用户名: 密码: 验证码:
弹箭精度智能控制与修正方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代弹箭弹道学、动力学和控制理论的发展及应用体现在研究在带有随机干扰的复杂环境中,通过人工智能控制手段提高弹箭射击精度的方法,其中重要的问题就是研究更新更实用的弹箭弹道修正控制方法。针对该问题,本文以现代弹箭弹道学、最优控制理论和随机过程为研究工具,分析随机干扰因素对射击密集度的影响,研究弹道参数对气动系数灵敏度问题,依据弹道参数实测值对弹道参数和气动系数进行辨识,得到弹箭预估模型自适应最优控制理论和方法,通过舵机实施弹箭控制并修正弹道达到提高弹箭射击精度的目的。主要研究工作如下:
     在建立弹箭系统空间六自由度运动飞行动力学模型和随机风场模型的基础上,利用蒙特卡罗法仿真技术预测弹丸落点密集度。以控制系统灵敏度理论为基础建立与选择控制体系技术参数问题相联系的灵敏度函数,研究控制系统灵敏度函数的算法。通过对灵敏度函数的计算,分析气动参数对弹道参数的影响程度。
     针对随机因素影响下随机弹道的参数辨识问题,基于灵敏度理论和卡尔曼滤波理论分别对弹道参数和气动系数进行辨识。通过辨识,建立具有更精确弹道参数值的预估数学模型,从而提高弹箭的发射精度。将弹箭预估模型和最优控制广义功极小值原理相结合给出弹箭弹道最优控制方法,合理推导弹道特征参数的控制策略,采用快速计算方法降低计算量,实现自适应控制。
     根据某型号弹道修正弹修正控制的需要,设计一套适用于此弹体结构的修正执行机构电动舵机控制系统。对弹道修正弹的修正执行机构进行选择,舵机伺服系统中的伺服电机采用一种以小体积、高性能的永磁无刷直流电机作为执行机构的电动舵机伺服系统,使永磁无刷直流电机的诸多优点与弹道修正技术结合。进而确定舵机系统模型结构和相关参数,完成了控制器的设计。
     以Matlab为计算平台,对文中数学模型进行程序设计,形成完整计算软件。型号仿真计算和靶场试验结果的对比表明,在弹箭设计中应用文中提出的预估模型最优控制方法和弹道修正方法能提高弹箭射击精度。
The development and application of modern missiles ballistics, dynamics and control theory are reflected in researching the method of improving the firing precision by artificial intelligence control means in the complex environment with random disturbance. And one of the important issues is to study the newer and more practical trajectory correction control methods. For this problem, based on modern missiles ballistics, optimal control theory and random processs, intelligence control and correction means of missiles firing precision are studied in the complex environment with random disturbance in this thesis. The impact of random interference factors on firing dispersion is analyzed. Then sensitivity problem of the trajectory parameters to aerodynamic coefficients is studied. And based on the measured value, trajectory parameters and aerodynamic coefficients are identified in order to obtain the prediction model of missiles and adaptive optimal control theory and methods and to control and correct the ballistic of missile so as to enhance the missile firing precision through the control actuator. The main parts are concluded as follows:
     Based on 6-DOF motion space flight dynamics model of missiles system and the random wind field model, Monte-Carlo simulation technology is used to forecast the intensity of projectiles impact points. Based on the control system sensitivity theory, the sensitivity function linked to the problems of technical parameters in the control system is established and selected to study the algorithm of the control system sensitivity function. Through calculating sensitivity function, influence of aerodynamic coefficients on trajectory parameters is analyzed.
     For the problem of identifying the random trajectory parameters under the influence of random factors, based on the control system sensitivity theory and Kalman filtering theory, ballistic parameters and the aerodynamic coefficients are identified. Through identification, the estimated mathematical model with the more precise ballistic parameters is established so as to enhance the accuracy of the launch of the missiles. Method of missiles ballistic optimal control is given according to the estimated model and optimal control generalized work principle. And reasonable control strategy of trajectory characteristic parameters is derived. Using fast calculation method can reduce computational complexity and achieve adaptive control.
