Chemical Communications 2002, (15),1610-1611.
    43. Tang, J. B.; Tang, H. D.; Sun, W. L.; Radosz, M.; Shen, Y. Q., Poly(ionic liquid)s as new materials for CO2 absorption. Journal of Polymer Science Part a-Polymer Chemistry 2005,43 (22), 5477-5489.
    44. Audic, N.; Clavier, H.; Mauduit, M.; Guillemin, J. C., An ionic liquid-supported ruthenium carbene complex:A robust and recyclable catalyst for ring-closing olefin metathesis in ionic liquids. Journal of the American Chemical Society 2003,125 (31),9248-9249.
    45. Yamada, T.; Lukac, P. J.; Yu, T.; Weiss, R. G., Reversible, room-temperature, chiral ionic liquids, amidinium carbamates derived from amidines and amino-acid esters with carbon dioxide. Chemistry of Materials 2007,19 (19),4761-4768.
    46. Zhang, S. J.; Sun, N.; He, X. Z.; Lu, X. M.; Zhang, X. P., Physical properties of ionic liquids: Database and evaluation. Journal of Physical and Chemical Reference Data 2006,35 (4), 1475-1517.
    47. Cadena, C.; Anthony, J. L.; Shah, J. K.; Morrow, T. I.; Brennecke, J. F.; Maginn, E. J., Why is CO2 so soluble in imidazolium-based ionic liquids? Journal of the American Chemical Society 2004, 126(16),5300-5308.
    48. Hanke, C. G.; Price, S. L.; Lynden-Bell, R. M., Intermolecular potentials for simulations of liquid imidazolium salts. Molecular Physics 2001,99(10),801-809.
    49. Trohalaki, S.; Pachter, R.; Drake, G. W.; Hawkins, T., Quantitative structure-property relationships for melting points and densities of ionic liquids. Energy & Fuels 2005,19 (1), 279-284.
    50. Bradaric, C. J.; Downard, A.; Kennedy, C.; Robertson, A. J.; Zhou, Y. H. In Industrial preparation of phosphonium ionic liquids, Symposium on Ionic Liquids as Green Solvents held at the 224th American-Chemical-Society National Meeting, Boston, Massachusetts, Aug 18-22; Rodgers, R. D.; Seddon, K. R., Eds. Amer Chemical Soc:Boston, Massachusetts,2002; pp 41-56.
    51. Freemantle, M., BASF'S smart ionic liquid. Chemical & Engineering News 2003,81(13),9-9.
    52.王均凤;张锁江;陈惠萍,离子液体的性质及其在催化反应中的应用.过程工程学报2003,3(2),177-185.
    53. Bates, E. D.; Mayton, R. D.; Ntai, I.; Davis, J. H., CO2 capture by a task-specific ionic liquid. Journal of the American Chemical Society 2002,124 (6),926-927.
    54. Bonhote, P.; Dias, A. P.; Papageorgiou, N.; Kalyanasundaram, K.; Gratzel, M., Hydrophobic, highly conductive ambient-temperature molten salts. Inorganic Chemistry 1996,35 (5),1168-1178.
    55. Fei, Z. F.; Zhao, D. B.; Geldbach, T. J.; Scopelliti, R.; Dyson, P. J., Bronsted acidic ionic liquids and their zwitterions:Synthesis, characterization and pK(a) determination. Chemistry-a European Journal 2004,10(19),4886-4893.
    56. Yang, Y. L.; Kou, Y., Determination of the Lewis acidity of ionic liquids by means of an IR spectroscopic probe. Chemical Communications 2004, (2),226-227.
    57. Larsen, A. S.; Holbrey, J. D.; Tham, F. S.; Reed, C. A., Designing ionic liquids:Imidazolium melts with inert carborane anions. Journal of the American Chemical Society 2000,122 (30), 7264-7272.
    58. Katritzky, A. R.; Jain, R.; Lomaka, A.; Petrukhin, R.; Karelson, M.; Visser, A. E.; Rogers, R. D., Correlation of the melting points of potential ionic liquids (imidazolium bromides and benzimidazolium bromides) using the CODESSA program. Journal of Chemical Information and Computer Sciences 2002,42 (2),225-231.
    59. Katritzky, A. R.; Lomaka, A.; Petrukhin, R.; Jain, R.; Karelson, M.; Visser, A. E.; Rogers, R. D., QSPR correlation of the melting point for pyridinium bromides, potential ionic liquids. Journal of Chemical Information and Computer Sciences 2002,42 (1),71-74.
    60. Eike, D. M.; Brennecke, J. F.; Maginn, E. J., Predicting melting points of quaternary ammonium ionic liquids. Green Chemistry 2003,5 (3),323-328.
    61. Dzyuba, S. V.; Bartsch, R. A., Influence of structural variations in 1-alkyl(aralkyl)-3-methylimidazolium hexafluorophosphates and bis(trifluorormethyl-sulfonyl)imides on physical properties of the ionic liquids. Chemphyschem 2002,3(2),161-+.
    62. Fredlake, C. P.; Crosthwaite, J. M.; Hert, D. G.; Aki, S.; Brennecke, J. F., Thermophysical properties of imidazolium-based ionic liquids. Journal of Chemical and Engineering Data 2004,49 (4),954-964.
    63. Matsumoto, K.; Hagiwara, R.; Ito, Y., Room temperature molten fluorometallates: 1-ethyl-3-methylimidazolium hexafluoroniobate(Ⅴ) and hexafluorotantalate(Ⅴ). Journal of Fluorine Chemistry 2002,115 (2),133-135.
    64. Crosthwaite, J. M.; Muldoon, M. J.; Dixon, J. K.; Anderson, J. L.; Brennecke, J. F., Phase transition and decomposition temperatures, heat capacities and viscosities of pyridinium ionic liquids. Journal of Chemical Thermodynamics 2005,37 (6),559-568.
    65. Nishida, T.; Tashiro, Y.; Yamamoto, M., Physical and electrochemical properties of 1-alkyl-3-methylimidazolium tetrafluoroborate for electrolyte. Journal of Fluorine Chemistry 2003, 120(2),135-141.
    66. Wilkes, J. S.; Levisky, J. A.; Wilson, R. A.; Hussey, C. L., DIALKYLIMIDAZOLIUM CHLOROALUMINATE MELTS-A NEW CLASS OF ROOM-TEMPERATURE IONIC LIQUIDS FOR ELECTROCHEMISTRY, SPECTROSCOPY, AND SYNTHESIS. Inorganic Chemistry 1982,21 (3),1263-1264.
    67. Huddleston, J. G.; Visser, A. E.; Reichert, W. M.; Willauer, H. D.; Broker, G. A.; Rogers, R. D., Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chemistry 2001,3 (4),156-164.
    68. Yoshida, Y.; Muroi, K.; Otsuka, A.; Saito, G.; Takahashi, M.; Yoko, T., 1-ethyl-3-methylimidazolium based ionic liquids containing cyano groups:Synthesis, characterization, and crystal structure. Inorganic Chemistry 2004,43 (4),1458-1462.
    69. Gu, Z. Y.; Brennecke, J. F., Volume expansivities and isothermal compressibilities of imidazolium and pyridinium-based ionic liquids. Journal of Chemical and Engineering Data 2002, 47(2),339-345.