     For the need of correct control of the certain type trajectory correction projectile, the electric control actuator system of the correct executing mechanism is designed for the body structures of the trajectory correction projectile, and the correct executing mechanism is designed too. The small volume, high-performance permanent magnet brushless dc motor is used for the servo motor as executing mechanism of the electric control actuator servo system, so that the many advantages of permanent magnet brushless dc motor combine with trajectory correction technologies. The control actuator system model structure and related parameters are determined, and the controller is designed.
     Taking Matlab as a computing platform, the mathematical models in the thesis are programmed to form a complete computing software. The comparison of simulation of a certain type and range test results indicates that the optimal control of the estimated model and trajectory correction method presented in this thesis can improve the missile firing precision in design of missiles.
引文
[1]任武能,史淑娟,余达太.从历次局部战争看美军精确制导弹药的发展.导弹与航天运载技术.2006(5):58-61.
    [2]巩志强,王泉水.舰用弹药的发展与展望.舰载武器,2001(2):29-32.
    [3]陈科山等.一维弹道修正引信阻力器的研究现状分析及其设计原则探讨.探测与控制学报,2003(3):25-30.
    [4] A.A.德米特里耶夫斯基,д.H.雷申科,C.C.波哥吉斯托夫.韩子鹏,薛晓中,张莺译.外弹道学.北京:国防工业出版社,2000.
    [5]杨新状,许承东,李怀建.智能控制理论在导弹控制中的应用概述.航空兵器2004(2):23-26.
    [6] MiehaelS.L.Hollis,FredJ.Brandon,PeterC.Muller. Design and Flight Test of a Prototype Range Control Module for efor an 81-mm Mortar. ARL-MR-463,1999.9
    [7] MiehaelS.L.Hollis,FredJ.Brandon. Design and Analysis of a Fuze-Configurable Range Correction Device for an Artillery Projectile. ARL-TR.2074,1999.12
    [8] A.Ziliani,C.Grignon,C.Trouillot,C.Jeannin. Diagnostic of the Behaviour of a Course Correction Ammunition During its Correction Phase.19th International Symposium of Ballistics. 2001:478-487.
    [9]谭凤岗.弹道修正弹的概念研究.弹箭技术,1998(4):2-11.
    [10]田晓丽,陈国光,辛长范.弹道修正弹的外弹道实时解算算法研究.华北工学院测试技术学报. 2000(1):44-47.
    [11]高敏,张强.弹道修正弹实际弹道探测技术综述.弹道学报,2003(1):91-96.
    [12]徐劲祥,宋锦武,夏群力.弹道修正弹末段脉冲推力控制研究.弹道学报,2005 ( 2) :19-23.
    [13]施坤林,翟蓉.影响末段脉冲修正弹命中精度的综合因素分析.探测与控制学报.2004,26(1):8-12.
    [14]赵金强,龙飞,孙航.弹道修正弹综述.制导与引信.2005,26(4):16-19.
    [15]王中原,史金光.一维弹道修正弹气动布局与修正能力研究.南京理工大学学报(自然科学版),2008,32(3):333-336.
    [16]葛贤坤,黄长强,胡杰,赵辉.末段修正火箭弹简易脉冲修正技术.火力与指挥控制, 2008,33(5):148-150.
    [17]孟新宇.指令修正弹药组合测量和自装定.南京理工大学博士论文.2008.3.
    [18]虎晓伟.弹道修正技术反导应用.火力与指挥控制.2004,29(5):41-43.
    [19]马宝华.战争、技术与引信—关于引信及引信技术的发展.探测与控制学报.200l.23(l):1-6.
    [20]张有峰,王军波,黄春光.我国弹道修正弹的发展构想.中国兵工学会引信技术新概念专题研讨会.2000:56-60.
    [21] C. Grignon, A. Ziliani, V. Fleck, S. David, and, A. Arrigucci. Steering of a Spin Stabilized Gliding Projectile: First Approach. 20th International Symposium on Ballistics Orlando, FL, 23-27 September, 2002.
    [22] Lieske, R. F. Use of the magus force in the modified point mass trajectory model AD A228194 1990.
    [23] C. Grignon, A. Ziliani, V. Fleck, S. David, and, A. Arrigucci. Steering of a Spin Stabilized Gliding Projectile: First Approach. 20th International Symposium on Ballistics Orlando, FL, 23-27 September, 2002.
    [24]王宝全,李世义.一维弹道修正引信阻尼弹道系数的优化与仿真.弹道学报.2002,24(4):17-20.
    [25]朱昊,李杰,马宝华.弹道修正引信阻尼机构的设计与仿真研究.探测与控制学报.2001,23(l):52-55.
    [26]曲秀杰等.一维弹道修正模块设计与仿真.探测与控制学报.2002,24(2):21-24.
    [27]李东光,周国勇,马宝华.一维弹道修正引信弹道敏感技术.兵工学报.2003,24(3):309-312.
    [28]王宝全等.一维弹道修正引信射程扩展量的计算方法.探测与控制学报.2002,24(4):17-20
    [29]毛晓翔.弹道修正弹总体方案及关键技术研究.南京理工大学硕士论文.2005.7
    [30]阂俊锋.利用地磁场确定弹道修正弹的滚转姿态.南京理工大学硕士论文.2006.7.
    [31]何光林等.一维弹道修正引信阻尼修正机构的改进设计与仿真.探测与控制学报.2005,27(l):1-4.
    [32]洪元军,雷雅茹.国外弹道修正引信发展现状研究.探测与控制学报,2001(4):2-6.
    [33]王中原,涂四华,弹道修正中弹道诸元探测时间间隔的确定.弹道学报,2002(1):84-87.
    [34] Murphy, C. H Gravity-induced Angular Motion of a Spinning Missile AD-7306411972.
    [35] Drescher, Thomas:etc Rocket trajectory correction using strap-on GPS guided thrusters EI98074281948,1998.
    [36]姚文进,王晓鸣,高旭东,李文彬.弹道修正防空弹药飞行最优控制方法研究.南京理工大学学报. 2006,30(4):517-520.
    [37]郭京力,党涛立,范奎武.基于广义功极小值原理的鱼雷最优控制问题.鱼雷技术. 2006,14(5):38-41.
    [38] Laine, S.:etc Six degree-of-freedom trajectory model PB96-171558 1995.
    [39] Wittwer, J.W.."Monte Carlo Simulation Basics",From Vertex42.com, June 1, 2004, Monte Carlo Simulation Basics.
    [40] sabel Beichl , Francis Sullivan. "Monte Carlo Methods" ,Computing in Science & Engineering, vol. 8, no. 2, March/April 2006, pp. 7-8.
    [41]A.A.Dmitrievcke, L.N.Lecenko,S.S.Bogodsomov. External ballistics.Moscow: Machine construction ,1991.(in Russian)
    [42]Е.Н.Розинвассер.М.Юсупов.Чувствительностьсистемуправления.Москва:ИздательствоНаукаГлавнаяредакцияФизико-математикойлите-ратуры,1981.15-29,39-384,406-428
    [43]钱炜祺.用灵敏度法简化化学反应动力学模型.空气动力学学报.2004,22(1):88-91.
    [44]唐明裴,阎贵平.结构灵敏度分析及计算方法概论.中国铁道科学,2003(1):75-77.
    [45] Rozenvaccep.E.H. Sensitivity of Automatic Control System L., Energy.1971. (in Russian)
    [46]高冰,段一萍.外弹道数据处理中航向角精确计算方法.弹箭测控学报.2003,22(3):26-28.
    [47]Hamel P G, Ategaonkar R V. Evaluation of flight vehicle system identification.Journal of Aircraft, 1996, 33(1):9-28.
    [48]Aksteter, J.W.,Parks, E.K..Parameter identification and modeling of longitudinal aerodynamics.Journal of Aircraft, v 32, n 4, Jul-Aug, 1995, pp 723-731.
    [49]智永锋,张骏,杨秉政.基于最大似然估计的一种新的信号处理方法.西北工业大学学报,2008,(26):179-183.
    [50]杜昌平,周德云,宋笔锋.基于遗传算法的弹道参数辨识方法研究.西北工业大学学报,2008,(26):373-376. [5l]Ching H Chuang. Eigenvalue. Sensitivity Analysis of Planar Frames with Variable Joint and Support Locations.AIAA Journai.1992,(30):2138-2146.