    70. Gomes, J. R. B.; Da Silva, M., Density Functional Theory study on the thermodynamic properties of aminophenols. International Journal of Quantum Chemistry 2005,101 (6),860-868.
    71. Kilaru, P.; Baker, G. A.; Scovazzo, P., Density and surface tension measurements of imidazolium-, quaternary phosphonium-, and ammonium-based room-temperature ionic liquids: Data and correlations. Journal of Chemical and Engineering Data 2007,52 (6),2306-2314.
    72. Marsh, K. N.; Boxall, J. A.; Lichtenthaler, R. In Room temperature ionic liquids and their mixtures-a review, International Symposium on Molecular Thermodynamics and Molecular Simulation, Akiu, JAPAN, May 27-30; Akiu, JAPAN,2003; pp 93-98.
    73. Wasserscheid, P.; Keim, W., Ionic liquids-New "solutions" for transition metal catalysis. Angewandte Chemie-International Edition 2000,39 (21),3773-3789.
    74. Hyun, B. R.; Dzyuba, S. V.; Bartsch, R. A.; Quitevis, E. L., Intermolecular dynamics of room-temperature ionic liquids:Femtosecond optical Kerr effect measurements on 1-alkyl-3-methylimidazolium bis((trifluoromethyl)sulfonyl)imides. Journal of Physical Chemistry A 2002,106 (33),7579-7585.
    75.张锁江;吕兴梅,离子液体——从基础研究到工业应用.科学出版社:北京,2006.
    76. Baker, S. N.; Baker, G. A.; Kane, M. A.; Bright, F. V., The cybotactic region surrounding fluorescent probes dissolved in 1-butyl-3-methylimidazolium hexafluorophosphate:Effects of temperature and added carbon dioxide. Journal of Physical Chemistry B 2001,105 (39),9663-9668.
    77. MacFarlane, D. R.; Golding, J.; Forsyth, S.; Forsyth, M.; Deacon, G. B., Low viscosity ionic liquids based on organic salts of the dicyanamide anion. Chemical Communications 2001, (16), 1430-1431.
    78. Branco, L. C.; Rosa, J. N.; Ramos, J. J. M.; Afonso, C. A. M., Preparation and characterization of new room temperature ionic liquids. Chemistry-a European Journal 2002,8 (16),3671-3677.
    79. Fannin, A. A.; Floreani, D. A.; King, L. A.; Landers, J. S.; Piersma, B. J.; Stech, D. J.; Vaughn, R. L.; Wilkes, J. S.; Williams, J. L., PROPERTIES OF 1,3-DIALKYLIMIDAZOLIUM CHLORIDE ALUMINUM-CHLORIDE IONIC LIQUIDS.2. PHASE-TRANSITIONS, DENSITIES, ELECTRICAL CONDUCTIVITIES, AND VISCOSITIES. Journal of Physical Chemistry 1984,88 (12),2614-2621.
    80. Seddon, K. R.; Stark, A.; Torres, M. J. In Influence of chloride, water, and organic solvents on the physical properties of ionic liquids,15th International Conference on Physical Organic Chemistry (ICPOC 15), Gothenburg, Sweden, Jul 08-13; Gothenburg, Sweden,2000; pp 2275-2287.
    81. Widegren, J. A.; Laesecke, A.; Magee, J. W., The effect of dissolved water on the viscosities of hydrophobic room-temperature ionic liquids. Chemical Communications 2005, (12),1610-1612.
    82. Okoturo, O. O.; VanderNoot, T. J., Temperature dependence of viscosity for room temperature ionic liquids. Journal of Electroanalytical Chemistry 2004,568 (1-2),167-181. 83. Fukaya, Y.; Iizuka, Y.; Sekikawa, K.; Ohno, H., Bio ionic liquids:room temperature ionic liquids composed wholly of biomaterials. Green Chemistry 2007,9 (11),1155-1157.
    84. Wilkes, J. S., Properties of ionic liquid solvents for catalysis. Journal of Molecular Catalysis a-Chemical 2004,214 (1),11-17.
    85. Jastorff, B.; Stormann, R.; Ranke, J.; Molter, K.; Stock, F.; Oberheitmann, B.; Hoffmann, W.; Hoffmann, J.; Nuchter, M.; Ondruschka, B.; Filser, J. In How hazardous are ionic liquids? Structure-activity relationships and biological testing as important elements for sustainability evaluation, Green Solvents for Catalysis Meeting, Bruchsal, Germany, Oct 13-16; Bruchsal, Germany,2002; pp 136-142.
    86. Ranke, J.; Molter, K.; Stock, F.; Bottin-Weber, U.; Poczobutt, J.; Hoffmann, J.; Ondruschka, B.; Filser, J.; Jastorff, B., Biological effects of imidazolium ionic liquids with varying chain lengths in acute Vibrio fischeri and WST-1 cell viability assays. Ecotoxicology and Environmental Safety 2004, 58 (3),396-404.
    87. Wasserscheid, P.; van Hal, R.; Bosmann, A., 1-n-Butyl-3-methylimidazolium (bmim) octylsulfate-an even 'greener' ionic liquid. Green Chemistry 2002,4 (4),400-404.
    88. Swatloski, R. P.; Holbrey, J. D.; Rogers, R. D., Ionic liquids are not always green:hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate. Green Chemistry 2003,5 (4),361-363.
    89. Ohno, H.; Fukumoto, K., Amino acid ionic liquids. Accounts of Chemical Research 2007,40 (11),1122-1129.
    90. Gordon, C. M., New developments in catalysis using ionic liquids. Applied Catalysis a-General 2001,222 (1-2),101-117.
    91. Dupont, J.; de Souza, R. F.; Suarez, P. A. Z., Ionic liquid (molten salt) phase organometallic catalysis. Chemical Reviews 2002,102 (10),3667-3691.
    92. Cole, A. C.; Jensen, J. L.; Ntai, I.; Tran, K. L. T.; Weaver, K. J.; Forbes, D. C.; Davis, J. H., Novel bronsted acidic ionic liquids and their use as dual solvent-catalysts. Journal of the American Chemical Society 2002,124 (21),5962-5963.
    93. Lu, W.; Fadeev, A. G.; Qi, B. H.; Smela, E.; Mattes, B. R.; Ding, J.; Spinks, G. M.; Mazurkiewicz, J.; Zhou, D. Z.; Wallace, G. G.; MacFarlane, D. R.; Forsyth, S. A.; Forsyth, M., Use of ionic liquids for pi-conjugated polymer electrochemical devices. Science 2002,297 (5583), 983-987.
    94. Liu, Y.; Shi, L. H.; Wang, M. J.; Li, Z. Y.; Liu, H. T.; Li, J. H., A novel room temperature ionic liquid sol-gel matrix for amperometric biosensor application. Green Chemistry 2005,7 (9), 655-658.
    95. Blanchard, L. A.; Hancu, D.; Beckman, E. J.; Brennecke, J. F., Green processing using ionic liquids and CO2. Nature 1999,399 (6731),28-29.
    96. Anthony, J. L.; Maginn, E. J.; Brennecke, J. F., Solubilities and thermodynamic properties of gases in the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate. Journal of Physical Chemistry B 2002,106 (29),7315-7320.
    97. Blanchard, L. A.; Gu, Z. Y.; Brennecke, J. F., High-pressure phase behavior of ionic liquid/CO2 systems. Journal of Physical Chemistry B 2001,105 (12),2437-2444. 98. Anthony, J. L.; Anderson, J. L.; Maginn, E. J.; Brennecke, J. F., Anion effects on gas solubility in ionic liquids. Journal of Physical Chemistry B 2005,109(13),6366-6374.
    99. Anthony, J. L.; Maginn, E. J.; Brennecke, J. F., Solution thermodynamics of imidazolium-based ionic liquids and water. Journal of Physical Chemistry B 2001,105 (44), 10942-10949.
    100. Anderson, J. L.; Dixon, J. K.; Maginn, E. J.; Brennecke, J. F., Measurement of SO2 solubility in ionic liquids. Journal of Physical Chemistry B 2006,110(31),15059-15062.
    101. Shariati, A.; Peters, C. J., High-pressure phase behavior of systems with ionic liquids:Ⅱ. The binary system carbon dioxide+l-ethyl-3-methylimidazoliurn hexafluorophosphate. Journal of Supercritical Fluids 2004,29 (1-2),43-48.
    102. Shariati, A.; Peters, C. J., High-pressure phase behavior of systems with ionic liquids-Part III. The binary system carbon dioxide+l-hexyl-3-methylimidazolium hexafluorophosphate. Journal of Supercritical Fluids 2004,30 (2),139-144.
    103. Costantini, M.; Toussaint, V. A.; Shariati, A.; Peters, C. J.; Kikic, I., High-pressure phase Behavior of systems with ionic liquids:Part IV. Binary system carbon dioxide+l-hexyl-3-methylimidazolium tetrafluoroborate. Journal of Chemical and Engineering Data 2005,50(1),52-55.
    104. Kamps, A. P. S.; Tuma, D.; Xia, J. Z.; Maurer, G., Solubility of CO2 in the ionic liquid [bmim][PF6]. Journal of Chemical and Engineering Data 2003,48 (3),746-749. 105. Kumelan, J.; Kamps, A. P. S.; Tuma, D.; Maurer, G., Solubility of CO2 in the ionic liquids bmim CH3SO4 and bmim PF6. Journal of Chemical and Engineering Data 2006,51 (5),1802-1807. 106. Kumelan, J.; Kamps, I. P. S.; Tuma, D.; Maurer, G., Solubility of CO2 in the ionic liquid hmim Tf2N. Journal of Chemical Thermodynamics 2006,38 (11),1396-1401.
    107. Shiflett, M. B.; Yokozeki, A., Solubilities and diffusivities of carbon dioxide in ionic liquids: [bmim][PF6] and [bmim][BF4]. Industrial & Engineering Chemistry Research 2005,44 (12), 4453-4464.
    108. Shiflett, M. B.; Yokozeki, A., Solubility of CO2 in room temperature ionic liquid hmim Tf2N. Journal of Physical Chemistry B 2007,111 (8),2070-2074.
    109. Hong, G.; Jacquemin, J.; Deetlefs, M.; Hardacre, C.; Husson, P.; Gomes, M. F. C., Solubility of carbon dioxide and ethane in three ionic liquids based on the bis{(trifluoromethyl)sulfonyl}imide anion. Fluid Phase Equilibria 2007,257 (1),27-34.
    110. Scovazzo, P.; Camper, D.; Kieft, J.; Poshusta, J.; Koval, C.; Noble, R., Regular solution theory and CO2 gas solubility in room-temperature ionic liquids. Industrial & Engineering Chemistry Research 2004,43 (21),6855-6860.
    111. Chen, Y. H.; Zhang, S. J.; Yuan, X. L.; Zhang, Y. Q.; Zhang, X. P.; Dai, W. B.; Mori, R., Solubility of CO2 in imidazolium-based tetrafluoroborate ionic liquids. Thermochimica Acta 2006, 441 (1),42-44.
    112. Fu, D. B.; Sun, X. W.; Pu, J. J.; Zhao, S. Q., Effect of water content on the solubility of CO2 in the ionic liquid bmim PF6. Journal of Chemical and Engineering Data 2006,51 (2),371-375.
    113. Wu, W. Z.; Han, B. X.; Gao, H. X.; Liu, Z. M.; Jiang, T.; Huang, J., Desulfurization of flue gas: SO2 absorption by an ionic liquid. Angewandte Chemie-International Edition 2004,43 (18), 2415-2417.
    114. Huang, J.; Riisager, A.; Wasserscheid, P.; Fehrmann, R., Reversible physical absorption of SO2 by ionic liquids. Chemical Communications 2006, (38),4027-4029.
    115. Varma, R. S.; Namboodiri, V. V., An expeditious solvent-free route to ionic liquids using microwaves. Chemical Communications 2001, (7),643-644.
    116. Leveque, J. M.; Luche, J. L.; Petrier, C.; Roux, R.; Bonrath, W., An improved preparation of ionic liquids by ultrasound. Green Chemistry 2002,4 (4),357-360.
    117. Leveque, J. M.; Estager, J.; Draye, M.; Cravotto, G.; Boffa, L.; Bonrath, W., Synthesis of ionic liquids using non conventional activation methods:An overview. Monatshefte Fur Chemie 2007, 138(11),1103-1113.
    118.刘芳兵;徐国文,活化MDEA水溶液中二氧化碳的溶解度.华东理工大学学报1999,25(3),242-246.
    119. Demberelnyamba, D.; Yoon, S. J.; Lee, H., New epoxide molten salts:Key intermediates for designing novel ionic liquids. Chemistry Letters 2004,33 (5),560-561.
    120. Zhang, J. M.; Zhang, S. J.; Dong, K.; Zhang, Y. Q.; Shen, Y. Q.; Lv, X. M., Supported absorption of CO2 by tetrabutylphosphonium amino acid ionic liquids. Chemistry-a European Journal 2006,12 (15),4021-4026.
    121. Tang, J. B.; Sun, W. L.; Tang, H. D.; Radosz, M.; Shen, Y. Q., Enhanced CO2 absorption of poly(ionic liquid)s. Macromolecules 2005,38 (6),2037-2039.
    122. Tang, J. B.; Tang, H. D.; Sun, W. L.; Plancher, H.; Radosz, M.; Shen, Y. Q., Poly(ionic liquid)s:a new material with enhanced and fast CO2 absorption. Chemical Communications 2005, (26),3325-3327.
    123. Tang, J. B.; Tang, H. D.; Sun, W. L.; Radosz, M.; Shen, Y. Q., Low-pressure CO2 sorption in ammonium-based poly(ionic liquid)s. Polymer 2005,46 (26),12460-12467.
    124. Hu, X. D.; Tang, J. B.; Blasig, A.; Shen, Y. Q.; Radosz, M., CO2 permeability, diffusivity and solubility in polyethylene glycol-grafted polyionic membranes and their CO2 selectivity relative to methane and nitrogen. Journal of Membrane Science 2006,281 (1-2),130-138.