    [52]HAMEL PG, ATEGAONKAR R V. Evaluation of flight vehicle system identification. Journal of Aircraft, 1996, 33(1) :9228.
    [53]崔博文,沈允文.重特征值模态灵敏度分析的非线性摄动方法.航空动力学报.2000.2(12):89-92.
    [54]Ching H Chuang.Eigenvalue. Sensitivity Analysis of Planar Frames with Variable Joint and Support Locations. AIAA Journai, 1992 (30):2138-2146G.
    [55]Maine R E,Iliff K W.Application of parameter estimation to aircraft stability and control—the output error approach.NASA RP一1168,1986.
    [56]Wang, Xiao-Peng. Aerodynamic parameter identification of flight vehicles based on adaptive genetic algorithm. Yuhang Xuebao/Journal of Astronautics, v 24, n 3, May, 2003, p 303.
    [57] Aksteter, J.W. ,Parks, E.K., and Bach, R.E. Jr..Parameter identification and modeling of longitudinal aerodynamics. Journal of Aircraft, v 32, n 4, Jul-Aug, 1995, pp 723-731.
    [58]KLEIN V, Estimation of aircraft aerodynamic parameters from flight deed. Progress in Aerospace Science,1989.26(3):1-77.
    [59]Trankle and Thomas L.,Identification of a nonlinear aerodynamic model of the F-14 aircraft.Journal of Guidance, Control, and Dynamics, v 18, n 6, Nov-Dec, 1995, pp 1292-1297.
    [60]Hoff, J.C. and Cook, M.V.. Aircraft parameter identification using an estimation-before-modelling technique. Aeronautical Journal,v 100, n 997, Aug-Sep, 1996, pp 259-268.
    [61]ILIFF K W. Parameter estimation for flight vehicle. Journil of Guidance Control and Dynamics,1989,12(5):609-622.
    [62]李言俊.系统辨识理论及应用.北京:国防工业出版社,2003.
    [63]史金光,徐明友,王中原,张冰凌.卡尔曼滤波在弹道修正弹落点推算中的应用.弹道学报,2008,20 (3): 41-43.
    [64]刘永新,苏敏,李春虹.基于Kalman滤波的俯仰角速度估计.电子测量技术,2009,32(6):35-36.
    [65] R. W. H. Sargent. Optimal control. Journal of Computational and Applied Mathematics 124 (2000) 361-371.
    [66]吴志刚,谭述君.哈密顿系统正则变换在时变最优控制中的应用.力学学报,2008,(1):86-95.
    [67]马建军,李文强,李鹏,郑志强.弹箭控制分配技术研究现状与展望.飞行力学,2009,27(3):1-5.
    [68]静大海,刘晓平.基于最优控制的系统时变非线性参数模糊辨识.系统工程与电子技术,2008,30(3):540-543.
    [69] R. B. Vinter. Optimal Control, Birkhauser, Boston, 1999.
    [70] M Sami, D Buhan, Patrick. Minimum principle and related numerical scheme for simulatinginitial flow and subsequent propagation of liquefied ground. International Journal for Numerical and Analytical Methods in Geomechanics(s0363-9061),2005,11(29): 1065-1086.
    [71] A Kostoglotov, V Chebotarev. Synthesis of optimum algorithm of phase estimation based on the joint maximum principle. International Journal for Numerical and Analytical Methods in Geomechanics(s0146-4116),2006,6(40): 18-25.
    [72] WONG K H.Optimal control computation for parabolic systems with boundary conditions involving time delay.Journal of Optimization Theory and Applications, 1987, 53(3) :475-507.
    [73] Yong J., Necessary Condition for Minimax Control Problems of Second Order Elliptic Partial Differential Equations, Kodai Math. J., 1993, 16(4): 469-486.
    [74] Casas E., Yong J., Maximum Principle for State-Constrained Optimal Control Problems Governed by Quasi-linear Elliptic Equations. Diff. Int. Eqn., 1995, 8(1): 1-18.
    [75] WU Z S, TAO K L.Optimal control problems involving second boundary value problems of parabolic type. SIAM Journal on Control and Optimization, 1983, 21:729-757.