    125.吴永良;焦真;王冠楠;吴有庭;张志炳,用于CO2吸收的离子液体的合成、表征及吸收性能.精细化工2007,(4),324-327.
    126.黎四芳;任铮伟;李盘生;路琼华,MDEA-MEA混合有机胺水溶液吸收CO2.化工学报1994,45(6),698-703.
    127. Anderson, J. L.; Dixon, J. K.; Brennecke, J. F., Solubility of CO2,CH4, C2H6, C2H4, O2, and N2 in 1-hexyl-3-methylpyridinium bis(trifluoromethylsulfonyl)imide:Comparison to other ionic liquids. Accounts of Chemical Research 2007,40 (11),1208-1216.
    128. Bara, J. E.; Carlisle, T. K.; Gabriel, C. J.; Camper, D.; Finotello, A.; Gin, D. L.; Noble, R. D., Guide to CO2 Separations in Imidazolium-Based Room-Temperature Ionic Liquids. Industrial & Engineering Chemistry Research 2009,48 (6),2739-2751.
    129. Raeissi, S.; Peters, C. J., Carbon Dioxide Solubility in the Homologous 1-Alkyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide Family. Journal of Chemical and Engineering Data 2009,54 (2),382-386.
    130. Camper, D.; Bara, J. E.; Gin, D. L.; Noble, R. D., Room-Temperature Ionic Liquid-Amine Solutions:Tunable Solvents for Efficient and Reversible Capture Of CO2. Industrial & Engineering Chemistry Research 2008,47 (21),8496-8498.
    131. Jiang, Y. Y.; Wang, G. N.; Zhou, Z.; Wu, Y. T.; Geng, J.; Zhang, Z. B., Tetraalkylammonium amino acids as functionalized ionic liquids of low viscosity. Chemical Communications 2008, (4), 505-507.
    132. Yu, G. R.; Zhang, S. J.; Yao, X. Q.; Zhang, J. M.; Dong, K.; Dai, W. B.; Mori, R., Design of task-specific ionic liquids for capturing GO2:A molecular orbital study. Industrial & Engineering Chemistry Research 2006,45 (8),2875-2880.
    1. Fukumoto, K.; Yoshizawa, M.; Ohno, H., Room temperature ionic liquids from 20 natural amino acids. Journal of the American Chemical Society 2005,127 (8),2398-2399.
    2. Kagimoto, J.; Fukumoto, K.; Ohno, H., Effect of tetrabutylphosphonium cation on the physico-chemical properties of amino-acid ionic liquids. Chemical Communications 2006, (21), 2254-2256.
    3. Zhang, J. M.; Zhang, S. J.; Dong, K.; Zhang, Y. Q.; Shen, Y. Q.; Lv, X. M., Supported absorption of CO2 by tetrabutylphosphonium amino acid ionic liquids. Chemistry-a European Journal 2006,12 (15),4021-4026.
    4. Bates, E. D.; Mayton, R. D.; Ntai, I.; Davis, J. H., CO2 capture by a task-specific ionic liquid. Journal of the American Chemical Society 2002,124 (6),926-927.
    5. Aki, S.; Mellein, B. R.; Saurer, E. M.; Brennecke, J. F., High-pressure phase behavior of carbon dioxide with imidazolium-based ionic liquids. Journal of Physical Chemistry B 2004,108 (52), 20355-20365.
    6. Blanchard, L. A.; Gu, Z. Y.; Brennecke, J. F., High-pressure phase behavior of ionic liquid/CO2 systems. Journal of Physical Chemistry B 2001,105 (12),2437-2444.
    7. Chen, Y. H.; Zhang, S. J.; Yuan, X. L.; Zhang, Y. Q.; Zhang, X. P.; Dai, W. B.; Mori, R., Solubility of CO2 in imidazolium-based tetrafluoroborate ionic liquids. Thermochimica Acta 2006,441 (1),42-44.
    8. Andreu, J. S.; Vega, L. F., Modeling the Solubility Behavior of CO2, H2, and Xe in [C-n-mim][Tf2N] Ionic Liquids. Journal of Physical Chemistry B 2008,112 (48),15398-15406.
    9. Schilderman, A. M.; Raeissi, S.; Peters, C. J., Solubility of carbon dioxide in the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsurfonyl)imide. Fluid Phase Equilibria 2007,260 (1), 19-22.
    10. Burns, C. T.; Lee, S.; Seifert, S.; Firestone, M. A., Thiophene-based ionic liquids:synthesis, physical properties, self-assembly, and oxidative polymerization. Polymers for Advanced Technologies 2008,19 (10),1369-1382.
    11. Leveque, J. M.; Luche, J. L.; Petrier, C.; Roux, R.; Bonrath, W., An improved preparation of ionic liquids by ultrasound. Green Chemistry 2002,4 (4),357-360.
    12. Tao, G. H.; He, L.; Liu, W. S.; Xu, L.; Xiong, W.; Wang, T.; Kou, Y., Preparation, characterization and application of amino acid-based green ionic liquids. Green Chemistry 2006,8 (7),639-646.
    13. Ohno, H.; Fukumoto, K., Amino acid ionic liquids. Accounts of Chemical Research 2007,40 (11), 1122-1129.
    14. Zhu, A. L.; Jiang, T.; Han, B. X.; Huang, J.; Zhang, J. C.; Ma, X. M., Study on guanidine-based task-specific ionic liquids as catalysts for direct aldol reactions without solvent. New Journal of Chemistry 2006,30 (5),736-740.
    15. Kagimoto, J.; Taguchi, S.; Fukumoto, K.; Ohno, H., Hydrophobic and low-density amino acid ionic liquids. Journal of Molecular Liquids 2010,153 (2-3),133-138.
    16. Yamada, T.; Lukac, P. J.; Yu, T.; Weiss, R. G., Reversible, room-temperature, chiral ionic liquids. amidinium carbamates derived from amidines and amino-acid esters with carbon dioxide. Chemistry of Materials 2007,19 (19),4761-4768.
    17. Zhang, Y Q.; Zhang, S. J.; Lu, X. M.; Zhou, Q.; Fan, W.; Zhang, X. P., Dual Amino-Functionalised Phosphonium Ionic Liquids for CO2 Capture. Chemistry-a European Journal 2009,15(12),3003-3011.
    18. Kagimoto, J.; Nakamura, N.; Kato, T.; Ohno, H., Novel thermotropic gels composed of only ions. Chemical Communications 2009, (17),2405-2407.
    19. Holbrey, J. D.; Rodgers, R. D.; Wasserscheid, P., Ionic Liquids in Synthesis. Wiley-VCH.
    20. Forsyth, M.; Sun, J. Z.; MacFarlane, D. R., Novel high salt content polymer electrolytes based on high T-g polymers. Electrochimica Acta 2000,45 (8-9),1249-1254.
    21. Matsumoto, H.; Kageyama, H.; Miyazaki, Y., Room temperature ionic liquids based on small aliphatic ammonium cations and asymmetric amide anions. Chemical Communications 2002, (16), 1726-1727.
    22. Wasserscheid, P.; Waffenschmidt, H.; Machnitzki, P.; Kottsieper, K. W.; Stelzer, O., Cationic phosphine ligands with phenylguanidinium modified xanthene moieties-a successful concept for highly regioselective, biphasic hydroformylation of oct-1-ene in hexafluorophosphate ionic liquids. Chemical Communications 2001, (5),451-452.
    23. Mateus, N. M. M.; Branco, L. C.; Lourenco, N. M. T.; Afonso, C. A. M., Synthesis and properties of tetra-alkyl-dimethylguanidinium salts as a potential new generation of ionic liquids. Green Chemistry 2003,5 (3),347-352.
    24. Ito, K.; Nishina, N.; Ohno, H., Enhanced ion conduction in imidazolium-type molten salts. Electrochimica Acta 2000,45 (8-9),1295-1298.
    25. Bosmann, A.; Schulz, P. S.; Wasserscheid, P., Enhancing task specific ionic liquids' thermal stability by structural modification. Monatshefte Fur Chemie 2007,138 (11),1159-1161.
    26. Fredlake, C. P.; Crosthwaite, J. M.; Hert, D. G.; Aki, S.; Brennecke, J. F., Thermophysical properties of imidazolium-based ionic liquids. Journal of Chemical and Engineering Data 2004,49 (4), 954-964.
    27. Jacquemin, J.; Husson, P.; Padua, A. A. H.; Majer, V., Density and viscosity of several pure and water-saturated ionic liquids. Green Chemistry 2006,8 (2),172-180.
    28. Silkenbaumer, D.; Rumpf, B.; Lichtenthaler, R. N., Solubility of carbon dioxide in aqueous solutions of 2-amino-2-methyl-l-propanol and N-methyldiethanolamine and their mixtures in the temperature range from 313 to 353 K and pressures up to 2.7 MPa. Industrial & Engineering Chemistry Research 1998,37 (8),3133-3141.
    29. a)Kumelan, J.; Kamps, A. P. S.; Tuma, D.; Maurer, G., Solubility of CO2 in the ionic liquids bmim CH3SO4 and bmim PF6. Journal of Chemical and Engineering Data 2006,51 (5),1802-1807; b)Shariati, A.; Peters, C. J., High-pressure phase behavior of systems with ionic liquids-Part III. The binary system carbon dioxide+l-hexyl-3-methylimidazolium hexafluorophosphate. Journal of Supercritical Fluids 2004,30 (2),139-144.
    30. Wang, Y.; Wang, C. M.; Zhang, L. Q.; Li, H. R., Difference for SO2 and CO2 in TGML ionic liquids:a theoretical investigation. Physical Chemistry Chemical Physics 2008,10 (39),5976-5982.
    31. Anthony, J. L.; Anderson, J. L.; Maginn, E. J.; Brennecke, J. F., Anion effects on gas solubility in ionic liquids. Journal of Physical Chemistry B 2005,109 (13),6366-6374. 32. Quinn, R.; Appleby, J. B.; Pez, G. P., SALT HYDRATES-NEW REVERSIBLE ABSORBENTS FOR CARBON-DIOXIDE. Journal of the American Chemical Society 1995,117 (1),329-335.
    33. Yokozeki, A.; Shiflett, M. B.; Junk, C. P.; Grieco, L. M.; Foo, T, Physical and Chemical Absorptions of Carbon Dioxide in Room-Temperature Ionic Liquids. Journal of Physical Chemistry B 2008,112(51),16654-16663.
    34. Ferry, A.; Edman, L.; Forsyth, M.; MacFarlane, D. R.; Sun, J. Z., NMR and Raman studies of a novel fast-ion-conducting polymer-in-salt electrolyte based on LiCF3SO3 and PAN. Electrochimica Acta 2000,45 (8-9),1237-1242.
    35. Liao, C. H.; Li, M. H., Kinetics of absorption of carbon dioxide into aqueous solutions of monoethanolamine plus N-methyldiethanolamine. Chemical Engineering Science 2002,57 (21), 4569-4582.
    36. Arcis, H.; Rodier, L.; Ballerat-Busserolles, K.; Coxam, J. Y, Modeling of (vapor plus liquid) equilibrium and enthalpy of solution of carbon dioxide (CO2) in aqueous methyldiethanolamine (MDEA) solutions. Journal of Chemical Thermodynamics 2009,41 (6),783-789.
    37. Kundu, M.; Bandyopadhyay, S. S., Modelling vapour-Liquid equilibrium of CO2 in aqueous N-methyldiethanolamine through the simulate annealing algorithm. Canadian Journal of Chemical Engineering 2005,83 (2),344-353.
    38. Prausnitz, J. M.; Tavares, F. W., Thermodynamics of fluid-phase equilibria for standard chemical engineering operations. Aiche Journal 2004,50 (4),739-761.
    39. Morgan, D.; Ferguson, L.; Scovazzo, P., Diffusivities of gases in room-temperature ionic liquids: Data and correlations obtained using a lag-time technique. Industrial & Engineering Chemistry Research 2005,44 (13),4815-4823.
    40. Yaws, C. L., Chemical Properties Handbook. McGraw-Hill:New York,1999.
    1. Wilkes, J. S.; Zaworotko, M. J., AIR AND WATER STABLE 1-ETHYL-3-METHYLIMIDAZOLIUM BASED IONIC LIQUIDS. Journal of the Chemical Society-Chemical Communications 1992, (13),965-967.
    2. Quinn, R.; Appleby, J. B.; Pez, G. P., SALT HYDRATES-NEW REVERSIBLE ABSORBENTS FOR CARBON-DIOXIDE. Journal of the American Chemical Society 1995,117 (1),329-335.
    3. Gordon, J. E.; Subbarao, G N., FUSED ORGANIC SALTS.8. PROPERTIES OF MOLTEN STRAIGHT-CHAIN ISOMERS OF TETRA-NORMAL-PENTYLAMMONIUM SALTS. Journal of the American Chemical Society 1978,700 (24),7445-7454.
    4. Fukaya, Y.; Iizuka, Y.; Sekikawa, K.; Ohno, H., Bio ionic liquids:room temperature ionic liquids composed wholly of biomaterials. Green Chemistry 2007,9 (11),1155-1157.
    5. Fukaya, Y.; Sekikawa, K.; Murata, K.; Nakamura, N.; Ohno, H., Miscibility and phase behavior of water-dicarboxylic acid type ionic liquid mixed systems. Chemical Communications 2007, (29), 3089-3091.
    6. Quinn, R.; Appleby, J. B.; Mathias, P. M.; Pez, G. P., LIQUID SALT HYDRATE ACID GAS ABSORBENTS-AN UNUSUAL DESORPTION OF CARBON-DIOXIDE AND HYDROGEN-SULFIDE UPON SOLIDIFICATION. Separation Science and Technology 1995,30 (7-9),1711-1723.
    7. Zhang, Y. Q.; Zhang, S. J.; Lu, X. M.; Zhou, Q.; Fan, W.; Zhang, X. P., Dual Amino-Functionalised Phosphonium Ionic Liquids for CO2 Capture. Chemistry-a European Journal 2009,15 (12),3003-3011.
    8. Jiang, Y. Y.; Wang, G N.; Zhou, Z.; Wu, Y. T.; Geng, J.; Zhang, Z. B., Tetraalkylammonium amino acids as functionalized ionic liquids of low viscosity. Chemical Communications 2008, (4),505-507.