    [76]耿丽娜,秦海力,郑志强.最大值原理在制导炸弹滑翔控制中的应用.电光与控制, 2008,15(5):28-31.
    [77]齐光磊,李正强,李军锁,许聪颖,高扬,常传喜.随机参数系统基于MATLAB的最优控制.机械,2008,35(6):23-26.
    [78] Berkovitz, L. D., Optimal Control Theorv. Springer-Verlag. New York. 1983.
    [79] Wen-Hua Chen, Donald J. Ballance, Peter J Gawthrop. Optimal Control of Nonlinear Systems: a predictive control approach. Automatica 2003 (39): 633 -641.
    [80] A Kostoglotov, V Chebotarev.“Synthesis of optimum algorithm of phase estimation based on the joint maximum principle.”International Journal for Numerical and Analytical Methods in Geomechanics(s0146-4116),2006,6(40):18-25.
    [81]陈书锦,李华德,胡广大.基于广义预测算法的直接转矩控制仿真.系统仿真学报,2008,20(2):437-439.
    [82]王亚蛟,王文海,王兴平.基于广义预测控制的网络控制系统设计.海军航空工程学院学报,2009,24(4):405-409.
    [83]李凤俐.时间最优控制理论在雷达伺服系统中的应用.测控技术,2008,27(6):47-49.
    [84]汪军林.导弹电动舵机的研究现状及发展趋势.飞航导弹,2008(3):42-43.
    [85]周凤岐,陈瑜.一种新型的伺服系统——变结构谐波传动电动伺服系统.导弹与航天运载技术,2001(3):48-50.
    [86] SONG Hailong,Yu Yong.A hybrid adaptive fuzzy variable structure speedcontroller for Brushless DC Motor.The 28th Annual Conference of the IEEE,IECON 02,Industrial Electronics Society.2002,Sevilla,Spain:2126-2130.
    [87]李虎全,李世义,罗会甫,肖洪兵,王琴.弹道修正引信用电动舵机设计与仿真.微计算机信息, 2009 ,25(3-1):7-9.
    [88]阮毅编著.运动控制系统.北京:清华大学出版社,2006.245-254.
    [89] P.Pillay and R.Krishnan.Modeling simulation and analysis of permanent magnet motor drives,Part I:The Brushless DC Motor Drive.IEEE Trans.onIndustry Appliance,1989.25(2):274-279.
    [90]高原.导弹舵机PID-MRAC复合控制仿真研究.计算机仿真学报,2008,25(1):67-70.
    [91] C.Cossar,C.Whitley,etc The Design of a Switched.Reluctance Drive for Aircraft Flight Control Surface Actuation.IEE Colloquium on All Electric Aircraft,London,1999.201-208.
    [92] K.Atallah,C.Maxwell.Permanent Magnet Brushless Drives for Aircraft FlightControl Surface Aactuation.IEE Colloq.On All–Electric Aircraft,Savoy place,London,1999.801-805.
    [93] Shang Jing,Zou Ji-bin,Hu Jian-hui.Analysis of torque-current characteristic of brushless DC motor driven by three-phase H-bridge.Journal of Harbin Instituteof Technology,2000,7(3):80-83.
    [94]冯建超.无人机舵偏角的自动检测.微计算机信息,2006,22(10):173-174.
    [95]范金华,吕鸣,彭学锋.舵机加载系统的最优控制.电光与控制,2008,15(9):73-76.
    [96]唐建国.满足相位裕度的PID控制器解析设计方法.重庆三峡学院,2007,23(3):77-80.
    [97]许文强,王艾萌,孟明,魏亮,来旭红.永磁同步电机控制系统PID参数在线辨识新方法.华北电力大学学报,2009,36(4):16-19.
    [98]崔明月,缑新科.基于遗传算法-BP神经网络优化的PID控制.电气自动化,2009, 56(7):16-18.
    [99]徐春梅.模糊神经网络补偿的伺服系统二次型最优控制.控制工程,2009,16(3):264-267.
    [100] G.H.Jang,M.G.Kim.Optimal Commutation of a BLDC Motor by Utilizing the Symmetric Terminal Voltage.IEEE Transactions On Magnetics.2006,42(10):3473-3475.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700