    9. Fredlake, C. P.; Crosthwaite, J. M.; Hert, D. G.; Aki, S.; Brennecke, J. F., Thermophysical properties of imidazolium-based ionic liquids. Journal of Chemical and Engineering Data 2004,49 (4), 954-964.
    10. Cai, Q. H.; Hou, Y. W.; Shi, S. Y.; Lu, B.; Shan, Y K., A novel ionic liquid based on small size cation. Chinese Chemical Letters 2009,20 (1),62-65.
    11. Widegren, J. A.; Laesecke, A.; Magee, J. W., The effect of dissolved water on the viscosities of hydrophobic room-temperature ionic liquids. Chemical Communications 2005, (12),1610-1612.
    12. Okoturo, O. O.; VanderNoot, T. J., Temperature dependence of viscosity for room temperature ionic liquids. Journal of Electroanalytical Chemistry 2004,568 (1-2),167-181.
    13. Seddon, K. R.; Stark, A.; Torres, M. J. In Influence of chloride, water, and organic solvents on the physical properties of ionic liquids,15th International Conference on Physical Organic Chemistry (ICPOC 15), Gothenburg, Sweden, Jul 08-13; Gothenburg, Sweden,2000; pp 2275-2287.
    14. Kilaru, P.; Baker, G. A.; Scovazzo, P., Density and surface tension measurements of imidazolium-, quaternary phosphonium-, and ammonium-based room-temperature ionic liquids:Data and correlations. Journal of Chemical and Engineering Data 2007,52 (6),2306-2314.
    15. Dzyuba, S. V.; Bartsch, R. A., Influence of structural variations in 1-alkyl(aralkyl)-3-methylimidazolium hexafluorophosphates and bis(trifluorormethyl-sulfdnyl)imides on physical properties of the ionic liquids. Chemphyschem 2002,3 (2),161-+.
    16. Cammarata, L.; Kazarian, S. G.; Salter, P. A.; Welton, T., Molecular states of water in room temperature ionic liquids. Physical Chemistry Chemical Physics 2001,3 (23),5192-5200.
    17. Shiflett, M. B.; Kasprzak, D. J.; Junk, C. P.; Yokozeki, A., Phase behavior of{carbon dioxide plus bmim Ac} mixtures. Journal of Chemical Thermodynamics 2008,40 (1),25-31.
    18. Anthony, J. L.; Anderson, J. L.; Maginn, E. J.; Brennecke, J. F., Anion effects on gas solubility in ionic liquids. Journal of Physical Chemistry B 2005,109 (13),6366-6374.
    19. Muldoon, M. J.; Aki, S.; Anderson, J. L.; Dixon, J. K.; Brennecke, J. F., Improving carbon dioxide solubility in ionic liquids. Journal of Physical Chemistry B 2007,111 (30),9001-9009.
    20. Kang, S. P.; Lee, H., Recovery of CO2 from flue gas using gas hydrate:Thermodynamic verification through phase equilibrium measurements. Environmental Science & Technology 2000,34 (20),4397-4400.
    21. Quinn, R.; Appleby, J. B.; Pez, G. P., NEW FACILITATED TRANSPORT MEMBRANES FOR THE SEPARATION OF CARBON-DIOXIDE FROM HYDROGEN AND METHANE. Journal of Membrane Science 1995,104 (1-2),139-146.
    22. Bara, J. E.; Gin, D. L.; Noble, R. D., Effect of Anion on Gas Separation Performance of Polymer-Room-Temperature Ionic Liquid Composite Membranes. Industrial & Engineering Chemistry Research 2008,47 (24),9919-9924.
    23. Dixon, J. K.; Muldoon, M. J.; Aki, S.; Anderson, J. L.; Brennecke, J. F.; Maginn, E. J. In Designing ionic liquids for CO2 capture,231st National Meeting of the American-Chemical-Society, Atlanta, GA, Mar 26-30; Atlanta, GA,2006; pp 221-IEC.
    24. Li, X. Y.; Hou, M. Q.; Zhang, Z. F.; Han, B. X.; Yang, G. Y; Wang, X. L.; Zou, L. Z., Absorption of CO2 by ionic liquid/polyethylene glycol mixture and the thermodynamic parameters. Green Chemistry 2008,10(8),879-884.
    25. Demberelnyamba, D.; Yoon, S. J.; Lee, H., New epoxide molten salts:Key intermediates for designing novel ionic liquids. Chemistry Letters 2004,33 (5),560-561.
    26. Yu, H.; Wu, Y. T.; Jiang, Y. Y; Zhou, Z.; Zhang, Z. B., Low viscosity amino acid ionic liquids with asymmetric tetraalkylammonium cations for fast absorption of CO2. New Journal of Chemistry 2009,33 (12),2385-2390.
    27. Matsumoto, H.; Kageyama, H.; Miyazaki, Y, Room temperature ionic liquids based on small aliphatic ammonium cations and asymmetric amide anions. Chemical Communications 2002, (16), 1726-1727.
    28. Barrosse-Antle, L. E.; Compton, R. G, Reduction of carbon dioxide in l-butyl-3-methylimidazolium acetate. Chemical Communications 2009, (25),3744-3746.
    29. Yokozeki, A.; Shiflett, M. B.; Junk, C. P.; Grieco, L. M.; Foo, T., Physical and Chemical Absorptions of Carbon Dioxide in Room-Temperature Ionic Liquids. Journal of Physical Chemistry B 2008,112 (51),16654-16663.
    30. Quinn, R., Room temperature molten carboxylate salt hydrates. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry 2001,31 (3),359-369.
    31. Kundu, M.; Bandyopadhyay, S. S., Solubility of CO2 in water plus diethanolamine plus N-methyldiethanolamine. Fluid Phase Equilibria 2006,248 (2),158-167.
    32. Prausnitz, J. M.; Lichtenthaler, R. N.; Gomes de Azevedo, E., Molecular Thermodynamics of Fluid-Phase Equilibria (3rd Edition). Prentice Hall:1998.
    33. Anderson, J. L.; Dixon, J. K.; Brennecke, J. F., Solubility of CO2,CH4, C2H6, C2H4, O2, and N2 in l-hexyl-3-methylpyridinium bis(trifluoromethylsulfonyl)imide:Comparison to other ionic liquids. Accounts of Chemical Research 2007,40 (11),1208-1216.
    34. Kamps, A. P. S.; Tuma, D.; Xia, J. Z.; Maurer, G., Solubility of CO2 in the ionic liquid [bmim][PF6]. Journal of Chemical and Engineering Data 2003,48 (3),746-749.
    35. Pani, F.; Gaunand, A.; Cadours, R.; Bouallou, C.; Richon, D., Kinetics of absorption of CO2 in concentrated aqueous methyldiethanolamine solutions in the range 296 K to 343 K. Journal of Chemical and Engineering Data 1997,42 (2),353-359.
    36. Wu, W. Z.; Han, B. X.; Gao, H. X.; Liu, Z. M.; Jiang, T.; Huang, J., Desulfurization of flue gas: SO2 absorption by an ionic liquid. Angewandte Chemie-International Edition 2004,43 (18), 2415-2417.
    37. Yuan, X. L.; Zhang, S. J.; Lu, X. M., Hydroxyl ammonium ionic liquids:Synthesis, properties, and solubility of SO2. Journal of Chemical and Engineering Data 2007,52 (2),596-599.
    38. Guo, B.; Duan, E. H.; Ren, A. L.; Wang, Y.; Liu, H. Y., Solubility of SO2 in Caprolactam Tetrabutyl Ammonium Bromide Ionic Liquids. Journal of Chemical and Engineering Data 2010,55 (3),1398-1401.
    39. Anderson, J. L.; Dixon, J. K.; Maginn, E. J.; Brennecke, J. F., Measurement of SO2 solubility in ionic liquids. Journal of Physical Chemistry B 2006,110 (31),15059-15062.
    40. Shiflett, M. B.; Yokozeki, A., Chemical Absorption of Sulfur Dioxide in Room-Temperature Ionic Liquids. Industrial& Engineering Chemistry Research 2010,49 (3),1370-1377.
    41. Wang, Y.; Wang, C. M.; Zhang, L. Q.; Li, H. R., Difference for SO2 and CO2 in TGML ionic liquids:a theoretical investigation. Physical Chemistry Chemical Physics 2008,10 (39),5976-5982.
    42. Ren, S. H.; Hou, Y. C.; Wu, W. Z.; Liu, Q. Y; Xiao, Y. F.; Chen, X. T., Properties of Ionic Liquids Absorbing SO2 and the Mechanism of the Absorption. Journal of Physical Chemistry B 2010,114 (6), 2175-2179.
    1. Haghtalab, A.; Shojaeian, A., Modeling solubility of acid gases in alkanolamines using the nonelectrolyte Wilson-nonrandom factor model. Fluid Phase Equilibria 2010,259 (1-2),6-14.
    2. Kundu, M.; Bandyopadhyay, S. S., Solubility of CO2 in water plus diethanolamine plus N-methyldiethanolamine. Fluid Phase Equilibria 2006,248 (2),158-167.
    3. Silkenbaumer, D.; Rumpf, B.; Lichtenthaler, R. N., Solubility of carbon dioxide in aqueous solutions of 2-amino-2-methyl-l-propanol and N-methyldiethanolamine and their mixtures in the temperature range from 313 to 353 K and pressures up to 2.7 MPa. Industrial& Engineering Chemistry Research 1998,37 (8),3133-3141.
    4. Dawodu,O. F.; Meisen, A., Effects of composition on the performance of alkanolamine blends for gas sweetening. Chemical Engineering Communications 1996,144,103-112.
    5. Zhang, F.; Fang, C. G.; Wu, Y. T.; Wang, Y. T.; Li, A. M.; Zhang, Z. B., Absorption of CO2 in the aqueous solutions of functionalized ionic liquids and MDEA. Chemical Engineering Journal 2010,160 (2),691-697.
    6. Freemantle, M., BASF'S smart ionic liquid. Chemical & Engineering News 2003,81 (13),9-9.
    7. Li, M. H.; Shen, K. P., DENSITIES AND SOLUBILITIES OF SOLUTIONS OF CARBON-DIOXIDE IN WATER PLUS MONOETHANOLAMINE PLUS N-METHYLDIETHANOLAMINE. Journal of Chemical and Engineering Data 1992,37 (3),288-290.
    8. Perry, R. H.; Chilton, C. H., Chemical Engineers'Handbook,5th. McGraw-Hill ed.; New York, 1973.
    9. Fredlake, C. P.; Crosthwaite, J. M.; Hert, D. G.; Aki, S.; Brennecke, J. F., Thermophysical properties of imidazolium-based ionic liquids. Journal of Chemical and Engineering Data 2004,49 (4), 954-964.
    10. Wilkes, J. S.; Levisky, J. A.; Wilson, R. A.; Hussey, C. L., DIALKYLIMIDAZOLIUM CHLOROALUMINATE MELTS-A NEW CLASS OF ROOM-TEMPERATURE IONIC LIQUIDS FOR ELECTROCHEMISTRY, SPECTROSCOPY, AND SYNTHESIS. Inorganic Chemistry 1982,21 (3),1263-1264.
    11. Guo, Wenxi; Gao, Peng; Zhang, S.; Mao, W, Physical and Chemical Properties of Ambient-temperature Ionic Liquid. Liaoning Chemical Industry,2003; Vol.32, pp 256-259.
    12. Rodriguez, H.; Brennecke, J. F., Temperature and composition dependence of the density and viscosity of binary mixtures of water plus ionic liquid. Journal of Chemical and Engineering Data 2006,51(6),2145-2155.
    13. Jacquemin, J.; Husson, P.; Padua, A. A. H.; Majer, V., Density and viscosity of several pure and water-saturated ionic liquids. Green Chemistry 2006,8 (2),172-180.
    14. Marsh, K. N.; Brennecke, J. F.; Chirico, R. D.; Frenkel, M.; Heintz, A.; Magee, J. W.; Peters, C. J.; Rebelo, L. P. N.; Seddon, K. R., THERMODYNAMIC AND THERMOPHYSICAL PROPERTIES OF THE REFERENCE IONIC LIQUID:1-HEXYL-3-METHYLIMIDAZOLIUM BIS[(TRIFLUOROMETHYL)SULFONYL]AMIDE (INCLUDING MIXTURES) PART 1. EXPERIMENTAL METHODS AND RESULTS (IUPAC Technical Report). Pure and Applied Chemistry 2009,81 (5),781-790.
    15. Seddon, K. R.; Stark, A.; Torres, M. J. In Influence of chloride, water, and organic solvents on the physical properties of ionic liquids,15th International Conference on Physical Organic Chemistry (ICPOC 15), Gothenburg, Sweden, Jul 08-13; Gothenburg, Sweden,2000; pp 2275-2287.
    16. Li, W. J.; Zhang, Z. F.; Han, B. X.; Hu, S. Q.; Xie, Y.; Yang, G. Y., Effect of water and organic solvents on the ionic dissociation of ionic liquids. Journal of Physical Chemistry B 2007, 111(23), 6452-6456.
    17. Cadena, C.; Anthony, J. L.; Shah, J. K.; Morrow, T. I.; Brennecke, J. F.; Maginn, E. J., Why is CO2 so soluble in imidazolium-based ionic liquids? Journal of the American Chemical Society 2004,126 (16),5300-5308.
    18. Gu, Z. Y.; Brennecke, J. F., Volume expansivities and isothermal compressibilities of imidazolium and pyridinium-based ionic liquids. Journal of Chemical and Engineering Data 2002,47 (2),339-345.
    19. Widegren, J. A.; Laesecke, A.; Magee, J. W., The effect of dissolved water on the viscosities of hydrophobic room-temperature ionic liquids. Chemical Communications 2005, (12),1610-1612.
    20. Okoturo, O. O.; VanderNoot, T. J., Temperature dependence of viscosity for room temperature ionic liquids. Journal of Electroanalytical Chemistry 2004,568 (1-2),167-181.
    21. Wilkes, J. S., Properties of ionic liquid solvents for catalysis. Journal of Molecular Catalysis a-Chemical 2004,214 (1),11-17.
    22. Cohen, M. H.; Turnbull, D., MOLECULAR TRANSPORT IN LIQUIDS AND GLASSES. Journal of Chemical Physics 1959,51(5),1164-1169.
    23. Adam, G.; Gibbs, J. H., ON TEMPERATURE DEPENDENCE OF COOPERATIVE RELAXATION PROPERTIES IN GLASS-FORMING LIQUIDS. Journal of Chemical Physics 1965, 43 (1),139-&.
    24. Angell, C. A., FREE VOLUME MODEL FOR TRANSPORT IN FUSED SALTS ELECTRICAL CONDUCTANCE IN GLASS-FORMING NITRATE MELTS. Journal of Physical Chemistry 1964,68 (7),1917-&.
    25. Gibbs, J. H.; Dimarzio, E. A., NATURE OF THE GLASS TRANSITION AND THE GLASSY STATE. Journal of Chemical Physics 1958,28 (3),373-383.
    26. Domanska, U.; Laskowska, M., Effect of Temperature and Composition on the Density and Viscosity of Binary Mixtures of Ionic Liquid with Alcohols. Journal of Solution Chemistry 2009,38 (6), 779-799.
    27. Mokhtarani, B.; Sharifi, A.; Mortaheb, H. R.; Mirzaei, M.; Mafi, M.; Sadeghian, F., Density and viscosity of 1-butyl-3-methylimidazolium nitrate with ethanol,1-propanol, or 1-butanol at several temperatures. Journal of Chemical Thermodynamics 2009,41 (12),1432-1438.
    28. Mokhtarani, B.; Sharifi, A.; Mortaheb, H. R.; Mirzaei, M.; Mafi, M.; Sadeghian, F., Density and viscosity of pyridinium-based ionic liquids and their binary mixtures with water at several temperatures. Journal of Chemical Thermodynamics 2009,41 (3),323-329.
    29. Law, G.; Watson, P. R., Surface tension measurements of N-alkylimidazolium ionic liquids. Langmuir 2001,17(20),6138-6141.
    30. Yang, J. Z.; Lu, X. M.; Gui, J. S.; Xu, W. G., A new theory for ionic liquids-the Interstice Model Part 1. The density and surface tension of ionic liquid EMISE. Green Chemistry 2004,6(11),541-543.
    31. Liu, W. W.; Zhao, T. Y; Zhang, Y. M.; Wang, H. P.; Yu, M. F., The physical properties of aqueous solutions of the ionic liquid BMIM BF4. Journal of Solution Chemistry 2006,35 (10),1337-1346.
    32. Marsh, K. N.; Boxall, J. A.; Lichtenthaler, R. In Room temperature ionic liquids and their mixtures-a review, International Symposium on Molecular Thermodynamics and Molecular Simulation, Akiu, JAPAN, May 27-30; Akiu, JAPAN,2003; pp 93-98.
    33. Huddleston, J. G.; Visser, A. E.; Reichert, W. M.; Willauer, H. D.; Broker, G. A.; Rogers, R. D., Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chemistry 2001,3 (4),156-164.
    34. Pereiro, A. B.; Verdia, P.; Tojo, E.; Rodriguez, A., Physical properties of 1-butyl-3-methylimidazolium methyl sulfate as a function of temperature. Journal of Chemical and Engineering Data 2007,52 (2),377-380.
    35. Kilaru, P.; Baker, G. A.; Scovazzo, P., Density and surface tension measurements of imidazolium-, quaternary phosphonium-, and ammonium-based room-temperature ionic liquids:Data and correlations. Journal of Chemical and Engineering Data 2007,52 (6),2306-2314.
    36. Versteeg, G. F.; Van Dijck, L. A. J.; Van Swaaij, W. P. M., On the kinetics between COt and alkanolamines both in aqueous and non-aqueous solutions. An overview. Chemical Engineering Communications 1996,144,113-158.
    37.黎四芳;任铮伟;李盘生;路琼华,MDEA-MEA混合有机胺水溶液吸收CO2.化工学报1994,45(6),698-703.
    38. Jiang, Y. Y.; Wang, G. N.; Zhou, Z.; Wu, Y. T.; Geng, J.; Zhang, Z. B., Tetraalkylammonium amino acids as functionalized ionic liquids of low viscosity. Chemical Communications 2008, (4),505-507.
    39. Park, S. H.; Lee, K. B.; Hyun, J. C.; Kim, S. H., Correlation and prediction of the solubility of carbon dioxide in aqueous alkanolamine and mixed alkanolamine solutions. Industrial & Engineering Chemistry Research 2002,41 (6),1658-1665.
    40. Portugal, A. F.; Sousa, J. M.; Magalhaes, F. D.; Mendes, A., Solubility of carbon dioxide in aqueous solutions of amino acid salts. Chemical Engineering Science 2009,64 (9),1993-2002.
    41. Kumar, P. S.; Hogendoorn, J. A.; Feron, P. H. M.; Versteeg, G. F., Equilibrium solubility of CO2 in aqueous potassium taurate solutions:Part 1. Crystallization in carbon dioxide loaded aqueous salt solutions of amino acids. Industrial & Engineering Chemistry Research 2003,42 (12),2832-2840.
    42. Kim, Y. S.; Choi, W. Y.; Jang, J. H.; Yoo, K. P.; Lee, C. S., Solubility measurement and prediction of carbon dioxide in ionic liquids. Fluid Phase Equilibria 2005,228,439-445.
    43. Blanchard, L. A.; Gu, Z. Y.; Brennecke, J. F., High-pressure phase behavior of ionic liquid/CO2 systems. Journal of Physical Chemistry B 2001, 105 (12),2437-2444.
    44. Kumelan, J.; Kamps, A. P. S.; Tuma, D.; Maurer, G., Solubility of CO2 in the ionic liquids bmim CH3SO4 and bmim PF6. Journal of Chemical and Engineering Data 2006,57 (5),1802-1807.
    45. Shariati, A.; Peters, C. J., High-pressure phase behavior of systems with ionic liquids-Part Ⅲ. The binary system carbon dioxide+l-hexyl-3-methylimidazolium hexafluorophosphate. Journal of Supercritical Fluids 2004,30 (2),139-144.
    46. Kumelan, J.; Kamps, A. P. S.; Tuma, D.; Yokozeki, A.; Shiflett, M. B.; Maurer, G, Solubility of tetrafluoromethane in the ionic liquid hmirn Tf2N. Journal of Physical Chemistry B 2008,112 (10), 3040-3047.
    47.周学良,碳酸丙烯酯脱除CO2工艺操作手册.浙江科学技术出版社:1993.
    48. Husson-Borg, P.; Majer, V.; Gomes, M. F. C. In Solubilities of oxygen and carbon dioxide in butyl methyl imidazolium tetrafluoroborate as a function of temperature and at pressures close to atmospheric pressure, IUPAC Workshop on Ionic Liquids, Rostock, Germany, Jul 28-Aug 02; Rostock, Germany,2002; pp 480-485.
    49. Murrietaguevara, F.; Rodriguez, A. T., SOLUBILITY OF CARBON-DIOXIDE, HYDROGEN-SULFIDE, AND METHANE IN PURE AND MIXED-SOLVENTS. Journal of Chemical and Engineering Data 1984,29 (4),456-460.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700